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Complete genome sequence of
Microbulbifer sp. CCB-MM1, a halophile
isolated from Matang Mangrove Forest,
Malaysia
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Abstract: Microbulbifer sp. CCB-MM1 is a halophile isolated from estuarine sediment of Matang Mangrove Forest,
Malaysia. Based on 16S rRNA gene sequence analysis, strain CCB-MM1 is a potentially new species of genus Microbulbifer.
Here we describe its features and present its complete genome sequence with annotation. The genome sequence is 3.
86 Mb in size with GC content of 58.85%, harbouring 3313 protein coding genes and 92 RNA genes. A total of 71 genes
associated with carbohydrate active enzymes were found using dbCAN. Ectoine biosynthetic genes, ectABC operon and
ask_ect were detected using antiSMASH 3.0. Cell shape determination genes, mreBCD operon, rodA and rodZ were
annotated, congruent with the rod-coccus cell cycle of the strain CCB-MM1. In addition, putative mreBCD operon
regulatory gene, bolA was detected, which might be associated with the regulation of rod-coccus cell cycle observed
from the strain.
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Introduction
Microbulbifer sp. CCB-MM1 is a halophile isolated from
an estuarine sediment sample taken from Matang Man-
grove Forest, Malaysia. The genus Microbulbifer was
proposed by González [1] with the description of Micro-
bulbifer hydrolyticus which was isolated from marine
pulp mill effluent. Microbulbifer are typically found in
high-salinity environments including marine sediment
[2], salt marsh [3], costal soil [4] as well as mangrove soil
[5]. They were known for their capability to degrade a
great variety of polysaccharides including cellulose [1, 5],
xylan [1, 5, 6], chitin [1, 5, 6], agar [3, 6] and alginate [7].
Microbulbifer strains are potential sources of carbohy-
drate active enzymes with biotechnological interest. One
of the species, Microbulbifer mangrovi had been
reported with the ability to degrade more than 10 differ-
ent polysaccharides [7].
Polysaccharides have a broad range of industrial appli-

cations. The most common storage polysaccharide,

starch, can be used as food additives [8], excipients [9]
and substrates in fermentation process to produce
bioethanol [10]. Structural polysaccharides such as cellu-
lose, chitosan and chitin, on the other hand, can be used
to develop high-performance materials due to their re-
newability, biodegradability, biological inertness and low
cost [11–13]. However, polysaccharides from natural
sources are often not suitable for direct application.
Chemical modifications involving the reactive groups
(carboxyl, hydroxyl, amido, and acetamido groups) on
the backbone of polysaccharide are required to alter
their chemical and physical properties to suit the appli-
cation purposes [14]. In the past years, explorations and
researches are in favor of enzymatic method using
carbohydrate active enzymes [15]. This alternative
method offers the advantages of substrate specificity,
stereospecificity, and environment friendly [16]. Hence,
the discovery of novel carbohydrate active enzymes has
great biotechnological interest and Microbulbifer strains
are potential sources of these enzymes.
Therefore, we sequenced the genome of Microbulbifer

sp. CCB-MM1 with primary objective to identify potential
carbohydrate active enzyme coding genes. The genome
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insights will serve as baseline for downstream analyses in-
cluding enzyme activity assays and functional elucidation
of these genes. To date, there are seven genomes of
Microbulbifer publicly available from GenBank, namely
Microbulbifer agarilyticus S89 (NZ_AFPJ00000000.1) [17],
Microbulbifer variabilis ATCC 700307T (NZ_AQYJ0
0000000.1), Microbulbifer elongatus HZ11 (NZ_JELR
00000000.1) [18], Microbulbifer sp. ZGT114 (LQBR0000
0000.1), Microbulbifer thermotolerans DAU221 (CP0148
64.1) [19], Microbulbifer sp. Q7 (LROY00000000.1) and
Microbulbifer sp. WRN-8 (LRFG00000000.1). All of the
Microbulbifer genomes are assembled to draft assembly
only except the Microbulbifer thermotolerans DAU221
genome. Here we present the complete genome of
Microbulbifer sp. CCB-MM1 and some insights from
comparative analysis with seven other Microbulbifer
genomes.

Organism information
Classification and features
Microbulbifer sp. strain CCB-MM1 was isolated from
mangrove sediment obtained from Matang Mangrove For-
est. The isolation was done using the method previously
described [20] with the use of H-ASWM (2.4% artificial sea
water, 0.5% tryptone, 10 mM HEPES, pH 7.6) [21]. CCB-
MM1 is a Gram-negative, aerobic, non-spore-forming and
halophilic bacterium (Table 1). Its shape appears to be asso-
ciated with its growth phases where it is rod-shaped at ex-
ponential phase (Fig. 1a) and cocci-shaped at stationary
phase (Fig. 1b). The rod-shaped cell size ranges from ap-
proximately 1.3 to 2.5 μm in length and 0.3 μm in width
while the diameter of coccus cells is approximately 0.6 μm.
The colonies observed on agar plate are white in colour, cir-
cular, and raised with entire edge.
The 16S rRNA gene sequence of CCB-MM1 was amp-

lified and sequenced using the universal primer pair 27F
and 1492R [22]. The 16S rRNA gene sequence analysis
was performed by using BLASTN [23] against NCBI 16S
ribosomal RNA (Bacteria and Archaea) database. BLAST
report revealed that the closely related strains include
Microbulbifer rhizosphaerae Cs16bT (98.1%), Microbulbi-
fer taiwanensis CC-LN1-12T (97.3%), Microbulbifer mar-
itimus TF-17T (97.4%), Microbulbifer pacificus SPO729T

(97.3%), and Microbulbifer gwangyangensis GY2T

(97.3%). Based on the threshold of Proteobacteria-spe-
cific 16S rRNA gene sequence similarity at 98.7% [24],
the analysis suggests that CCB-MM1 is a new species
belonging to the genus Microbulbifer. To reconstruct a
phylogenetic tree of Microbulbifer, the 16S rRNA
sequences of other Microbubifer type strains were down-
loaded from GenBank. Then, these sequences were
aligned using MUSCLE [25, 26] and MEGA6 [27] was
used to reconstruct a neighbour-joining tree [28] with
1000 replications of bootstrap method test [29]. As

shown in Fig. 2, CCB-MM1 formed a cluster with M.
rhizosphaerae Cs16bT in the phylogenetic tree.

Genome sequencing information
Genome project history
Genome of CCB-MM1 was sequenced in October
2015. The whole genome sequencing and annotation
were done by Centre for Chemical Biology (Universiti
Sains Malaysia). The complete genome sequence is

Table 1 Classification and general features of Microbulbifer sp.
CCB-MM1 [69]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [70]

Phylum Proteobacteria TAS [71]

Class
Gammaproteobacteria

TAS [72]

Order Cellvibrionales TAS [73, 74]

Family Microbulbiferaceae TAS [73, 74]

Genus Microbulbifer TAS [1]

Species Unknown IDA

Strain CCB-MM1 IDA

Gram stain Negative IDA

Cell shape Rod-coccus IDA

Motility Non-motile IDA

Sporulation Non-sporulating NAS

Temperature range Mesophile NAS

Optimum
temperature

30 °C NAS

pH range;
Optimum

6.0–9.0; 7.0 IDA

Carbon source Not reported

MIGS-6 Habitat Estuarine sediment IDA

MIGS-6.3 Salinity Halophile NAS

MIGS-22 Oxygen Aerobic IDA

MIGS-15 Biotic relationship Free-living NAS

MIGS-14 Pathogenicity Non-pathogenic NAS

MIGS-4 Geographic
location

Malaysia: Matang
Mangrove Forest

IDA

MIGS-5 Sample collection
time

October 1, 2014 IDA

MIGS-4.1 Latitude 4.85228 N IDA

MIGS-4.2 Longitude 100.55777 E IDA

MIGS-4.3 Depth 10 cm IDA

MIGS-4.4 Altitude Not reported
aEvidence codes - IDA inferred from direct assay, TAS traceable author
statement (i.e., a direct report exists in the literature), NAS non-traceable au-
thor statement (i.e., not directly observed for the living, isolated sample, but
based on a generally accepted property for the species, or anecdotal evi-
dence). These evidence codes are from http://www.geneontology.org/GO.evi-
dence.shtml of the Gene Ontology project [75]
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available in GenBank under the accession number
CP014143. The project information is summarized
in Table 2.

Growth conditions and genomic DNA preparation
CCB-MM1 was cultured aerobically in 100 mL of H-
ASWM for overnight (16 h) at 30 °C with shaking. The
genomic DNA was extracted using modified phenol-
chloroform method [30]. The integrity of extracted
genomic DNA was assessed by gel electrophoresis
using 0.7% agarose gel and the quantification was
done using NanoDrop 2000 Spectrophotometer
(Thermo Scientific, USA).

Genome sequencing and assembly
The whole genome of CCB-MM1 was sequenced
using PacBio RS II platform with P6-C4 chemistry
(Pacific Biosciences, USA). Two SMRT Cells were
used and 2,674,097,380 pre-filter polymerase read
bases were obtained, which was approximately 692X
coverage of the genome. The reads were assembled
using HGAP3 protocol [31] on SMRT Portal v2.3.0

with reads more than 25,000 bp in length being used
as seed bases. The assembly result was a circular
chromosome with the size of 3,864,326 bp, average
base coverage of 431X and 100% base calling. The as-
sembled sequence was polished twice using the rese-
quencing protocol until the consensus concordance
reached 100%.

Genome annotation
The genome was annotated using Prokka 1.11 pipeline
[32]. The pipeline uses Prodigal [33], RNAmmer [34],
Aragorn [35], SignalP [36] and Infernal [37] to predict
the coding sequences (CDS), ribosomal RNA genes,
transfer RNA genes, signal leader peptides and non-
coding RNAs, respectively. In addition, the translated
CDS output by Prokka were used to BLAST against pro-
tein databases including non-redundant protein database
(nr) from GenBank, Swiss-Prot and TrEMBL from Uni-
Prot [38], and KEGG database [39]. COG functional cat-
egories assignment was done using RPS-BLAST [40]

Fig. 1 Scanning electron micrograph of Microbulbifer sp. CCB-MM1 at (a) exponential and (b) stationary phase

Fig. 2 Neighbor-joining phylogenetic tree highlighting the position
of Microbulbifer sp. CCB-MM1 relative to other type strains within the
genus Microbulbifer, built using MEGA6 based on 16S rRNA sequences
with their GenBank accession numbers indicated in parentheses

Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality Complete

MIGS-28 Libraries used PacBio P6-C4 chemistry, size
selected 10 kb library, two SMRT
Cells

MIGS-29 Sequencing platform PacBio RS II

MIGS-31.2 Fold coverage 431×

MIGS-30 Assemblers HGAP 3, PacBio SMRT Analysis
v2.3

MIGS-32 Gene calling method Prodigal

Locus tag AUP74

Genbank ID CP014143

GenBank date of release September 30, 2016

GOLD ID Gp0156207

BIOPROJECT PRJNA305828

MIGS-13 Source material identifier SAMN04334609

Project relevance Environmental
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search against the COG database [41]. In addition, anti-
SMASH 3.0 [42] was used to identify biosynthetic gene
clusters and dbCAN [43] was used to identify carbohy-
drate active enzymes.

Genome properties
CCB-MM1 only contains one circular chromosome and
no plasmid. The size of the chromosome is 3,864,326 bp
with an overall of 58.85% G + C content (Table 3). The
complete genome consists of 3313 ORFs, 79 tRNA, 12
rRNA and 1 tmRNA genes. Of all the 3313 predicted
ORFs, 2030 of them can be assigned with functional pre-
diction and 2563 of them can be assigned to COG func-
tional categories (Table 4). The circular map of the
genome generated using CGView Comparison Tool [44]
is depicted in Fig. 3.

Insights from the genome sequence
Comparative genomics
There are seven genomes of Microbulbifer strains pub-
licly available in GenBank to date. To assess the related-
ness between CCB-MM1 and publicly available
Microbulbifer genomes, ANI values between the ge-
nomes were calculated using method based on MUM-
mer alignment [45]. Based on the results (Table 5), the
ANI values ranged from 85.58% (Microbulbifer sp.
ZGT114 and Microbulbifer sp. WRN-8) to 83.45%
(Microbublfer thermotolerans DAU221). These ANI
values fall below 95% [46], suggesting that CCB-MM1
represents a different species from the other seven se-
quenced species. Interestingly, the ANI value between
genomes of Microbulbifer sp. ZGT114 and Microbulbifer

sp. WRN-8 is 99.99%, which suggests that these two
strains belong to the same species. The circular map
comparing CCB-MM1 genome and seven other Micro-
bulbifer genomes is shown in Fig. 4.

Carbohydrate active enzymes
dbCAN [43] was used to predict carbohydrate-active en-
zyme coding genes present in CCB-MM1 genome, par-
ticularly genes belonging to glycoside hydrolase and
polysaccharide lyase families that could provide us the
insights on carbohydrate degrading capability of CCB-
MM1. The analysis was done by running HMMER3 [47]

Table 3 Genome statistics

Attribute Value % of Totala

Genome size 3,864,326 100.00

DNA coding (bp) 3,487,727 90.25

DNA G + C (bp) 2,274,198 58.85

DNA scaffolds 1 -

Total genes 3406 100.00

Protein coding genes 3313 97.27

RNA genes 92 2.70

Pseudo genes 1 0.03

Genes in internal clusters - -

Genes with function prediction 2030 59.62

Genes assigned to COGs 2563 75.27

Genes with Pfam domains 2856 83.88

Genes with signal peptides 403 11.84

Genes with transmembrane helices 851 24.99

CRISPR repeats 0 0
aThe total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome

Table 4 Number of genes associated with general COG
functional categories

Code Value % agea Description

J 229 6.9 Translation, ribosomal structure
and biogenesis

A 2 0.1 RNA processing and modification

K 127 3.8 Transcription

L 111 3.3 Replication, recombination and repair

B 0 0.0 Chromatin structure and dynamics

D 41 1.2 Cell cycle control, cell division,
chromosome partitioning

Y 0 0.0 Nuclear structure

V 64 1.9 Defense mechanisms

T 109 3.3 Signal transduction mechanisms

M 218 6.6 Cell wall/membrane/envelope
biogenesis

N 8 0.2 Cell motility

Z 2 0.1 Cytoskeleton

W 3 0.1 Extracellular structures

U 48 1.4 Intracellular trafficking, secretion,
and vesicular transport

O 173 5.2 Posttranslational modification, protein
turnover, chaperones

X 3 0.1 Mobilome: prophages, transposons

C 180 5.4 Energy production and conversion

G 131 4.0 Carbohydrate transport and metabolism

E 212 6.4 Amino acid transport and metabolism

F 53 1.6 Nucleotide transport and metabolism

H 113 3.4 Coenzyme transport and metabolism

I 133 4.0 Lipid transport and metabolism

P 167 5.0 Inorganic ion transport and metabolism

Q 55 1.7 Secondary metabolites biosynthesis,
transport and catabolism

R 226 6.8 General function prediction only

S 224 6.8 Function unknown

- 751 22.7 Not in COGs
aThe total is based on the total number of protein coding genes in the
annotated genome
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scan using HMMs profile downloaded from dbCAN
(version: dbCAN-fam-HMMs.txt.v4) with an e-value cut
off of 1e-18 and coverage cut off of 0.35. A total of 71
carbohydrate-active genes were detected and further
analysis of these genes using SignalP predicted that 25 of
them contain signal peptides. As shown in Table 6, we
had found 29 genes associated with GH families includ-
ing GH3, GH5, GH13, GH16, GH20, GH23, GH31,
GH38, GH103 and GH130, however, we found no genes
associated with PL families in the genome. Annotation
of the GH genes revealed that CCB-MM1 genome pos-
sesses genes encoding cellulase (GH5), alpha-amylase,

pullulanase (GH13) and beta-glucanase (GH16) with po-
tential interest for biotechnological applications. While
gene coding for beta-hexosaminidase, one of the chitino-
lytic enzymes [48], is present in the genome of CCB-
MM1, gene that codes for chitinase was not detected.
This suggests that CCB-MM1 lacks the ability to
degrade chitin, although further assays are required to
confirm the phenotype.

Rod-coccus cell cycle
Microbulbifer were found to demonstrate rod-coccus cell
cycle, in association with different growth phases [49].

Fig. 3 Circular map of the genome of Microbulbifer sp. CCB-MM1 generated using CGView Comparison Tool [44]. Circles (from outside) representing
the following: 1. COG functional categories for forward coding sequence; 2. Forward sequence features; 3. Reverse sequence features; 4. COG functional
categories for reverse coding sequence; 5. GC content; 6. GC skew

Table 5 ANI value(%) between Microbulbifer sp. CCB-MM1 genome and seven other Microbulbifer genomes calculated using
ANIm [45]

CCB-MM1 ZGT114 WRN-8 HZ11 S89 Q7 ATCC 700307T DAU221

CCB-MM1 100.00 85.58 85.58 84.75 84.65 84.61 84.37 83.45

ZGT114 85.58 100.00 99.99 84.65 84.64 84.70 84.29 83.85

WRN-8 85.58 99.99 100.00 84.65 84.70 84.67 84.29 83.87

HZ11 84.75 84.65 84.65 100.00 85.23 85.58 84.68 83.71

S89 84.65 84.64 84.70 85.23 100.00 85.03 84.77 83.66

Q7 84.61 84.70 84.67 85.58 85.03 100.00 84.75 83.77

ATCC 700307 84.37 84.29 84.29 84.68 84.77 84.75 100.00 83.59

DAU221 83.45 83.85 83.87 83.71 83.66 83.77 83.59 100.00

CCB-MM1 = Microbulbifer sp. CCB-MM1; ZGT114 = Microbulbifer sp. ZGT114; WRN-8 = Microbulbifer sp. WRN-8; HZ11 = Microbulbifer elongatus HZ11; S89 = Microbul-
bifer agarilyticus S89; Q7 = Microbulbifer sp. Q7; ATCC 700307T = Microbulbifer variabilis ATCC 700307T; DAU221 = Microbulbifer thermotolerans DAU221
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This cell cycle was also observed in CCB-MM1. In CCB-
MM1 genome, we found genes which are known to be
involved in determining and maintaining the rod shape
of bacteria, including mreBCD [50] (AUP74_00016,
AUP74_00017 and AUP74_00018), rodA [51]
(AUP74_01706) and rodZ [52] (AUP74_01850). BLAST
analysis showed that these genes are present in all other
Microbulbifer genomes. In addition, we detected the
presence of general stress response gene, bolA, in all
Microbulbifer genomes. It has been demonstrated that
the overexpression of bolA in E.coli inhibited cell elong-
ation and reduced the transcription of mreBCD operon
[53]. The gene, mreB, and its product, actin homolog
have been studied for their functions in several species
of bacteria. This protein lies beneath the cell surface,
forming actin-like cables which function as guidance for
the synthesis of longitudinal cell wall [54]. While MreB
is not essential in E. coli [55], it is found to be essential
for Streptomyces coelicolor [56], Rhodobacter sphaeroides
[57] and Bacillus subtilis [58]. In E. coli, depletion of
MreB caused cells to change from rod-like to spherical
shape but these cells were able to survive [59]. In con-
trast, the spherical-shaped B. subtilis cells eventually

lyse. For CCB-MM1, the spherical-shaped cells do not
lyse but grow into rod-shaped again after being trans-
ferred into fresh medium. We infer that mreB gene may
have important functions in determining Microbulbifer
cell shape and the rod-coccus cycle of Microbulbifer is
likely regulated by BolA through inhibition of mreB
transcription when triggered by stress.

Secondary metabolites, ectoine
Ectoine and hydroxyectoine are compatible solutes found
primarily in halophilic bacteria. When triggered by osmotic
stress, bacteria produce and accumulate them intracellu-
larly to balance the osmotic pressure [60]. Apart from
osmotic stress, they were also protectants against
temperature stress [61]. A cluster of genes responsible for
the biosynthesis of ectoine [62] has been identified in CCB-
MM1 genome using antiSMASH 3.0 [42]. These genes
encode for aspartate kinase (Ask_Ect) (AUP74_00280), L-
ectoine synthase (EctC) (AUP74_00281), diaminobutyrate-
2-oxoglutarate transaminase (EctB) (AUP74_00282), L-2,4-
diaminobutyric acid acetyltransferase (EctA) (AUP74_0
0283) and HTH transcriptional regulator (AUP74_00284).
The lack of the gene ectD, ectoine hydroxylase, in CCB-

Fig. 4 Circular map comparing strain CCB-MM1 genome and seven other Microbulbifer genomes generated using CGView Comparison Tool [44].
The two outermost rings represent forward and reverse sequence features respectively. The remaining seven rings show the regions of sequence
similarity detected by BLAST comparisons conducted between nucleotide sequences from the CCB-MM1 genome and seven other Microbulbifer
genomes with the order (from outside) as follow: Microbulbifer elongatus HZ11, Microbulbifer sp. Q7, Microbulbifer sp. WRN-8, Microbulbifer sp.
ZGT114, Microbulbifer agarilyticus S89, Microbulbifer thermotolerans DAU221 and Microbulbifer variabilis ATCC 700307T
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MM1 genome suggests that it only has the ability to
synthesize ectoine but not hydroxyectoine. By using
BLASTP, we searched and found similar gene cluster in
other Microbulbifer genomes except Microbulbifer variabi-
lis ATCC 700307T. While the reason for the absence of
these genes in Microbulbifer variabilis ATCC 700307T is
unknown, our findings suggest that Microbulbifer utilized
only ectoine instead of ectoine/hydroxyectoine mixture.
The transcriptional regulator of ectoine operon, EctR,
found in Methylophaga thalassica belongs to MarR family
[63]. HTH transcriptional regulator (AUP74_00284) in
CCB-MM1 also contains the conserved domain of MarR
family. This implies that the HTH transcriptional regulator
is likely the putative transcriptional regulator of ectoine op-
eron in Microbulbifer. Ectoine has attracted considerable
biotechnological interest due to its stabilizing effects that
extend from proteins [64], nucleic acids [65] to whole cells

[66]. Such properties allow it to be used in skin care prod-
uct as cell protectants [66], protein stabilizers [67] and
medical application as cryoprotectants in cryopreservation
of human cells [68].

Conclusion
In this study we presented the complete genome se-
quence of Microbulbifer sp. CCB-MM1 with genome
size of 3.86 Mb and G + C content of 58.85%. We dis-
cussed some insights on its phenotypic characteristics
from the genomic perspective, covering carbohydrate ac-
tive enzymes, rod-coccus cell cycle and secondary me-
tabolite, ectoine. The genome sequence provides
valuable information for functional elucidations of novel
enzymes for both biotechnological application and fun-
damental research purposes.

Table 6 GH enzyme coding genes found in CCB-MM1 genome

GH Family Annotation Signal peptide Locus tag

3 Periplasmic beta-glucosidase precursor Yes AUP74_01723

Periplasmic beta-glucosidase precursor No AUP74_01724

Beta-hexosaminidase No AUP74_02396

Beta-hexosaminidase A precursor Yes AUP74_02833

5 Cellulase (glycosyl hydrolase family 5) No AUP74_03275

hypothetical protein No AUP74_03276

13 Pullulanase precursor Yes AUP74_00304

Oligo-1,6-glucosidase No AUP74_00394

Cyclomaltodextrinase Yes AUP74_00399

4-alpha-glucanotransferase No AUP74_00401

Alpha-amylase precursor Yes AUP74_00413

Sucrose phosphorylase No AUP74_03226

16 Glucan endo-1,3-beta-glucosidase A1 precursor No AUP74_01725

Beta-glucanase precursor Yes AUP74_01727

20 N,N′-diacetylchitobiase precursor No AUP74_01890

23 Membrane-bound lytic murein transglycosylase F precursor Yes AUP74_00546

Membrane-bound lytic murein transglycosylase F precursor No AUP74_01553

Membrane-bound lytic murein transglycosylase F precursor Yes AUP74_01554

murein transglycosylase C Yes AUP74_01596

Membrane-bound lytic murein transglycosylase D precursor Yes AUP74_02266

Soluble lytic murein transglycosylase precursor Yes AUP74_02385

Membrane-bound lytic murein transglycosylase F precursor No AUP74_03185

Membrane-bound lytic murein transglycosylase F precursor No AUP74_03186

Membrane-bound lytic murein transglycosylase F precursor Yes AUP74_03326

31 Alpha-xylosidase Yes AUP74_00400

38 Mannosylglycerate hydrolase No AUP74_01043

103 Membrane-bound lytic murein transglycosylase B precursor Yes AUP74_01186

Membrane-bound lytic murein transglycosylase B precursor Yes AUP74_01707

130 4-O-beta-D-mannosyl-D-glucose phosphorylase No AUP74_03278
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