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Recently, two coronaviruses, severe acute respiratory syndrome coronavirus and Middle 
East respiratory syndrome coronavirus, have emerged to cause unusually severe respiratory 
disease in humans. Currently, there is a lack of effective antiviral treatment options or vaccine 
available. Given the severity of these outbreaks, and the possibility of additional zoonotic 
coronaviruses emerging in the near future, the exploration of different treatment strategies is 
necessary. Disease resilience is the ability of a given host to tolerate an infection, and to return 
to a state of health. This review focuses on exploring various host resilience mechanisms that 
could be exploited for treatment of severe acute respiratory syndrome coronavirus, Middle 
East respiratory syndrome coronavirus and other respiratory viruses that cause acute lung 
injury and acute respiratory distress syndrome.
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The 21st century was heralded with the emergence of two novel coronaviruses (CoV) that have 
unusually high pathogenicity and mortality [1–5]. Severe acute respiratory syndrome coronavirus 
(SARS-Cov) was first identified in 2003 [6–9]. While there was initially great concern about SARS-
CoV, once no new cases emerged, funding and research decreased. However, a decade later Middle 
East respiratory syndrome coronavirus (MERS-CoV), also known as HCoV-EMC, emerged ini-
tially in Saudi Arabia [3,10]. SARS-CoV infected about 8000 people, and resulted in the deaths of 
approximately 10% of those infected [11]. While MERS-CoV is not as widespread as SARS-CoV, 
it appears to have an even higher mortality rate, with 35–50% of diagnosed infections resulting in 
death [3,12–13]. These deadly betacoronavirus viruses existed in animal reservoirs [4–5,9,14–15]. Recently, 
other CoVs have been detected in animal populations raising the possibility that we will see a repeat 
of these types of outbreaks in the near future [11,16–20]. Both these zoonotic viruses cause a much 
more severe disease than what is typically seen for CoVs, making them a global health concern. 
Both SARS-CoV and MERS-CoV result in severe lung pathology. Many infected patients have 
acute lung injury (ALI), a condition that is diagnosed based on the presence of pulmonary edema 
and respiratory failure without a cardiac cause. In some patients there is a progression to the more 
severe form of ALI, acute respiratory distress syndrome (ARDS) [21–23].

In order to survive a given infection, a successful host must not only be able to clear the pathogen, 
but tolerate damage caused by the pathogen itself and also by the host’s immune response [24–26]. We 
refer to resilience as the ability of a host to tolerate the effects of pathogens and the immune response 
to pathogens. A resilient host is able to return to a state of health after responding to an infec-
tion [24,27–28]. Most currently available treatment options for infectious diseases are antimicrobials, 
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and thus target the pathogen itself. Given the 
damage that pathogens can cause this focus on 
rapid pathogen clearance is understandable. 
However, an equally important medical inter-
vention is to increase the ability of the host to tol-
erate the direct and indirect effects of the patho-
gen, and this is an area that is just beginning to 
be explored [29]. Damage to the lung epithelium 
by respiratory pathogens is a common cause of 
decreased resilience [30–32]. This review explores 
some of the probable host resilience pathways to 
viral infections, with a particular focus on the 
emerging coronaviruses. We will also examine 
factors that make some patients disease tolerant 
and other patients less tolerant to the viral infec-
tion. These factors can serve as a guide to new 
potential therapies for improved patient care.

Pathogenesis of SARS-CoV & MER-CoV
Both SARS-CoV and MERS-CoV are typi-
fied by a rapid progression to ARDS, however, 
there are some distinct differences in the infec-
tivity and pathogenicity. The two viruses have 
different receptors leading to different cellular 
tropism, and SARS-CoV is more ubiquitous in 
the cell type and species it can infect. SARS-
CoV uses the ACE2 receptor to gain entry to 
cells, while MERS-CoV uses the ectopeptidase 
DPP4 [33–36]. Unlike SARS-CoV infection, 
which causes primarily a severe respiratory syn-
drome, MERS-CoV infection can also lead to 
kidney failure [37,38]. SARS-CoV also spreads 
more rapidly between hosts, while MERS-CoV 
has been more easily contained, but it is unclear 
if this is due to the affected patient populations 
and regions [3–4,39]. Since MERS-CoV is a very 
recently discovered virus, [40,41] more research 
has been done on SARS-CoV. However, given 
the similarities it is hoped that some of these 
findings can also be applied to MERS-CoV, and 
other potential emerging zoonotic coronaviruses.

Both viral infections elicit a very strong inflam-
matory response, and are also able to circumvent 
the immune response. There appears to be sev-
eral ways that these viruses evade and otherwise 
redirect the immune response [1,42–45]. The path-
ways that lead to the induction of the antiviral 
type I interferon (IFN) response are common 
targets of many viruses, and coronaviruses are 
no exception. SARS-CoV and MERS-CoV are 
contained in double membrane vesicles (DMVs), 
that prevents sensing of its genome [1,46]. As with 
most coronaviruses several viral proteins sup-
press the type I IFN response, and other aspects 

of innate antiviral immunity [47]. These altera-
tions of the type I IFN response appear to play a 
role in immunopathology in more than one way. 
In patients with high initial viral titers there is a 
poor prognosis [39,48]. This indicates that reduc-
tion of the antiviral response may lead to direct 
viral-induced pathology. There is also evidence 
that the delayed type I IFN response can lead to 
misregulation of the immune response that can 
cause immunopathology. In a mouse model of 
SARS-CoV infection, the type I IFN response 
is delayed [49]. The delay of this potent antiviral 
response leads to decreased viral clearance, at the 
same time there is an increase in inflammatory 
cells of the immune system that cause excessive 
immunopathology [49]. In this case, the delayed 
antiviral response not only causes immunopa-
thology, it also fails to properly control the viral 
replication. While more research is needed, it 
appears that MERS has a similar effect on the 
innate immune response [5,50].

Antiviral treatments & vaccination
The current treatment and prevention options 
for SARS-CoV and MERS-CoV are limited. 
So far there are no licensed vaccines for SAR-
CoV or MERS-CoV, although several strate-
gies have been tried in animal models [51,52]. 
There are also no antiviral strategies that are 
clearly effective in controlled trials. During out-
breaks several antiviral strategies were empiri-
cally tried, but these uncontrolled studies gave 
mixed results [5,39]. The main antivirals used 
were ribavirin, lopinavir and ritonavir [38,53]. 
These were often used in combination with IFN 
therapy [54]. However, retrospective analysis of 
these data has not led to clear conclusions of the 
efficacy of these treatment options. Research in 
this area is still ongoing and it is hoped that we 
will soon have effective strategies to treat novel 
CoV [3,36,38,40,55–64].

Host resilience to SARS-CoV & MERS-CoV
The lack of effective antivirals makes it neces-
sary to examine other potential treatments for 
SARS-CoV and MERS-CoV. Even if there were 
effective strategies to decrease viral burden, for 
these viruses, the potential for new emerging 
zoonotic CoVs presents additional complica-
tions. Vaccines cannot be produced in time to 
stop the spread of an emerging virus. In addition, 
as was demonstrated during SARS-CoV and 
MERS-CoV outbreaks, there is always a chal-
lenge during a crisis situation to know which 
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antiviral will work on a given virus. One method 
of addressing this is to develop broad-spectrum 
antivirals that target conserved features of a 
given class of virus [65]. However, given the fast 
mutation rates of viruses there are several chal-
lenges to this strategy. Another method is to 
increase the ability of a given patient to tolerate 
the disease, i.e., target host resilience mecha-
nisms. So far this has largely been in the form 
of supportive care, which relies on mechanical 
ventilation and oxygenation [29,39,66].

Since SARS-CoV and MERS-CoV were dis-
covered relatively recently there is a lack of both 
patient and experimental data. However, many 
other viruses cause ALI and ARDS, including 
influenza A virus (IAV). By looking at data from 
other high pathology viruses we can extrapolate 
various pathways that could be targeted dur-
ing infection with these emerging CoVs. This 
can add to our understanding of disease resil-
ience mechanisms that we have learned from 
direct studies of SARS-CoV and MERS-CoV. 
Increased understanding of host resilience mech-
anisms can lead to future host-based therapies 
that could increase patient survival [29].

One common theme that emerges in many 
respiratory viruses including SARS-CoV and 
MERS-CoV is that much of the pathology is 
due to an excessive inflammatory response. A 
study from Josset et al. examines the cell host 
response to both MERS-CoV and SARS-CoV, 
and discovered that MERS-CoV dysregulates 
the host transcriptome to a much greater extent 
than SARS-CoV [67]. It demonstrates that gluco-
corticoids may be a potential way of altering the 
changes in the host transcriptome at late time 
points after infection. If host gene responses are 
maintained this may increase disease resilience. 
Given the severe disease that manifested during 
the SARS-CoV outbreak, many different treat-
ment options were empirically tried on human 
patients. One immunomodulatory treatment 
that was tried during the SARS-CoV outbreak 
was systemic corticosteroids. This was tried 
with and without the use of type I IFNs and 
other therapies that could directly target the 
virus [68]. Retrospective analysis revealed that, 
when given at the correct time and to the appro-
priate patients, corticosteroid use could decrease 
mortality and also length of hospital stays [68]. 
In addition, there is some evidence that simul-
taneous treatment with IFNs could increase 
the potential benefits [69]. Although these treat-
ments are not without complications, and there 

has been a lack of a randomized controlled 
trial [5,39].

Corticosteroids are broadly immunosuppres-
sive and have many physiological effects [5,39]. 
Several recent studies have suggested that other 
compounds could be useful in increasing host 
resilience to viral lung infections. A recent paper 
demonstrates that topoisomerase I can protect 
against inflammation-induced death from a 
variety of viral infections including IAV [70]. 
Blockade of C5a complement signaling has also 
been suggested as a possible option in decreas-
ing inflammation during IAV infection [71]. 
Other immunomodulators include celecoxib, 
mesalazine and eritoran [72,73]. Another class of 
drugs that have been suggested are statins. They 
act to stabilize the activation of aspects of the 
innate immune response and prevent excessive 
inflammation [74]. However, decreasing immu-
nopathology by immunomodulation is problem-
atic because it can lead to increased pathogen 
burden, and thus increase virus-induced pathol-
ogy [75,76]. Another potential treatment option 
is increasing tissue repair pathways to increase 
host resilience to disease. This has been shown 
by bioinformatics [77], as well as in several animal 
models [30–31,78–79]. These therapies have been 
shown in cell culture model systems or animal 
models to be effective, but have not been dem-
onstrated in human patients. The correct timing 
of the treatments is essential. Early intervention 
has been shown to be the most effective in some 
cases, but other therapies work better when given 
slightly later during the course of the infection. 
As the onset of symptoms varies slightly from 
patient to patient the need for precise timing 
will be a challenge.

Examination of potential treatment options 
for SARS-CoV and MERS-CoV should include 
consideration of host resilience [29]. In addition 
to the viral effects, and the pathology caused by 
the immune response, there are various comor-
bidities associated with SARS-CoV and MERS-
CoV that lead to adverse outcomes. Interestingly, 
these additional risk factors that lead to a more 
severe disease are different between the two 
viruses. It is unclear if these differences are due 
to distinct populations affected by the viruses, 
because of properties of the virus themselves, or 
both. Understanding these factors could be a key 
to increasing host resilience to the infections. 
MERS-CoV patients had increased morbidity 
and mortality if they were obese, immunocom-
promised, diabetic or had cardiac disease [4,12]. 
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Risk factors for SARS-CoV patients included 
an older age and male [39]. Immune factors that 
increased mortality for SARS-CoV were a higher 
neutrophil count and low T-cell counts [5,39,77]. 
One factor that increased disease for patients 
infected with SARS-CoV and MERS-CoV was 
infection with other viruses or bacteria [5,39]. 
This is similar to what is seen with many other 
respiratory infections. A recent study looking at 
malaria infections in animal models and human 
patients demonstrated that resilient hosts can be 
predicted [28]. Clinical studies have started to 
correlate specific biomarkers with disease out-
comes in ARDS patients [80]. By understanding 
risk factors for disease severity we can perhaps 
predict if a host may be nonresilient and tailor 
the treatment options appropriately.

Conclusion & future perspective
A clear advantage of targeting host resilience 
pathways is that these therapies can be used to 
treat a variety of different infections. In addition, 

there is no need to develop a vaccine or under-
stand the antiviral susceptibility of a new virus. 
Toward this end, understanding why some 
patients or patient populations have increased 
susceptibility is of paramount importance. In 
addition, a need for good model systems to study 
responses to these new emerging coronaviruses is 
essential. Research into both these subjects will 
lead us toward improved treatment of emerging 
viruses that cause ALI, such as SARS-CoV and 
MERS-CoV.
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EXECUTivE SUMMARY
 ●  Severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus are zoonotic 

coronaviruses that cause acute lung injury and acute respiratory distress syndrome.

 ●  Antivirals have limited effects on the course of the infection with these coronaviruses.

 ●  There is currently no vaccine for either severe acute respiratory syndrome coronavirus or Middle East respiratory 
syndrome coronavirus.

 ●  Host resilience is the ability of a host to tolerate the effects of an infection and return to a state of health.

 ●  Several pathways, including control of inflammation, metabolism and tissue repair may be targeted to increase host 
resilience.

 ●  The future challenge is to target host resilience pathways in such a way that there are limited effects on pathogen 
clearance pathways. Future studies should determine the safety of these types of treatments for human patients.
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