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Abstract

Motivation: Many clinical and scientific conclusions that rely on voxel-wise analyses of 

neuroimaging depend on the accurate comparison of corresponding anatomical regions. Such 

comparisons are made possible by registration of the images of subjects of interest onto a common 

brain template, such as the Johns Hopkins University (JHU) template. However, current image 

registration algorithms are prone to errors that are distributed in a template-dependent manner. 

Therefore, the results of voxel-wise analyses can be sensitive to template choice. Despite this 

problem, the issue of appropriate template choice for voxel-wise analyses is not generally 

addressed in contemporary neuroimaging studies, which may lead to the reporting of spurious 

results.

Results: We present a novel approach to determine the suitability of a brain template for voxel-

wise analysis. The approach is based on computing a “distance” between automatically-generated 

atlases of the subjects of interest and templates that is indicative of the extent of subject-to-

template registration errors. This allows for the filtering of subjects and candidate templates based 
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on a quantitative measure of registration quality. We benchmark our approach by evaluating 

alternative templates for a voxel-wise analysis that reproduces the well-known decline in fractional 

anisotropy (FA) with age. Our results show that filtering registrations minimizes errors and 

decreases the sensitivity of voxel-wise analysis to template choice. In addition to carrying 

important implications for future neuroimaging studies, the developed framework of template 

induction can be used to evaluate robustness of data analysis methods to template choice.
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1. Introduction

Image registration is the mapping of images onto a common coordinate space with the goal 

of aligning their homologous regions (Oliveira and Tavares, 2014; Sotiras et al., 2013). 

Accurate image registration is particularly important in voxel-wise analyses of brain 

magnetic resonance images (MRIs), where the current standard of practice is to have the 

images of the subjects of interest mapped onto a “template” image such as the Johns 

Hopkins University (JHU) brain template (Hua et al., 2008a; Mori et al., 2009). Correct and 

precise mappings are necessary in order to make valid statistical inferences about spatial 

differences in MRI-derived parameters (e.g. fractional anisotropy (FA)). This represents a 

central task in medical image analysis: the imaging of a patient can be compared to the 

imaging of a healthy control group to identify the patient’s structural or functional 

differences that may be indicative of pathology (Despotovic et al., 2015; Han et al., 2017; 

Kinnunen et al., 2011).

Nonlinear mathematical functions that carry out the mapping from one brain to another 

during registration are called morphisms. The neuroanatomical variability among individuals 

and signal noise in the image acquisition process virtually ensure that the anatomy of one 

brain can never be exactly mapped onto the anatomy of another in a voxel-by-voxel fashion 

(Klein et al., 2009; Grachev et al., 1999; Ardekani et al., 2005; Suri et al., 2015); morphism/

registration misalignments leading to errors will always be present. In addition, due to 

neuroanatomical variability, the exact set of registration errors differs depending on the 

brains being aligned (Despotovic et al., 2015; Suri et al., 2015; Crum et al., 2004), implying 

that the results of template-based voxel-wise analyses are sensitive to the choice of the 

template image. Thus, voxel-wise analysis may be more accurate for sets of brains that have 

minimal errors in the morphisms that relate them to one another.

A long-standing approach to mitigating voxel-wise registration errors has been to report 

MRI measurements in terms of their values at clusters of adjacent voxels rather than 

individual voxels (Friston et al., 1994). Nevertheless, it was recognized over fifteen years 

ago that the presumed correspondence of neuroanatomical regions between subjects and a 

chosen template can harm the validity of brain MRI voxel-wise analyses because of the 

unknown distributions of registration errors (Crum et al., 2003), which are specific to 

subject-template pairs. Dependence of the registration errors on the subjects and template 

highlights the importance of subject-specific analysis and judicious template selection in 
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voxel-wise imaging studies (Suri et al., 2015; Mayer et al., 2018; Viviani et al., 2007; 

Douaud et al., 2011; Keihaninejad et al., 2012). As an example, a previous study by our 

group examined the effects of template choice on the voxel-wise analysis of a set of patients 

with mild traumatic brain injury, which are expected to have clusters of low FA arising from 

residual white matter injury (Suri et al., 2015). This study showed that voxel-wise FA cluster 

analyses over the JHU and Montreal Neurological Institute (MNI) (Aubert-Broche et al., 

2006) templates found many more locations of low FA clusters than the analysis using 

subject-based templates (Fig. 1). Furthermore, the locations of most low FA clusters over the 

JHU and MNI templates disagreed and were found to correlate with the locations of 

misregistered voxels. On the other hand, the FA clusters that agreed between the JHU and 

MNI templates also agreed with the locations found by the subject-based template. A 

general approach to study-specific template selection is to find or create a template to which 

registration errors from the subjects can be identified as being below some quantitative 

threshold.

Methods of registration error quantification are fundamentally based on measuring the 

displacement between the positions of voxels comprising specific expert-defined anatomical 

landmarks, and include Bayesian (Risholm et al., 2013), machine-learning-based (Muenzing 

et al., 2012; Kearney et al., 2018), and analytical (Datteri et al., 2015) approaches. Error 

estimation methods have been commonly used in a variety of medical applications requiring 

repeated or real-time image guidance, such as surgery and cancer radiotherapy (Hoffmann et 

al., 2014; Mascott et al., 2006; Elhawary et al., 2010). Importantly, these applications 

depend on the quantification of registration errors between different images of the same 

patient taken at different times, with potential alteration of brain shape due to the procedure. 

To our knowledge, only a few previous studies have explicitly focused on the effects of 

template-dependent errors on group-based voxel-wise analysis (Keihaninejad et al., 2012; 

Acheson et al., 2017). For example, one study of patients exhibiting neurodegeneration due 

to Alzheimer’s disease found that creating a template based on a morphometric average of 

the study group led to fewer subject-to-template registration errors on voxel-wise analysis 

(Keihaninejad et al., 2012). Another study of FA reproducibility in the setting of tract-based 

spatial statistics assessed registration quality between their subjects and template by 

computing the average projection distance for a group-wide mean FA skeleton: having too 

great of a distance to the FA skeleton suggests poor registration quality (Acheson et al., 

2017). The protocol in this study used a form of the minimal deformation target (MDT) 

(Hua et al., 2008 b; Kochunov et al., 2002): the creation of a template that minimizes the 

average morphometric displacement to a specific set of subjects. While these methods may 

be effective for groups of subjects that are highly similar to each other, the ultimate output of 

morphometric averaging and MDT is dependent on the specific morphism algorithm used 

and is not directly connected to the suitability of the template. To illustrate, consider a mock 

morphism algorithm that does not transform the study group subjects at all (an identity 

function): the morphometric average would correspond to directly averaging non-registered 

study group images, yielding a non-sensical template image to which further registrations 

would also be non-sensical. MDT would find this template acceptable because deformations 

are identically zero. The FA skeleton projection step would detect large misalignments. Even 

though these methods have been found to be helpful for template construction, the 
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overarching issue of specific template choice and quality of registrations to it is not 

commonly considered in the current literature, which is concerning given the high potential 

for the reporting of false positive and negative findings.

Two main difficulties arise in studying and addressing the influence of template choice on 

the results of voxel-wise analyses based on deformation of images to the template: the 

absence of “ground truth” answers and the voxel-wise comparison of results obtained over 

different individual candidate templates. To be compared, all results must first be morphed 

to a common “master template”, something which cannot be accomplished without morph 

errors. In the presence of morph errors, observed discrepancies cannot be unambiguously 

attributed to the poor choice of an individual candidate template because they can be 

potentially explained by poor registration of that template to the master template. Similarly, 

results of a voxel-wise analysis over the master template cannot be considered “ground 

truth” because of morph errors during registration of the subject data to the template. If 

morph errors could be “turned off” during generation of the ground truth and during 

registration of the results over individual candidate templates to the master template, then 

the morph errors to the candidate templates could be isolated for analysis (Fig. 2).

In this ideal scenario, spatial clusters obtained in a voxel-wise analysis of the subject data 

morphed to the master template represent the “ground truth”. The same analysis is 

performed over the various candidate templates and clusters are carried over to the master 

template for comparison without misalignment. Since the subjects used in the analysis are 

always the same, and because there is no randomness in the analysis, the degree to which 

these clusters match the ground truth can be directly attributed to the suitability of the 

candidate templates. Indeed, if the clusters match the ground truth, the candidate template 

may be termed as “good”. Conversely, if the clusters do not match the ground truth, the 

candidate template may be termed as “bad”. In turn, the suitability of the candidate is 

determined by the individual morphisms between subject brains and the template. This 

allows detailed analysis of the quality of the individual morphisms and development of a 

criterion with which to screen and filter out aberrant transformations thus converting a “bad” 

template into a “good” template, albeit for a subset of subjects.

A related important and well-known issue that arises in template selection is the potential for 

selection bias (Thompson and Toga, 2002; Thompson et al., 2000b): a given template may 

have intrinsic, but not necessarily observable, properties that cause it to be more favorable 

for comparison with certain subgroups of subjects within a dataset. Conversely, a template 

may generate inaccurate morphisms and thus be a “bad” template for an “outgroup” within a 

dataset. For example, a template based on a young brain may introduce selection bias 

favoring other young brains due to their greater baseline anatomical similarity. Another 

example would be when different MRI datasets are pooled together for a common analysis: 

the differences in data collection and post-processing between datasets could cause a 

template constructed based on a brain from one dataset to be biased against those of other 

datasets. While one possible approach to mitigate selection bias would be the creation of 

averaged templates for a dataset (e.g. by implementing MDT as discussed above), this may 

still not result in adequate morphisms because the averaged template may be too different 

from any individual subject; in other words, the template may be too “fuzzy” (Wu et al., 
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2016). While several approaches have been developed to attempt to minimize the bias 

introduced by averaging (Wu et al., 2016; Joshi et al., 2004; Lyu et al., 2015), no way of 

confirming the actual resulting bias in a test dataset currently exists. Therefore, selection 

bias in the results of these approaches may go unnoticed throughout a data analysis pipeline 

and lead to false positive or false negative results. A morphism quality measure would allow 

for the early detection of these errors and adequately inform further data analyses. 

Potentially, it would also allow investigation of the underlying reasons of the morph errors.

Overall, the present study is organized into three main components: 1) We define a “ground 

truth” for benchmarking, 2) We propose a morphism quality measure to make voxel-wise 

analyses more template-independent, and 3) We evaluate effect of morphism quality filtering 

algorithm against the ground truth. Specifically, for component 1) we developed a template 

and subject induction process to manufacture the exact, error-free morphisms needed for 

ground truth generation and results comparison across alternative candidate template choices 

(Fig. 2). For benchmarking, we elected to examine how template selection affects the results 

of a voxel-wise analysis based on deformation of images to a common template that seeks to 

reproduce the well-known decline in white matter integrity with age (Pfefferbaum et al., 

2000; Pfefferbaum and Sullivan, 2003; Fleysher et al., 2018; Kochunov et al., 2012). We use 

FA maps derived from diffusion tensor imaging as a marker of white matter integrity in a set 

of young to middle-aged subjects that have no brain pathology. For component 2), we 

investigate the sensitivity of locations of voxel clusters where FA is significantly associated 

with age (FA clusters) to the choice of template. Poorly-registered images are filtered out 

using a new morphism quality measure that utilizes an average of Haussdorf-like distances 

(Garlapati et al., 2015) to compare FreeSurfer-generated atlases of candidate templates and 

subjects morphed onto them (Fleysher et al., 2017). We hypothesize that this average inter-

atlas distance can characterize the extent of subject-to-template registration errors and 

determine the suitability of a candidate template for voxel-wise analysis of a set of specific 

subjects. Finally, we evaluate this hypothesis in component 3) by computing the Dice 

coefficient overlap (Dice, 1945) between the FA clusters of the ground truth and the FA 

clusters obtained over candidate templates of varying quality. Our results demonstrate that 

excluding poorly-registered images dramatically increases the robustness of the voxel-wise 

analysis to the choice of template.

2. Materials and methods

Data and Code Availability Statement:

Data in this study was obtained from the previously conducted Einstein Lifespan Study 

(ELS). All third-party code used in this work is available online and cited within this work.

Ethics Statement:

The ELS was approved by the institutional review board of Albert Einstein College of 

Medicine. All participants provided informed consent in writing.
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2.1. Imaging protocol

We used 96 whole brain datasets from healthy 18–55-year-old participants (46% female) of 

the Einstein Lifespan Study, without known brain pathology or history of neurological or 

psychiatric disorders. All images were reviewed by an experienced neuroradiologist and 

determined to be free of clinically significant structural abnormalities, including gross 

changes due to trauma, infection, or neoplasm. Imaging was performed using a 3.0 T Philips 

Achieva TX scanner (Philips Medical Systems, Best, The Netherlands) and its 32-channel 

head coil. The imaging protocol included: T1W: TR/TE/TI = 9.9/4.6/900 msec, flip angle 8 

deg, 1 mm isotropic resolution, 128 × 116 × 220 matrix; DTI: TR/TE = 10,000 / 65 msec, 32 

diffusion directions, b-value = 800 s/mm, 2 mm isotropic resolution, 240 × 188 × 70 matrix; 

and field map to correct EPI-related distortions in DTI and small distortions in T1W: TR/TE 

= 20/2.4 msec, delta TE = 2.3 msec, flip angle 20 deg, 4 mm isotropic resolution, 64 × 64 × 

50 matrix. DTI data were corrected for eddy current- and EPI-related distortions, followed 

by registration to the individual’s T1W using FSL tools (Jenkinson et al., 2012) as described 

in (Fleysher et al., 2018). All original images and intermediate results including brain 

extraction and intra-subject registration were visually inspected by trained raters using a 

standardized procedure: raw images were inspected for signs of motion; brain extractions 

were examined in the axial slice traversing them from the superior to the inferior aspect of 

the brain; inspection of rigid body registrations began with large structures (ventricles and 

cerebellum) down to thin cortical sulci. All further analyses in the present work considered 

only the T1W images and FA maps registered to them.

2.2. Registration framework

The overall structure of the present study has been designed to isolate the effects of subject-

to-template registration errors on voxel-wise analyses of FA versus age (Fig. 2). This was 

done by creating “induced” subject and template images which have exactly-known 

transformations to a “master template” across which all FA analyses are compared. We 

recognize that morph errors between any two given brains, A and B, can never be turned off 

to implement the ideal set-up of Fig. 2. However, given an image A, a morphism can be 

applied to transform it to another image B’. Image B’ does not match image B exactly, but 

the transformation between images A and B’ is exact by construction (Fig. 3A). When we 

take A to be the master template, we refer to image B’ as the “induced template” with image 

B being the “inductor”. Specifically, we selected the JHU brain as the master template and 

morphed it onto the 96 T1W images of the ELS as inductors to produce 96 induced 

templates, which we subsequently employed in this study as candidate templates (Fig. 3B). 

This implements one arm of the exact morphisms in Fig. 2.

A similar induction process is used for the second arm of the exact morphisms in Fig. 2 to 

“turn off” morph errors between subjects and the master template. This is accomplished by 

“inducing” the subjects and consists of the following 3 steps (Fig. 3C):

1. Morphisms from each of the 96 ELS subjects to the master template are 

computed and applied to the respective FA maps. Voxel-wise statistical analysis 

over the master template will be performed using these FA maps to obtain 

“ground truth” clusters where FA is associated with age. Because registrations 
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are not perfect, the FA clusters so obtained are influenced by morph errors. 

However, we are not focused on studying FA dependence on age; we are using 

this known association to ensure some clusters (real or artifactual) will be 

identified. Thus, we treat these morphisms as exact.

2. The morphisms from step 1 are inverted; the inverted morphism is applied to the 

master template to produce an induced T1W image for each subject.

3. Each induced T1W image is paired with its corresponding original FA map to 

produce induced subject data. This completes subject induction with an exact 

morphism to the master template.

The procedures up to this point result in two parallel sets of exactly known transformations: 

(i) between the master template and the 96 induced templates and (ii) between the master 

template and 96 induced subjects as required in the ideal set-up (Fig. 2). Finally, the main 

morphisms of interest for the present study were generated by registering each of the 96 

induced subjects to each of the 96 induced templates. This resulted in a total of 9216 

induced-subject-to-induced-template morphisms whose errors’ effects on voxel-wise FA 

versus age analysis could be investigated (Fig. 4).

2.3. Registration algorithm and statistical analysis

All registrations were non-linear and were performed using the 3DWarper module from the 

Automatic Registration Toolbox (ART) package (Ardekani et al., 2005). Initial inverse 

morphisms were computed using routines from ART, improved upon using an iterative 

algorithm as follows: given a morphism from brain A to brain B, and its inverse from brain 

B to brain A’, iterations were continued until the displacement error (combined morphism 

between brains A and A’) was less than 0.01 mm in 99.9% of voxels. Clusters of voxels 

where FA was significantly correlated with age were identified by performing a voxel-wise t 
-test with gender as a covariate at a significance level of 0.005 and retaining clusters of 100 

or more contiguous voxels within the white matter of the master template (Suri et al., 2015; 

Hoptman et al., 2008).

2.4. Atlas-distance-based morphism quality measure

The ideal measure of quality for a morphism between two brains would be obtained by 

tracking how far each voxel on one brain maps from its homologous voxel on the other 

brain. If this were possible, the voxel-wise displacement error obtained in the process would 

become a correction to the morphism, making it perfect. Therefore, to characterize the extent 

of induced-subject-to-induced-template morphism errors, we calculated the average 

“distance” between homologous anatomical landmarks of the induced templates and the 

induced subjects morphed onto them (Fig. 5A). For this purpose, each of the 96 induced 

templates and each of the 9216 induced subjects morphed onto them was segmented using 

the ASEG module of FreeSurfer version 5.3 (Fischl, 2012). The atlases of the induced 

templates were defined as “reference atlases”, while those of the induced subjects morphed 

onto the induced templates were defined as “query atlases”. For each reference atlas 

corresponding to a specific induced template, there were 96 query atlases coming from the 

induced subjects targeting that specific induced template. We computed the average distance 
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between the reference atlas and each of the query atlases to be used as metric of morphism 

quality between each pair. Mathematically, the computed distances are elements of the 

Hauss-dorf distance (Fig. 5B): for each voxel assigned to a specific FreeSurfer region in the 

reference atlas, we computed the distance, dmin, from that voxel to the closest edge of its 

assigned homologous region in the query atlas. This calculation was implemented using the 

fast Euclidean distance algorithm (Mishchenko, 2015). The voxel-by-voxel distances dmin 

are averaged over the template brain to produce the final morphism quality measure. A 

smaller distance indicates better morphism quality.

In a typical application of FreeSurfer, one is interested in accurate segmentation of brain 

regions so that each voxel is assigned a proper, anatomically meaningful label. For the 

purposes of filtering, the accuracy and meaning of the label are irrelevant. Instead, a much 

simpler requirement is in place: reliable delineation of homologous regions on similar brains 

according to some specific criteria without necessary correspondence to a specific 

anatomical region. Once identified, boundaries between regions are used to assess morphism 

quality using the average atlas distance.

We computed the average atlas distance corresponding to all 9216 induced-subject-to-

induced-template morphisms generated in this study and found that the distance follows a 

bimodal distribution (Fig. 6), with a larger peak at about 0.11 mm and a smaller peak at 

approximately 0.18 mm, separated by a trough at around 0.15 mm. Based on the trough in 

this distribution, we classified morphisms as “superior” or “inferior”: “superior” morphisms 

have average atlas distance less than 0.14 mm and “inferior” morphisms have average atlas 

distance greater than 0.15 mm. Those with distances between 0.14 and 0.15 mm were not 

studied further. We use “superior” and “inferior” to refer to the quality of individual 

morphisms and reserve the adjectives “good” and “bad” to describe templates based on how 

well cluster analyses over them match the ground truth.

2.5. Subject and template subselection for cluster analysis

Overall, the distribution of morphism quality is highly subject-template-pair dependent: 

some induced subjects have superior morphisms to most induced templates, while for others 

inferior morphisms are predominant (Fig. 7A). To achieve the goal of the study and to 

demonstrate reduction of sensitivity to the choice of template when only superior morphisms 

are retained, we algorithmically searched atlas distance results for a subset of induced 

subjects with an equal number of superior and inferior morphisms to a subset of induced 

templates. We found 30 induced subjects with superior morphisms to a subset of 25 induced 

templates and inferior morphisms to another 25 induced templates (Fig. 7B). Consequently, 

we refer to the first group of 25 induced templates as superior templates and the second 25 

as inferior templates. We then show that superior templates are in fact “good” templates and 

inferior templates are in fact “bad” templates based on the match of the FA cluster analyses 

of the 30 subjects over them to the ground truth. The degree to which FA clusters match the 

ground truth can be directly attributed to the quality of the morphisms and to the templates 

themselves since the 30 induced subjects are held constant and because there is no 

randomness in the analysis. For this demonstration, all other induced subjects and templates 

were discarded.
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2.6. Comparison to the ground truth

The overall goal of the present study was to examine the dependence of the locations of 

voxel clusters where FA was statistically significantly associated with age (FA clusters) on 

the choice of template for voxel-wise analysis. To that end, we defined ground-truth, “gold 

standard” FA clusters for the purposes of comparison. These were obtained by applying the 

exactly-known induced-subject-to-master-template morphism (Fig. 4) to the 30 induced 

subjects’ FA maps and performing voxel-wise FA versus age analysis as described above. 

We denote the set of “gold standard” clusters as XG.

To evaluate the effect of registration errors introduced by specific template choices, we 

applied the error-containing induced-subject-to-induced-template morphisms to the 30 

induced subjects’ FA maps; we subsequently applied the exactly-known morphism from the 

corresponding induced template to the master template (Fig. 8A). For each induced 

template, this procedure results in FA clusters, denoted XC, that have been mapped onto the 

master template while being influenced by the error-containing induced-subject-to-induced-

template morphisms. To evaluate how well XC matches the “gold standard” clusters XG, we 

computed Dice coefficient D of their overlap (Dice, 1945):

D =
2 XG ∩ XC
XG + XC

The Dice coefficient ranges between 0 and 1, where 0 corresponds to disjoint sets and 1 

corresponds to identical sets. Interpretation of values in between is context dependent; even 

values that appear low may still indicate substantial overlap.

3. Results

The proposition examined in this work was that inter-atlas distance characterization of 

subject-to-template registration errors predicts suitability of a candidate template for voxel-

wise FA analysis. Furthermore, usage of a suitable template makes the outcomes of voxel-

wise analysis more robust to template choice. To support this hypothesis, we compared the 

FA versus age clusters produced by exact morphisms over the master template, which we 

denoted as “gold standard”, to those first morphed to the “superior” and “inferior” induced 

templates and subsequently mapped exactly to the master template (Fig. 8A). Our results 

show that using the “superior” templates results in an average Dice coefficient of 

approximately 0.56 (range 0.50 – 0.61), while using “inferior” templates results in an 

average Dice coefficient of approximately 0.42 (range 0.37 – 0.48) (Fig. 8B).

To get a sense of the physical meaning of these values of the Dice coefficient, which may 

appear “low” even for “superior” templates, we performed a total of twelve single-voxel (1 

mm) shifts (along each positive and negative x, y, and z direction, and along each positive 

and negative xz, yz, and xy plane diagonals) on the gold standard FA clusters and calculated 

the Dice coefficient representing the overlap of these shifted clusters with the unshifted gold 

standard clusters (Fig. 8 B). These values range from approximately 0.55 to 0.73, suggesting 

that the use of “superior” morphisms results in good FA clusters that very closely match the 

gold standard, up to a margin of error equivalent to a single diagonal 1 mm voxel shift. On 
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the other hand, the usage of “inferior” morphisms corresponds to a greater degree of error. It 

is also important to note that their Dice coefficient range is similarly narrow to that of the 

“good” clusters. This indicates that the atlas-based morphism quality filter lessens the 

influence of template choice on voxel-wise analysis: if morphisms are filtered to be 

“superior” for a particular set of subjects, then one can expect similar results no matter what 

specific template is chosen. The converse also holds: morphisms that fail the quality filter 

will lead to “robustly bad” results.

4. Discussion

The premise for the present investigation was that registration/morph errors affect the 

conclusions of voxel-wise template-based analyses in a template-specific manner (Fig. 1). In 

order to systematically examine how morphism errors vary with template choice, we 

performed voxel-wise FA analysis on a group of subjects in two ways: by morphing to 

superior and inferior templates (Fig. 7). FA clusters identified in the analyses over the 

superior templates matched the ground truth (Fig. 8). Clusters over the inferior templates did 

not, illustrating and confirming the sensitivity of voxel-wise analysis to the choice of 

template despite the same subject data set being used throughout. To overcome both main 

difficulties on the way to studying and addressing the influence of template choice on the 

results of voxel-wise analyses (the absence of “ground truth” answers and the comparison of 

results obtained over different templates), we developed and followed an induction process 

to generate induced subjects and induced templates (Fig. 3, Fig. 4). To identify superior and 

inferior templates, we developed a morphism quality filter based on inter-atlas distance (Fig. 

5).

4.1. Advantages and interpretation of the inter-atlas distance

We implemented an inter-atlas “distance” averaged over brain regions to quantify the degree 

of registration error between induced templates and induced subjects morphed onto them 

(Fig. 5); each unique morphism was therefore associated with a specific average atlas 

distance. We used distance rather than the Dice or Jaccard indexes frequently used to 

compare atlases (Klein et al., 2009; Avants et al., 2011; Sabuncu et al., 2009) because length 

is a natural metric for morphism error quantification and has been found to be more sensitive 

at detecting differences in performance (Avants et al., 2011).

The bimodal distribution of the atlas distances we observed (Fig. 6) provides a convenient 

approach to dichotomizing quality of morphisms. It implies that pairs of brains can be 

characterized as either morphable to each other or not, and that as a result, a yes/no answer 

can be given to questions of template suitability for the comparison of a particular set of 

subjects. In other words, the average atlas distance can be used to classify morphisms 

between a subject and a template - and thus the template itself - as “superior” or “inferior”. 

Although the shape of the distribution suggests that most morphisms in this study are 

“superior”, this may be due to a limitation of the way our data set was constructed: since the 

induced subjects and induced templates are derived from the same original template (the 

JHU brain), they may have more anatomical similarities than in an actual study. The 

underlying reasons as to why a specific template turned out to be “superior” or “inferior” are 
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beyond the scope of the present work. Morphism quality will vary due to any combination of 

factors related to the specific subject-template pair being compared as well as the specific 

morphism algorithm. Nonetheless, the fact that there are still morph errors between induced 

subjects and induced templates is what allows our study design to examine morphism 

quality. In the absence of morph errors, induced templates would exactly match inductors 

and induced subjects would exactly match the master template and there would be nothing to 

study. Thus, we both exploit the presence of morph errors and work around them in a 

controlled fashion.

Additional considerations in our study design relate to interpreting the numerical value of 

the inter-atlas distance. Dichotomization of any distribution is always possible, even if it is 

not bimodal. Therefore, the “superior”/”inferior” atlas distance cutoff point may need to be 

optimized on the basis of individual templates. In addition, the use of alternative registration 

algorithms may change the morphism error distribution: a subject-template pair with a 

“superior” morphism constructed by one registration algorithm may be “inferior” when 

constructed by another and vice versa. This may alter the optimal cutoff for an overall 

dataset as well. Finally, the exact segmentation procedure used to generate the atlases may 

affect the optimal cutoff. To illustrate, we computed the ASEG atlas for the JHU brain using 

FreeSurfer version 6.0 and calculated its distance to the atlas computed with version 5.3, and 

found a distance of 0.10 mm from one to the other. The amount of empty space cropped 

around brain images also affects segmentation with FreeSurfer. Thus, the specific value of 

0.14 mm as a cutoff point is consistent with the level of segmentation variability of 

FreeSurfer and might have to be adjusted to the specific segmentation tool employed.

Our inter-atlas distance metric of morphism quality relies on robust brain segmentation. The 

simplest and most crude automatic segmentation into gray matter, white matter and CSF is 

the most robust but of little value because misalignments within their boundaries remain un-

detected. At the other extreme, fine-grained segmentation, for example by the WMPARC 

module of FreeSurfer or some other tool, may not be sufficiently reliable and require manual 

interventions, which would be impractical in our and many other large studies. We, 

therefore, chose the ASEG module of FreeSurfer as one in between: not too crude and 

reliable for brains in the age range of our study. It is perhaps possible to join some small 

regions of a fine segmentation such as WMPARC into larger ones to create reliable 

segmentation finer than ASEG allowing more sensitive morphism quality metric than we 

described. Undoubtedly, an optimal algorithm for assessing morphism quality exists; a 

search for it is left for future work.

Even though we chose the JHU brain as the master template, there is nothing intrinsically 

special about this choice. Had we selected some other brain, the gold standard clusters 

would be different because they are influenced by morphism errors. Nevertheless, the main 

points of our study would remain: FA clusters are sensitive to the choice of template and that 

this sensitivity is reduced with the help of morph quality filtering.

4.2. Limitations and potential biases

Practical limitations of our atlas-distance-based morphism quality filter include high 

computational cost and the decrease in sample size of quality-filtered datasets. In practice, 
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our approach would require the calculation of atlases for the subjects of interest and the 

candidate templates the subjects will be registered to. Calculations of atlases over entire 

datasets are computationally very expensive, although this issue may be mitigated by the 

relatively limited amount of candidate templates generally considered in neuroimaging. In 

addition, the filtering process can substantially decrease sample size and make statistical 

analyses of voxel-wise differences more difficult to justify. This is a necessary trade-off to 

be able to report reliable, robust results: for example, even if the “best” template is chosen in 

a traditional (subjective) manner for a particular set of subjects, there may still be 

unacceptably large subject-to-template registration errors present, meaning that any reported 

results would not be scientifically valid. Our approach would allow datasets to be “cleaned 

up” such that any voxel-wise analysis would be valid and reproducible: the specific choice 

of subjects and templates would not matter if the registrations between them pass the quality 

filter.

Filtering data based on morphism quality as proposed here can potentially lead to selection 

bias just as filtering based on any other criterion might. However, if selection bias is created 

by our approach, it only reveals specific features of the dataset and/or analysis itself: any 

presence of selection bias suggests that morphism quality depends on some metric in the 

study. This dependence diminishes the reliability of the results in the absence of morphism 

quality filtering more severely than in its presence. For example, in general older brains do 

not morph well onto young brains and vice versa (Fleysher et al., 2017). Therefore, results 

of a voxel-wise analysis of a set of older brains that employs a young brain template without 

morphism quality filtering would be largely inaccurate because of the influence of morph 

errors. Application of the proposed morphism quality filtering could reveal 

inappropriateness of the choice of the template.

Inadvertent selection bias might be caused by the filter itself if segmentation is tuned to 

specific features of the image causing false rejection of good morphisms or false acceptance 

of bad ones. Using the same example, if FreeSurfer provides more reliable segmentation of 

young brains compared to old brains, then a good morphism between young and old brains 

might be rejected due to erroneous segmentation of the old brains. It is therefore important 

to verify that a segmentation tool is appropriate to the images at hand. In our study, all brain 

images are from healthy young to middle-aged subjects that have no brain pathology or 

structural abnormalities. At the same time, filtering depends on reliable delineation of 

homologous regions on similar brains according to some specific criteria and does not 

depend on the accuracy of their assignment to anatomical labels. Therefore, 

mischaracterization of morphism quality is unlikely. Even if mischaracterization was 

present, it was not strong enough to erase the beneficial effects of filtering as demonstrated 

by the marked improvement in the Dice coefficient of the match to the ground truth. In 

addition, filtering based on a more robust segmentation would lead to even better than 

reported match between analyses over superior templates and the ground truth. Similarly, the 

match to the ground truth would become worse than reported for analyses over the inferior 

templates.
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4.3. Future studies and conclusions

An expected benefit of voxel-wise analyses on larger datasets is the “averaging out” of 

morph errors across subjects that can increase the power of voxel-wise statistical tests. In our 

study, we see that for errors corresponding to an average atlas distance exceeding 0.15 mm 

and a sample size of 30, this averaging out does not yet occur, as the FA clusters for the 

“inferior” induced templates are significantly displaced from the gold standard clusters (Fig. 

8B). The stochastic reduction of errors will scale with the inverse of the square root of the 

sample size: for example, to halve the magnitude of observed errors one would need to 

quadruple the sample size. Therefore, the total number of scans required to achieve such an 

improvement would also quadruple, which may be inconvenient, expensive, or impossible 

for some studies. In an actual study, a “supreme” template could be identified among all 

candidate templates as the one with the largest number of subjects passing a morphism 

quality threshold. In addition, instead of focusing on sample size, future studies could 

incorporate the morphism quality measure into their statistical workflow in place of voxel-

wise statistical tests. The subject and template induction process described herein could be 

used to verify that new statistical approaches are indeed robust to the choice of template. 

Similarly, existing statistical approaches can be evaluated for their robustness (or lack 

thereof) to template choice.

The morphism quality measure presented in this work could be used to indicate the 

suitability of templates for any voxel-wise analysis focused on a specific set of subjects. 

Although this work was carried out in the context of FA cluster analysis based on 

deformation of images to a common template, the quality measure could be useful for other 

types of voxel-wise studies, such as functional MRI or voxel- and tensor-based 

morphometry (Thompson et al., 2000a; Ashburner and Friston, 2000). Overall, this work 

addresses an important gap in knowledge, since template choice is an unresolved problem 

that is seldom addressed in contemporary voxel-wise studies. Indeed, prior work has 

suggested that conclusions of voxel-wise analyses may need to be revisited to ensure 

appropriateness of their choice of template (Suri et al., 2015; Crum et al., 2003; 

Keihaninejad et al., 2012). The present work suggests a method capable of exploring this 

problem and ensuring that reported results are robust to template choice and scientifically 

valid.
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Fig. 1. 
Locations of low FA clusters (red) in a patient with mild traumatic brain injury obtained by 

voxel-wise analysis using subject-based registration (sBR) with the subject’s T1W image as 

template and atlas-based registration with the MNI (aBR-MNI) and JHU (aBR-JHU) 

templates. The arrow highlights an FA cluster found only when using the MNI template. 

(Adapted from (Suri et al., 2015). Permission to reuse granted by Creative Commons 
Attribution License CC BY).
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Fig. 2. Ideal study design.
An ideal study of the effects of template choice on voxel-wise analyses would allow the 

comparison of “ground truth” defined over a master template to results obtained by first 

morphing data from a set of subjects to different candidate templates. The “ground truth” 

would be obtained by applying an error-free, reversible morphism (black, double-headed 

arrows) to the set of subjects of interest. Template choice would then be uniquely indicated 

by differences in the errors of the morphisms from the subjects to the candidate templates 

(red, single-headed arrows). Results of analyses over the candidate templates would then be 

morphed exactly to the master template for comparison with the “ground truth”.
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Fig. 3. Construction of induced templates and subjects.
A) Registration algorithms do not allow for exactly-known morphisms between two brain 

images to be directly computed (dashed arrow). Given two brains A and B, what can in fact 

be known exactly is a morphism from brain A to brain B’ (i.e. “brain B plus error”); because 

this morphism is known exactly, it can be inverted (solid arrows). We utilize this principle to 

create exactly-known morphisms between the master template and the induced subjects and 

induced templates. B) Generation of induced templates. An error-free morphism between the 

“master template” - the JHU brain - and an “inductor” - an Einstein Lifespan Study (ELS) 

brain image - would transform the master template perfectly to the inductor (dashed arrow). 

However, as in A), morph errors cause the output of the morphism to differ from the actual 

inductor brain, producing an “induced template” (curved solid arrows) with exact mapping 
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on the master template. This process is repeated for all 96 ELS brain images as inductors to 

produce 96 induced templates. C) Generation of induced subjects through a three-step 

protocol. (1) Morphisms are computed intending to bring 96 ELS brain images including 

T1W anatomy and FA data onto the master template (dashed arrow), but errors do not allow 

this computation to be direct (curved solid arrow to empty ellipse). (2) Instead, inversions of 

the morphisms produced in (1) are applied to the master template to generate T1W images 

of induced subjects. An induced T1W image is paired with original subject’s FA map to 

complete an induced subject dataset. (3) The inverted morphisms from (2) are paired with 

those in (1) to create an exactly-known set of reversible transformations between the master 

template and induced subjects (curved solid arrows).
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Fig. 4. Overall registration framework.
We constructed two sets of “exact”, reversible morphisms between the master template and 

the induced subjects and induced templates (black double-headed arrows). The morphisms 

of interest for this study are those from each of the induced subjects to each of the induced 

templates (red arrows). The outcome this study measures is the concordance of the locations 

of the induced subjects’ FA versus age clusters between when they are directly morphed 

onto the master template (“ground truth FA clusters”) and when they are first morphed onto 

an induced template and then to the master template (“test FA clusters”).
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Fig. 5. Characterization of registration error by average atlas distance.
A) Atlas distance computation is shown for a single morphism between an induced subject 

and an induced template. The attempted registration of the induced subject to the induced 

template (dashed red arrow) in fact produces an image that resembles the induced template 

but has some degree of error (solid red arrow). This induced-subject-on-induced-template 

image and the induced template then have atlases computed by FreeSurfer, respectively 

generating query and reference atlases. The “distance” between atlases is then computed by 

a Haussdorf-like method. B) Conceptual illustration of Haussdorf-like method for average 

inter-atlas distance calculation. The reference atlas (black oval) corresponds to the 

FreeSurfer-generated atlas of the induced template, while the query atlas (red oval) 

corresponds to the FreeSurfer-generated atlas of the induced-subject-on-induced-template 
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image; the query atlas has been shifted and rotated during the error-prone morphing process. 

The closest-edge distance dmin (solid double-headed arrows) from each point in the 

reference atlas to the query atlas is computed for all voxels in the reference atlas. The dmin 

are averaged over all voxels to compute the final quality measure. Using the closest-edge 

distance underestimates the “true” atlas distance (dtrue; dashed double-headed arrows) that 

would be obtained by computing distances between the voxels in the reference atlas to those 

exactly corresponding to them in the query atlas. Note that the true voxel to corresponding 

voxel distance cannot be assessed: if it could, it would be included in the morphism in the 

first place.
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Fig. 6. Morphism quality is bimodally distributed.
Shown is the distribution of average atlas distance for all 9216 morphisms corresponding to 

the induced subject - induced template pairs generated in the present study. The average atlas 

distance is computed between atlases of the induced template and the induced-subject-on-

induced-template (Fig. 5). Based on this bimodal distribution, we defined morphisms as 

“superior” if they had an average atlas distance of less than 0.14 mm, and as “inferior” if 

they had an average atlas distance greater than 0.15 mm. The relatively small set of 

morphisms with in-between average atlas distances was not evaluated further.
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Fig. 7. Morphism quality is subject-template-pair dependent.
A) The subject-template dependence of morphism quality is shown for all induced subjects 

and templates combinations generated in this study. The horizontal axes on the plots list the 

IDs of the 96 induced subjects, using original numbering from the ELS. The vertical axis 

lists the inductor IDs corresponding to the induced templates, with positive (blue points) and 

negative (red points) numbers respectively indicating “superior” and “inferior” morphisms 

from the subjects listed on the horizontal axis. This plot demonstrates the subject-template-

pair dependence of morphism quality: some subject IDs display mostly blue template IDs, 

and others display mostly red. B) Output of algorithmic selection of 30 specific subjects that 

have superior morphisms to a first subset of 25 induced templates and inferior morphisms to 

a second subset of 25 induced templates for FA cluster comparison. Consequent to this 

selection, the first 25 templates are called “superior templates” and the second 25 are called 

“inferior templates”. The sets of “superior” and “inferior” templates are identical across all 

30 subjects.
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Fig. 8. Evaluation of morphism quality filter.
A) Overall schematic of morphism quality filter evaluation. The chosen 30 induced subjects 

(Fig. 7B) have their FA maps morphed directly onto the master template; their voxel-wise 

analysis produces “gold standard” FA clusters XG that represent a ground truth (left arrow). 

To evaluate the effect of morphism quality on FA cluster location, the same 30 FA maps 

were morphed onto the induced templates that were classified (Fig. 7B) as superior or 

inferior (red arrow); results of voxel-wise analyses over them are subsequently morphed 

onto the master template, producing test FA clusters XC (right black arrow). The “gold 

standard” clusters are compared to the test FA clusters over the 25 superior and 25 inferior 

templates using the Dice coefficient. Shown at the bottom of the figure are examples of 

“gold standard” (green) and test (blue) FA clusters projected onto the master template. The 

specific example shown demonstrates agreement between a test and gold standard FA cluster 

anterior to the right ventricle, but also the presence of a false positive cluster in the right 

cerebral hemisphere (yellow arrow). B) Dice index D (colored contour map) representing the 

spatial overlap between “gold standard” FA clusters XG and three types of test FA clusters of 

interest XC : the 25 superior (green points), the 25 inferior (black points), and a set of 12 

“control” clusters (white points). The 12 control clusters were obtained by perturbing the 

“gold standard” clusters by single-voxel shifts in each of the x, y, and z orthogonal directions 

as well as in the diagonal directions. Calculation of the Dice coefficient in three-dimensional 

space can lead to values much less than 1 while still indicating close overlap. This is 

exemplified by the overlap between the green and white points, which suggests that superior 

morphisms produce good clusters that in fact closely agree with the gold standard ones.
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