Data in brief 25 (2019) 104355

Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Confirming infection of hop plants inoculated with *Verticilium nonalfalfae*

A. Svara ^a, J. Jakse ^b, N. Stajner ^{b, *}

^a Department of Biosystems, KU Leuven, W. De Croylaan 42, 3001 Leuven, Belgium
^b Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

ARTICLE INFO

Article history: Received 10 July 2019 Received in revised form 23 July 2019 Accepted 26 July 2019 Available online 2 August 2019

Keywords: Verticilium nonalfalfae Hop Artificial infection rate Molecular markers ITS primers

ABSTRACT

Hop (Humulus lupulus L.) is grown mostly as flavouring and bittering ingredient for beer and is also appreciated in the herbal and cosmetic industry, as well as in pharmacology. Among several diseases that damage hop growing, the most devastating in European hop production is verticillium wilt, caused by the soil-borne fungal pathogen Verticillium nonalfalfae. Colonization pattern and differential expression of selected genes after artificial infection of susceptible and resistant hop cultivars with V. nonalfalafae in stems and roots have been analysed recently Švara et al., 2019. Here, we present the dataset related to verification of plant samples infections after artificial inoculation (fungi- and mock-inoculated). After inoculation plant samples were tested for the positive infection by PCR amplification of the V. nonalfalfae ITS DNA region with species specific primers developed and optimised for this purpose. For more insight please see the article "Temporal and spatial assessment of defence responses in resistant and susceptible hop cultivars during infection with Verticillium nonalfalfae".

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

DOI of original article: https://doi.org/10.1016/j.jplph.2019.153008.

* Corresponding author. Jamnikarjeva 101, 1000 Ljubljana, Slovenia. *E-mail address:* natasa.stajner@bf.uni-lj.si (N. Stajner).

https://doi.org/10.1016/j.dib.2019.104355

2352-3409/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications Table

Subject area	Biochemistry, Genetics and Molecular Biology
More specific subject area	Plant Molecular Biology, Transcriptomics
Type of data	2 tables, 1 image (agarose gel electrophoresis image)
How data was acquired	Primers ITS specific primers were developed with Primer3web application based on V.
	nonalfalfae ITS sequence identified from published draft genome sequence [2].
	PCR (PCR model- Thermal cycler 2720 Applied Biosystems) amplification on DNA of infected
	and mock inoculated plant material (roots).
	Visualization and electrophoretic separation of amplicons (electrophoresis tank Sub-Cell
	Model 192, BioRad, power supplies, UV transilluminator TFM-30V)
	Electrophoretic gel image capturing (Device for image capture of gel UVP Biospectrum 810 with cooled camera)
Data format	Figures in JPG file 300 dpi (raw data)
Experimental factors	The expression analysis experiment was performed separately on stem and root sections,
	which were separated from each other by cutting the stem bases using a sterile scalpel.
	Roots were carefully washed in fresh water. All samples were immediately frozen in liquid
	nitrogen and crushed to dust in the mortar for the extraction of DNA.
Experimental features	The presence and absence of V. nonalfalfae was confirmed by PCR using V. nonalfalfae-
	specific internal transcribed spacer (ITS) primers (Vnaa-ITS_2-F:
	TCATAACCCTTTGTGAACCATA and Vaa-ITS_2-R: CACGAGGCGGGCTTGTAG; amplification
	profile 94 °C, 5 min; 13 cycles, 93 °C, 35 s; 53 °C, 55 s; 72 °C 45 s; 13 cycles, 93 °C, 35 s, 53 °C,
	55 s, 72 °C, 59 s; 9 cycles, 93 °C 35 s, 53 °C, 55 s, 72 °C 118 s; final cycle, 72 °C 10 min)
	followed by subsequent gel electrophoresis separation on a 1.2% gel containing 0.5 μ g/mL
	ethidium bromide for visualisation. Only samples that were confirmed by PCR as infected
	and non-infected (control) were further analysed.
Data source location	University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101,
	Slovenia
Data accessibility	Data are within this article
Related research article	Svara A., Jakse J., Radisek S., Javornik B., Stajner N. 2019. Temporal and spatial assessment of
	defence responses in resistant and susceptible hop cultivars during infection with
	<i>Verticillium nonalfalfae</i> . Journal of Plant Physiology, 240. https://doi.org/10.1016/j.jplph.
	2019.153008

Value of the Data

- Specific primers developed and optimized to amplify ITS DNA region of *V. nonalfalafae* are valuable for verification of infection after artificial inoculation with *V. nonalfalafae*
- The data about success rate of the inoculation process for two hop genotypes, susceptible and resistant can aid other researchers an estimation useful for planning and designing good experiments.
- The data can serve as a benchmark for other similar studies, for example to obtain enough plant material for expression analysis; in our experiment 43% less infected plants of Wye Target and 28,6% less infected plants of Celeia were obtained due to ineffective inoculation process and it needs to be considered to have an adequate number of plants for an appropriate experiment.
- Data presented here allows experimental replication

1. Data

Table 1 describes *V. nonalfalfae* specific ITS primer information including name, sequence length, melt temperature and GC content. ITS primers were developed and optimized for verification of infection during artificial inoculation of hop with *V. nonalfalfae*.

Image 1 presents gel electrophoresis assay of *V. nonalfalfae* ITS DNA amplicons. The assay was performed in order to confirm infection success in roots of two hop cultivars, susceptible Celeia and resistant Wye Target (Table 1).

Table 2 describes amplification test of infection success of Celeia and Wye Target roots after artificial inoculation with *V. nonalfalfae*. All mock-inoculated plants (marked with "—" in sample ID, Table 2) indicated the absence of the fungal DNA, while 65 of the 102 infected plants showed to be true-

Table 1V. nonalfalfae-specific ITS primers.

ID	Sequence	Length	Tm (°C)	GC%
Vaa-ITS_2-F	TCATAACCCTTTGTGAACCATA	22	51,6	36,36
Vaa-ITS_2-R	CACGAGGCGGGCTTGTAG	18	58,7	66,67

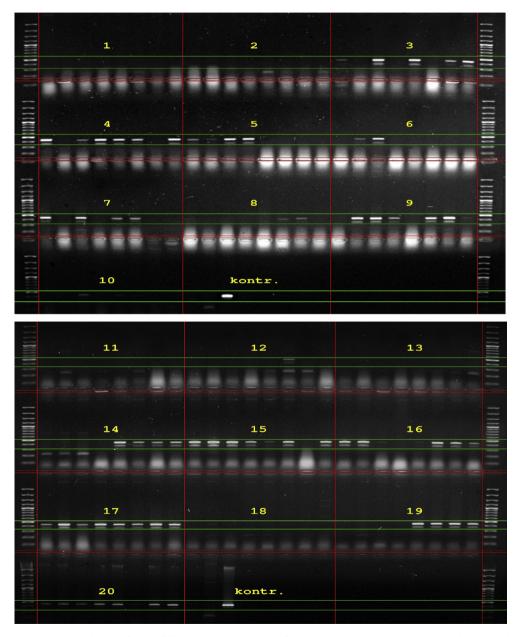


Image 1. Gel electrophoresis of *V. nonalfalfae* ITS DNA amplicons (specific numbered compartments represent samples grouped by one PCR strip represented by 8 individuals).

Table 2

Amplification test of infection success of Celeia (CE) and Wye Target (WT) roots (R) by V. nonalfalfae-specific primers after agarose gel electrophoresis assay (where 1 stands for successful infection and 0 stands for no infection of expected and actual status, respectively).

Sample ID	Sample number	Assay	Sample ID	Sample number	Assay	Sample ID	Sample number	Assay
06CE-01R	99	0 0	12CE-01R	98	0 0	18CE-01R	79	0.0
06CE-02R	100	0 0	12CE-02R	95	0 0	18CE-02R	84	0 0
06CE-03R	101	0 0	12CE-03R	91	0 0	18CE-03R	85	00
06CE-04R	102	0 0	12CE-04R	92	0 0	18CE-04R	80	00
06CE-05R	103	0 0	12CE-05R	93	0 0	18CE-05R	88	00
06CE-06R	104	0 0	12CE-06R	94	0 0	18CE-06R	87	00
06CE-07R	105	0 0	12CE-07R	89	0 0	18CE-07R	83	00
06CE-08R	106	0 0	12CE-08R	90	0 0	18CE-08R	82	00
06CE-09R	107	0 0	12CE-09R	96	0 0	18CE-09R	86	00
06CE-10R	108	0 0	12CE-10R	97	0 0	18CE-10R	81	00
06CE+01R	124	10	12CE+01R	114	11	18CE+01R	66	11
06CE+02R	125	10	12CE+02R	115	11	18CE+02R	76	10
06CE+03R	126	11	12CE+03R	116	11	18CE+03R	75	1?
06CE+04R	127	11	12CE+04R	117	1?	18CE+04R	73	10
06CE+05R	128	11	12CE+05R	118	11	18CE+05R	68	11
06CE+06R	129	11	12CE+06R	119	10	18CE+06R	67	11
06CE+07R	130	11	12CE+07R	120	11	18CE+07R	78	10
06CE+08R	131	11	12CE+08R	121	11	18CE+08R	74	10
06CE+09R	132	11	12CE+09R	122	11	18CE+09R	65	10
06CE+10R	133	11	12CE+10R	109	11	18CE+10R	69	10
06CE+11R	134	11	12CE+11R	110	11	18CE+11R	70	11
06CE+12R	135	11	12CE+12R	111	11	18CE+12R	72	10
06CE+13R	136	11	12CE+13R	112	11	18CE+13R	71	11
06CE+14R	123	10	12CE+14R	113	11	18CE+14R	77	10
06WT-01R	139	0.0	12WT-01R	148	00	18WT-01R	15	0.0
06WT-02R	143	0 0	12WT-02R	8	0 0	18WT-02R	13	0 0
06WT-03R	146	0 0	12WT-03R	1	0 0	18WT-03R	14	0 0
06WT-04R	142	0 0	12WT-04R	7	0 0	18WT-04R	12	00
06WT-05R	137	0 0	12WT-05R	5	00	18WT-05R	16	00
06WT-06R	140	0 0	12WT-06R	3	00	18WT-06R	17	0?
06WT-07R	145	0 0	12WT-07R	6	0 0	18WT-07R	10	0.0
06WT-08R	138	00	12WT-08R	14	700	18WT-08R	11	00
06WT-09R	144	00	12WT-09R	2	00	18WT-09R	18	00
06WT-10R	141	00	12WT-10R	4	00	18WT-10R	9	00
06WT+01R	21	11	12WT+01R	33	11	18WT+01R	60	10
06WT+02R	25	11	12WT+02R	42	1?	18WT+02R	52	10
06WT+03R	149	11	12WT+02R	41	10	18WT+02R	51	11
06WT+04R	19	11	12WT+04R	35	11	18WT+04R	57	10
06WT+05R	150	11	12WT+05R	43	11	18WT+05R	53	11
06WT+06R	155	11	12WT+06R	45	10	18WT+06R	61	10
06WT+07R	22	10	12WT+07R	30	11	18WT+07R	46	10
06WT+08R	153	11	12WT+09R	44	10	18WT+08R	47	10
06WT+09R	156	11	12WT+09R	31	10	18WT+09R	56	10
06WT+10R	24	11	12WT+10R	36	11	18WT+10R	49	11
06WT+11R	20	10	12WT+11R	27	11	18WT+11R	62	1?
06WT+12R	159	11	12WT+12R	40	10	18WT+12R	50	10
06WT+12R	155	11	12WT+13R	29	11	18WT+13R	64	10
06WT+14R	26	10	12WT+14R	23	11	18WT+14R	55	10
06WT+14R 06WT+15R	160	11	12WT+14R 12WT+15R	39	10	18WT+14R	58	10
06WT+16R	157	11	12WT+16R	37	10	18WT+16R	59	10
06WT+17R	157	10	12WT+17R	48	10	18WT+17R	63	11
06WT+17R	23	11	12WT+17R 12WT+18R	40 34	1?	18WT+18R	54	11
06WT+18R	152	11	12WT+18K 12WT+19R	32	11	10VV1+10K	54	1 1
06WT+19R 06WT+20R	152	11		32 38	10			
00VV1+20K	1.54	11	12WT+20R	20	10			

positives as they resulted in amplification of the fungal ITS region. This yields a 63.7% success rate for the inoculation process, 72% for susceptible Celeia and 59% for the resistant Wye Target cultivar, respectively. Therefore, 143% of Wye Target and 128,6% of Celeia plants should be inoculated with *V. nonalfalfae* to obtain 100% of infected plants. The calculation was done based on Table 2, determining the proportion of unsuccessfully infected plants and successfully infected plants for Wye Target and Celeia, respectively.

2. Experimental design, materials, and methods

2.1. Artificial inoculation

One year old hop plants were artificially inoculated with *V. nonalfalfae* isolate (T2) characterized as a lethal pathotype PV1 [3]. Inoculation of 60 plants of the resistant Wye Target cultivar and 42 plants of the susceptible Celeia cultivar was based on ten minute root dipping in conidial suspension adjusted to a concentration of 5×10^6 conidia/mL [4]. Mock inoculations were carried out by dipping 30 plants of each cultivar in a sterile distilled water. After inoculum treatment, the plants were transferred to 1 L pots using a sterile commercial substrate and grown in the form of a single bine in a growing chamber (12-h photoperiod of fluorescent light; 22 °C and 65% relative humidity during the light period and 20 °C and 70% during the dark period).

2.2. Primer development, PCR and gel electrophoresis

The presence and absence of fungal DNA in *V. nonalfalfae*- and mock-inoculated roots and stems of CE and WT cultivars at all three time points, respectively, were evaluated by PCR and subsequent gel electrophoresis test. The presence and absence of *V. nonalfalfae* was confirmed by PCR using *V. nonalfalfae*-specific internal transcribed spacer (ITS) primers (V naa-ITS_2-F: TCATAACCCTTTGTGAACCATA and Vaa-ITS_2-R: CACGAGGCGGGCTTGTAG; primers were developed based on *V. nonalfalfae* ITS sequence identified from published draft genome [2]; amplification profile 94 °C, 5 min; 13 cycles, 93 °C, 35 s; 53 °C, 55 s; 72 °C 45 s; 13 cycles, 93 °C, 35 s, 53 °C, 55 s, 72 °C, 59 s; 9 cycles, 93 °C 35 s, 53 °C, 55 s, 72 °C 118 s; final cycle, 72 °C 10 min) followed by subsequent gel electrophoresis separation on a 1.2% gel containing 0.5 μ g/mL ethidium bromide for visualisation. Only samples that were confirmed by PCR as infected and non-infected (control) were further analysed as it is described in the article "Temporal and spatial assessment of defence responses in resistant and susceptible hop cultivars during infection with Verticillium nonalfalfae" [1].

Acknowledgments

The authors acknowledge The Slovenian Institute of Hop Research and Brewing for provided plant genotypes. Funding: This work was supported by the financial support of the Slovenian Research Agency (ARRS program no. P4-0077).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- A. Švara, J. Jakše, S. Radišek, B. Javornik, N. Štajner, Temporal and spatial assessment of defence responses in resistant and susceptible hop cultivars during infection with *Verticillium nonalfalfae*, J. Plant Physiol. 240 (2019). https://doi.org/10.1016/j. jplph.2019.153008.
- [2] J. Jakše, V. Jelen, S. Radišek, R. de Jonge, S. Mandelc, A. Majer, T. Curk, B. Zupan, B.P. Thomma, B. Javornik, Genome sequence of a lethal strain of xylem-invading Verticillium nonalfalfae, Genome Announc. 6 (2018), https://doi.org/10.1128/genomeA. 01458-17 e01458-17.

- [3] S. Radišek, J. Jakše, B. Javornik, Genetic variability and virulence among Verticillium albo-atrum isolates from hop, Eur. J. Plant Pathol. 116 (2006) 301–314. https://doi.org/10.1007/s10658-006-9061-0.
- [4] M. Flajšman, S. Radišek, B. Javornik, Pathogenicity assay of Verticillium nonalfalfae on hop plants, Bio-Protocol 7 (2017) e2171, https://doi.org/10.21769/BioProtoc.2171.