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ABSTRACT

Almost 70% of human genes undergo alternative
polyadenylation (APA) and generate mRNA tran-
scripts with varying lengths, typically of the 3′ un-
translated regions (UTR). APA plays an important role
in development and cellular differentiation, and its
dysregulation can cause neuropsychiatric diseases
and increase cancer severity. Increasing awareness
of APA’s role in human health and disease has pro-
pelled the development of several 3′ sequencing
(3′Seq) techniques that allow for precise identifica-
tion of APA sites. However, despite the recent data
explosion, there are no robust computational tools
that are precisely designed to analyze 3′Seq data.
Analytical approaches that have been used to ana-
lyze these data predominantly use proximal to dis-
tal usage. With about 50% of human genes having
more than two APA isoforms, current methods fail
to capture the entirety of APA changes and do not
account for non-proximal to non-distal changes. Ad-
dressing these key challenges, this study demon-
strates PolyA-miner, an algorithm to accurately de-
tect and assess differential alternative polyadeny-
lation specifically from 3′Seq data. Genes are ab-
stracted as APA matrices, and differential APA usage
is inferred using iterative consensus non-negative
matrix factorization (NMF) based clustering. PolyA-

miner accounts for all non-proximal to non-distal
APA switches using vector projections and reflects
precise gene-level 3′UTR changes. It can also effec-
tively identify novel APA sites that are otherwise un-
detected when using reference-based approaches.
Evaluation on multiple datasets––first-generation Mi-
croArray Quality Control (MAQC) brain and Univer-
sal Human Reference (UHR) PolyA-seq data, recent
glioblastoma cell line NUDT21 knockdown Poly(A)-
ClickSeq (PAC-seq) data, and our own mouse hip-
pocampal and human stem cell-derived neuron PAC-
seq data––strongly supports the value and protocol-
independent applicability of PolyA-miner. Strikingly,
in the glioblastoma cell line data, PolyA-miner iden-
tified more than twice the number of genes with
APA changes than initially reported. With the emerg-
ing importance of APA in human development and
disease, PolyA-miner can significantly improve data
analysis and help decode the underlying APA dynam-
ics.

INTRODUCTION

Advances in sequencing techniques have improved our un-
derstanding of the transcriptome and unraveled new mech-
anisms of complex diseases. However, several critical as-
pects of transcriptome diversity are underexplored. In the
mRNA maturation process, the 3′end of precursor mRNA
(pre-mRNA) is cleaved and a poly(A) sequence is added.

*To whom correspondence should be addressed. Tel: +1 832 824 8878; Fax: +1 832 825 1251; Email: zhandong.liu@bcm.edu

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-7608-0831


e69 Nucleic Acids Research, 2020, Vol. 48, No. 12 PAGE 2 OF 12

In eukaryotes, all pre-mRNA molecules except histones
undergo polyadenylation (1). In humans, ∼70% of genes
undergo alternative polyadenylation (APA), where they
can be cleaved at different sites on the 3′ end, generating
mRNA transcripts of varying lengths (2). ∼50% of human
genes have three or more polyadenylation sites (3). Multi-
ple studies have demonstrated the pivotal role of alternative
polyadenylation in key biological processes including gene
regulation (2), mRNA localization (4), cell proliferation (5),
differentiation (6), and senescence (7). The importance of
alternative polyadenylation is also demonstrated in the de-
velopment and prognosis of various oncological, neurolog-
ical, immunological, and endocrinal diseases (8).

Expressed sequence tags (EST) (9) were initially used to
map polyadenylation sites. Later on, microarray and paired-
end ditag (PET) approaches were used to detect global APA
changes (10). But it was the next-generation sequencing
(NGS) technology that started to transform APA analy-
sis. RNA-Seq offers single-base resolution and a wider de-
tection range in identifying novel genes, splice forms and
non-coding transcripts. However, because of the huge in-
trinsic variation of read coverage at the 3′ end, precise map-
ping and quantification of polyadenylation sites is not pos-
sible. When looking at mapped reads, shorter 3′ UTR tran-
scripts are undetectable unless they are expressed at dramat-
ically higher levels than the longer isoforms. The increas-
ing significance of APA in disease coupled with the limita-
tions of traditional RNA-Seq propelled the development of
several 3′RNA-seq techniques specifically designed to iden-
tify the mRNA cleavage and polyadenylation sites. These
methods include 3′Seq, polyadenylation sequencing (PA-
seq) and poly(A) site sequencing (PAS-seq), all of which
use oligo(dT) primer based reverse transcription to capture
the 3′ end of mRNA (Figure 1a). However, they all suf-
fer from significant poor base-calling quality and misprim-
ing, where the poly(dT) primer that is intended to bind the
poly(A) tail instead binds a sequence of genomic adenines
(11). Techniques like poly(A)-test RNA-sequencing (PAT-
seq) and poly(A)-position profiling (3P-seq) try to mini-
mize mispriming by adding adapters prior to primer an-
nealing, but require complex RNA manipulation steps and
perform poorly in quantification (3). Limiting factors like
poly(A) enrichment and 3′ linker ligation steps are bypassed
by Poly(A)-ClickSeq (PAC-seq) using click-chemistry (12),
which can also be used for differential expression analysis
(13)

With the explosion of emerging technologies, we need
new analytical methods. In spite of increasing significance
of APA and 3′ sequencing (3′Seq) techniques, there are no
computational tools that are designed precisely for 3′Seq
data. Several studies have analyzed conventional RNA-seq
data to infer alternative polyadenylation changes. DaPars
(14) uses a fisher exact test on proximal to distal APA site
differences. Similarly, QAPA (15) uses DEXseq (16) and
TAPAS (17) uses a change point strategy to infer APA
changes from regular RNA-seq. However, none of them are
3′Seq specific and do not identify and account for all APA
isoforms. Although previous studies have revealed the core
insights from 3′seq data, their analyses have largely been in-
complete. Those approaches typically either relied on exist-

ing poly-A annotations and ignored novel APA sites or were
limited to proximal and distal polyadenylation sites (18) and
ignored APA changes involving intermediate poly(A) sites
(Supplementary Figure S1). Enrichment of proximal or dis-
tal polyadenylation sites, commonly referred to as proximal
to distal usage (PDU) or distal to primal usage (DPU), are
computed to infer gene level APA changes (18,19). With
almost 50% of genes having more than two polyadenyla-
tion sites, gene level APA changes are better comprehended
by accounting for all polyadenylation sites. However, none
of the existing approaches abstract all polyadenylation sites
in quantifying gene level APA changes. The absolute lack
of 3′Seq specific approaches strongly advocate the need for
new computational methods to accurately assimilate the
merits of 3′Seq data.

Here, we propose PolyA-miner, a novel de novo differen-
tial alternative polyadenylation detection algorithm based
on non-negative matrix factorization (NMF) (20) and vec-
tor projections. NMF is popularly used for feature ex-
traction in image processing (21). It is also successfully
used to elucidate (factorize) gene expression patterns (22).
It provides an intuitive interpretation of the factorization
and parts-based, local representation in contrast to other
well-known methods (23). The current context of alterna-
tive polyadenylation (APA) changes is analogues to clus-
tering gene expression patterns where polyadenylation sites
are represented as rows and samples as columns. NMF
is a good fit when the attributes are ambiguous or have
weak predictability (24). This is advantageous to account
for all polyadenylation (polyA) sites with no single domi-
nant polyA site. PolyA-miner tests how well the unsuper-
vised consensus clustering of an APA matrix agrees with
the ground truth (class labels). Co-clustering frequencies
from iterative NMF are modeled as a beta distribution and
the statistical significance of APA change is evaluated by
the goodness-of-fit of the consensus clustering over a null
model. Differential APA magnitude is computed as the dif-
ference of APA vector projections on to the most distal APA
site in an n-dimensional vector space, where n is the num-
ber of APA sites. The methodical flow of PolyA-miner is
illustrated in Figure 1. PolyA-miner is evaluated with both
the first generation MAQC brain and UHR PolyA-seq data
(3), on recent Glioblastoma cell line NUDT21 knock down
PAC-seq (3′Seq) data (19), and our own mouse hippocam-
pal and human stem cell-derived neuron PAC-seq data. A
detailed description of the proposed approach is given in
the following Materials and Methods section.

MATERIALS AND METHODS

Processing raw reads

Irrespective of sequencing protocol nucleotide composition
is biased at the beginning of reads due to random hexamer
priming while amplifying cDNA (25). To improve the map-
pability (26), the first six nucleotides (12) and adapter con-
tamination is filtered out using fastp (27). To minimize am-
biguous alignment, reads <40 bp are also filtered out. Raw
reads are then mapped to the reference genome of origin
using bowtie2 (28). Alignment files in ‘sam’ format are con-
verted to ‘bam’, sorted and indexed using samtools (29).
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Figure 1. Illustration of PolyA-miner pipeline: (A) Raw 3′Seq reads. (B) Alignment. (C) Quantification of APA peaks: PA1 and PA2 are polyadenylation
sites 1 and 2 respectively. (D) Identifying novel APA sites: NS1 and NS2 are novel polyadenylation sites that are not reported in PolyA DB. (E) Denoising
data: cleaning misprimed sites and noisy APA peaks. (F) Normalized APA matrix: each row is a polyadenylation site and columns are the read proportions
in respective CR (control) and KD knockdown replicates. (G) Vector projection module to compute differential APA magnitude. (H) iterative consensus
non-negative matrix factorization (NMF) module. (I) Modeling co-clustering frequencies. (J) Goodness of fit test of cluster membership over a null model.
(K) Tracks showing detected APA changes.
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De novo extraction of alternative polyadenylation sites

All potential sample-wise poly adenylation (polyA) sites
are extracted from alignment files as per base coverage
features/peaks using the genomecov module in bedtools
(Figure 1C). A comprehensive library of polyadenylation
sites is computed by pooling all sample-wise feature files.
To account for any intrinsic limitations in sequencing pro-
tocols, polyA sites that overlap or are within a mini-
mal distance md are merged (Supplementary Figure S2e).
Parameter md can be adjusted based on polyA resolu-
tion supported by the respective sequencing protocol used.
Since 3′ sequencing methods use poly(dT) primers––to bind
the mRNA poly(A) tail––they can also bind stretches of
adenines within the body of the mRNA, resulting in se-
quencing reads that do not align with the cleavage site (30).
We call these misprimed reads. Such misprimed sites are
computationally filtered by exploring the downstream base
composition (31). Typically, sites with greater than 15nt out
of 20 nucleotides (75%) are considered false positives (12).
However, here we took a more conservative approach: each
mapped polyA site is extended towards the 3′ end by a mis-
priming distance mpd and scanned for a genomic PolyA fea-
ture. Sites with >65% of adenines in a sliding window of 20
bp are filtered out as shown in Figure 1E. Sites within 50 bp
of an annotated cleavage site (32) are considered accurate
regardless of the percentage of adjacent adenines.

Mapping, denoising and normalizing APA counts

After filtering out misprimed sites, resulting polyA sites are
mapped to their respective genes. Often times novel polyA
sites fall beyond the annotated gene boundary. Because the
longest known 3′UTR is 16 kilobases (kb) (33), APA sites
are mapped to genes if they are within this distance of their
respective transcriptional end site (TES) and do not over-
lap with any other gene (illustrated in Supplementary Fig-
ure S2a). Sample-wise polyA site counts are computed as
the total number of reads mapped to the respective polyA
site intervals using featureCounts (34). Each gene is con-
ceptualized as a matrix with APA sites as rows and sample
replicates as columns. To restrict the untoward effect of se-
quencing noise, polyA sites failing the pOverA function are
filtered out. This function evaluates whether the proportion
of replicates larger than A (reads) exceeds p with a minimum
of M reads per site in at least one test group (illustrated in
Supplementary Figure S2b). APA matrix is further pruned
by filtering out the sites that fall short of a minimum pro-
portion mp of total reads mapped to the respective gene in
both the conditions (Supplementary Figure S2c). To con-
strain the APA changes due to non-expressed genes, genes
with less than a minimum expression count me in either of
the conditions are filtered out (Supplementary Figure S2d).

Iterative Consensus non-negative matrix factorization
(NMF)

PolyA-miner uses iterative consensus clustering to detect al-
ternative polyadenylation changes (Figure 1H). Typically,
clustering techniques are used to group samples or data
points. However, in the current context of differential al-
ternative polyadenylation, we have a priori information of

sample clustering, i.e., a specified set of control and treated
samples. The key here is to test the agreement between the
clustering consensus of an APA matrix and the ground truth
of a priori sample labels, which is essentially a factorization
problem. Non-negative matrix factorization (NMF) is an
unsupervised clustering paradigm that has previously been
demonstrated for multivariate decomposition (35). Given
an m x n dimensional non-negative APA matrix V, where m
is the number of APA sites and n is the number of samples,
we factorize V into an n × k matrix W and a k × m matrix
H such that: Vm×n ≈ Wn×k Hk×m, where k is the number
of clusters. In our example, we have two clusters: control
and treated (Supplementary Figure S3a). Factorization is
approximated by minimizing the cost function (Supplemen-
tary Figure S3a–c):

F(W, H) = ‖V − WH‖2
F

We used an efficient Coordinate Descent method (36) to
solve W and H. Cluster membership is inferred from the H
matrix, a sample is assigned to a cluster i if Hi,m > Hj,m. de-
tailed account of NMF is described elsewhere (37). Initial-
ization can introduce potential bias in NMF (38). To mini-
mize this, we execute NMF iteratively (Supplementary Fig-
ure S3d) and infer a robust dichotomization (control ver-
sus treated). An n x n co-clustering consensus matrix CM is
computed (Supplementary Figure S3e) from the indepen-
dent iterative NMF runs, where n is the number of samples.

CMi, j =

⎧⎪⎨
⎪⎩

1 i f i = j

Ci j |k/ni

0 i f i > j

CMi,j is the co-clustering frequency of samples i and j.
Cij|k is the number of time sample i and j are assigned to the
a priori cluster k and ni is the number of NMF iterations.

Modeling beta distribution and likelihood-ratio (LRT) test

Co-clustering frequencies from iterative NMF are modeled
using a beta distribution (Supplementary Figure S3f). Beta
distribution is widely used to model outcomes that are con-
strained within a defined interval [0 to 1] and two parame-
ters �, �, controlling the distribution shape. The probability
density function (pdf) of a random variable X following beta
distribution, X∼Beta(α,β) is given by:

P(x) = xα−1(1 − x)β−1

B (α, β)

=
{

�(α+β)
�(α) �(β) (1 − x)β−1 xα−1 i f 0 ≤ x ≤ 1

0 else

where α > 0, β > 0 and � (a) = ∫+∞
0 xa−1 e−x dx The mean

and variance of a beta distribution are given by:

x̄ ≈ α

α + β
; s2 ≈ αβ

(α + β)2(α + β + 1)

We model co-clustering frequencies from CM matrix as
a beta distribution. The parameters α,β are estimated using
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the moments method.

β = α(1 − x̄)
x̄

; α = x̄
[

x̄(1 − x̄)
s2

− 1
]

The log likelihood function of a beta model measure how
well they fit the underlying data and is given by:

L (α, β) =
N∑

i=1

log
(

� (α + β)
� (α) � (β)

xα−1(1 − x)β−1
)

Three sets of parameters and respective likelihoods are es-
timated for intra-group L(α1,β1) and inter-group L(α2,β2)
and null L(α0,β0). Intra-group likelihood is modelled on the
co-clustering frequencies of samples with the same a priori
condition (control or treated), the inter-group likelihood is
modeled on the co-clustering frequencies of samples from
different conditions (control and treated), and a null distri-
bution is modelled on the whole CM matrix. Differential
polyadenylation is tested by evaluating the goodness-of-fit
of the respective intra-group and inter-group co-clustering
frequencies over the null model. A likelihood ratio test
statistic is computed as the ratio of a simpler null model
s to a complex alternative model g.

LRT = −2loge(Ls/Lg)

= −2loge(Ls/Lg)

= −2(L0 − (L1 + L2))

where L1, L2 and L0 are intra group, inter group and null
model log likelihoods. LRT statistic is approximated as a
� 2 distribution with 2 degrees of freedom and the P value
is computed accordingly (Supplementary Figure S3g).

Magnitude of alternative polyadenylation (APA) change

Genes undergoing polyadenylation changes often have
more than two APA sites (3) and the changes are not always
at the most distal and most proximal cleavage sites. The
ideal magnitude metric should reflect changes at all APA
sites that affect 3′UTR length. Vector projection is a good
means to quantify a multi-dimensional variable (w.r.t a ref-
erence). An intuitive way to understand a projection of a
vector u on vector v is the shadow of vector u on vector v
(illustrated in in Figure 4A).

‖pro jv 
u‖ =
∥∥∥∥∥ 
u . 
v∥∥
v2

∥∥2 
v
∥∥∥∥∥ = ‖
u . 
v‖∥∥
v2

∥∥ ∥∥
v2
∥∥ = |
u . 
v|∥∥
v2

∥∥
Projection of the most proximal or distal APA site effec-

tively resonate 3′UTR shrinking or lengthening respectively.
Control and treated APA matrices are vectorized by a row
mean operation and the magnitude of APA change is com-
puted as the difference in projections of respective APA vec-
tors on to the most proximal APA site in an n dimensional
vector space, where n is the number of APA sites. Genes
with higher distal projections in controls over treated are
predicted as 3′UTR shortening and vice versa as illustrated
in Figure 4B.

RESULTS AND DISCUSSION

Plethora of misprimed and noisy APA sites are filtered by
PolyA-miner

A majority of 3′Sequencing datasets suffer from misiden-
tification of spurious and noisy APA sites due to oligo
(dT) internal priming of polyadenine stretches within the
body of mRNA rather than the poly(A) tail. To evaluate
the ability of PolyA-miner to filter misprimed sequencing
reads, we applied our method to the Glioblastoma (GBM)
LN229 cell line NUDT21 knock down (KD) PAC-Seq data
(SRP172550). This dataset is first reported in Chu et al.
(2019) and was generated to help elucidate the contribution
of NUDT21 dependent APA regulation in GBM progres-
sion. We examined several genes that showed high levels of
mispriming. Seven alternative polyadenylation (APA) sites
are annotated for the gene ATRX in PolyA DB, a database
of APA sites backed by sequencing evidence (32). PolyA-
miner detected 30 APA sites in the zoomed-in region shown
for ATRX (Figure 2A) including 23 new putative novel sites.
Out of the 23 putative sites PolyA-miner filtered out 19 pu-
tative sites with >65% of genomic adenines in a sliding win-
dow of 20 bp as described in the methods. A representa-
tive misprimed site with genomic poly thymine stretch (in
negative sense strand) is annotated in Figure 2A. Further-
more, three of the four putative sites retained after misprim-
ing filter and three of the seven annotated APA sites are
filtered out by pOverA and other de-noising filters (Figure
2A). Similarly, we detected five out of six and three out of
four misprimed putative sites in the genes PAK2 and IDS
(Supplementary Figure S2e and d). In addition, out of the
seven PolyA DB annotated sites in IDS, three are dropped
by denoising filters. At the transcriptome level, 212 366 of
the total 255 055 identified putative APA sites are poten-
tially misprimed (Figure 2B), a remarkable 83%. De-noising
pOverA and proportion filters dropped 17 253 novel and
27 615 annotated APA sites that are inconsistent across re-
spective replicates. Furthermore, the gene expression filter
dropped 13 765 novel and 5325 annotated sites to control
for non-expressed genes in either of the conditions.

To thoroughly understand the noise levels in 3′ UTR se-
quencing data by ruling out any technical or species bias,
we generated our own 3′Seq data from wild type mouse
hippocampi and human stem cell-derived neurons (Supple-
mentary methods). Both the mouse and human data had
significantly high levels of mispriming and noise (Supple-
mentary Figure S4a and b), similar to previous NUDT21
knock down PAC-seq data (Figure 2B). These observations
demonstrate the high levels of false positive polyA site iden-
tification inherent to 3′ sequencing and substantiate the
merit of PolyA-miner to properly mine and interpret 3′ se-
quencing data. Our data is uploaded to GEO and will be
a useful resource for investigating various technical aspects
of 3′Seq data and better understanding the transcriptome
of those tissues.

More than twice the number of APA changes are identified in
NUDT21 knock down PAC-seq data than initially reported

APA vector projections are more proximal (less distal)
in NUDT21 KD samples than controls, suggesting global
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A

B C

Figure 2. (A) Illustration of mispriming and other noise levels in the gene ATRX from NUDT21 KD PAC-Seq data. Lane 1 shows all extracted polyA sites
from the zoomed in region: Shown in blue are annotated sites from PolyA DB and shown in black are putative sites. Highlighted in box is a representative
misprimed site. Lane 2 shows polyA site that are flagged by different Poly-miner filters: Shown in grey are misprimed sites and shown in green are flagged
by de-noising filters. Marked with tick (�) are the retained polyA to test for APA changes. Distribution of the filtered putative and annotated APA sites
by respective de-noising filters in (B) NUDT21 KD PAC-Seq data and (C) MAQC brain-UHR PolyA-seq data.

3′UTR shortening (Figure 3A). This observation is in agree-
ment with previously published analyses (19). However, the
study reported only 695 genes with APA changes. PolyA-
miner identified a striking 1562 genes with APA changes,
revealing extensive APA dynamics (Figure 3A and B). To
evaluate the methodological merit in an un-biased setup,
consistent mispriming and denoising filters are applied to
both the distal to proximal usage (DPU) and PolyA-miner.
Annotated polyA sites from polyA DB are used to control
for novel APA site discovery advantage of PolyA-miner. As
the executable code is not available for a direct comparison
of the DPU approach with PolyA-miner, we repeated the

analysis (supplementary methods). The DPU approach de-
tected 921 genes with 3′UTR shortening and 16 with elon-
gation (Adjusted P value ≤ 0.05). Among them, 844 (92%)
and 14 were also detected by PolyA-miner with a total of
1504 3′UTR shortening and 58 3′UTR elongation changes
(Figure 3B), including VMA21, a well-established positive
control gene reported in previous NUDT21 KD studies.
The complete list of detected APA changes by PolyA-miner
and DPU approach are given in Supplementary Tables S1
and S2 respectively. These data show that PolyA-miner
replicates the results of previous methods and expands
them.
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Figure 3. (A) PolyA-miner reveals extensive 3′UTR shortening in LN299 Glioblastoma NUDT21 knock down data: Size of the marker indicate statistical
significance. Color gradient (red to orange) indicate 3′UTR length long to short. (B) Overlap and discordance of PolyA-miner and DPU predictions. (C)
APA heatmap of genes with two polyadenylations that are predicted to be 3′UTR shortening only by PolyA-miner. (D) NUDT21 motif frequency in genes
that are predicted to be 3′UTR shortening by PolyA-miner. (E) Phenotype analysis of PolyA-miner results. (F) Clustering stability of PolyA-miner and
DPU only predictions. (G and H) Tracks showing 3′UTR shortening identified by both PolyA-miner and DPU, and only PolyA-miner. (I and J) APA
proportion matrices of the genes shown in (G) and (H) respectively.
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Concordant APA patterns strongly substantiate novel PolyA-
miner predictions

PolyA-miner predicted 660 3′UTR shortened genes that are
missed by DPU (Figure 3B). These hits are grouped by the
number of APA sites in the visual illustration. The heatmap
of the genes with two APA sites suggest conclusive 3′UTR
shrinking (Figure 3C). Striking dark blue (low) to light blue
(high) and contrariwise light red (high) to dark red (low)
patterns are observed at the proximal and distal polyadeny-
lation sites between control and NUDT21 KD samples re-
spectively. This high proximal and low distal pattern in
NUDT21 KD samples illustrate 3′UTR shortening. Genes
with three APA sites also show similar apparent differential
usage patterns at the proximal (blue: low to high) and distal
(green: high to low) sites (Supplementary Figure S5). To-
gether, two and three APA site genes constitute 466 (70%)
of PolyA-miner only predictions. Heatmaps of 4 and 5 APA
genes are also shown in Supplementary Figure S5.

Additionally, to further substantiates PolyA-miner pre-
dictions, we explored the distribution of the NUDT21 bind-
ing motif in the predicted targets. Earlier studies showed
that NUDT21 binds to UGUA motif and reported global
3′UTR shrinking with a significant enrichment of the
UGUA motifs near the distal polyA sites compared to the
proximal polyA sites in Nudt21 knockdown models (18). In
agreement with previous reports, we found an enrichment
of the UGUA binding motif frequency upstream of the dis-
tal cleavage site in the genes that showed significant 3′ UTR
shortening after NUDT21 loss (Figure 3D). In contrast, no
difference in UGUA motif distribution was found between
proximal and distal polyA sites of the genes with no APA
changes or lengthened (Supplementary Figure S6). This ob-
servation supports the model that NUDT21 is directed to
distal sites to facilitate polyadenylation and thereby corrob-
orate novel PolyA-miner APA predictions.

We next examined the clustering stability scores (de-
scribed in supplementary methods) of the discordant pre-
dictions, i.e. the hits that are only predicted by either PolyA-
miner or DPU. High clustering stability is observed for
PolyA-miner only predictions (Figure 3F) with a median
stability score of 0.73 over DPU only predictions (of 0.51).
Obvious differential APA patterns (Figure 3C, Supplemen-
tary Figure S5), enrichment of UGUA motif (Figure 3D,
Supplementary Figure S6), and high clustering stability
(Figure 3F) strongly substantiate the validity of PolyA-
miner novel predictions.

PolyA-miner competently reveal non-distal or non-proximal
APA dynamics

To understand the methodological advantages of PolyA-
miner, we examined the genes that are consistent between
PolyA-miner and DPU and respective novel predictions.
The APA shift from the most distal to the most proxi-
mal site in the gene TUSC2 (Figure 3G) is detected by
both PolyA-miner and DPU. The APA proportion matrix
also confirms the same (Figure 3I). With just one source-
sink (distal-proximal) pair, such changes in general are sim-
pler to identify. However, in the gene UBTF (Figure 3H)
the alternative polyadenylation switch from the most distal
polyadenylation site (PA) 3 to the intermediate sites (PA2)

is predicted only by PolyA-miner. The vector projection
metric of PolyA-miner can effectively reflect changes at all
APA sites as described in the methods section. On the other
hand, the DPU approach computes only distal to proxi-
mal usage, ignoring all other non-proximal to non-distal
changes. The APA proportion matrix also show decrease
in PA3 and increase in PA2 proportions in NUDT21 KD
samples (Figure 3J). This conclusively support PolyA-miner
prediction. A significant fraction, about 33% of the genes
with APA changes in NUDT21 KD PAC-Seq data are not
distal to proximal changes. This strongly demonstrates the
merit of PolyA-miner in identifying broader APA dynam-
ics. The DPU method did predict some candidate genes that
PolyA-miner did not. For example, it predicted differential
APA usage in the gene GNS whereas PolyA-miner did not.
However, the sample variability and low consensus cluster-
ing stability score (0.47) makes it less likely to be true. One
of the NUDT21 KD sample is as high as controls at the most
distal site and is significantly distant from the other two
replicates (Supplementary Figure S7a and S7b; high vari-
able sites are annotated with stars). PolyA-miner penalizes
such debatable predictions with the intra and inter cluster-
ing frequency-based beta statistic.

PolyA-miner 3′UTR score accurately reflects gene level
3′UTR shortening

Typical differential analyses rank respective hits by mere
fold change, but this is not appropriate for APA changes.
For example, the gene MAPK1 the distal site is drifted
to the most proximal sites (Figure 4C). The proximal site
PA1 is increased by 4.5-fold in NUDT21 KD samples. On
the other hand, in the gene EGFR distal sites are shifted
to an intermediate site with 4.7-fold increase (Figure 4D).
Just by the magnitude of fold change at PA2 EGFR ranks
higher to MAPK1. However, the proportion of transcripts
with the most proximal PA site (shortest 3UTR) is high
in MAPK1. Shorter the 3′UTR a transcript is more likely
to lose miRNA binding sites and less likely to be down
regulated. With the shortest dominant isoform MAPK1
(Figure 4C) is more likely to have stronger downstream
effect when compared to EGFR (Figure 4D) with sec-
ond shortest dominant isoform. Thus, in the context of
3′UTR shortening/elongation, the ranking metric should
reflect both magnitude and position of APA (3′UTR length)
changes. Using vector projections (described in methods)
PolyA-miner can account for both the position and magni-
tude of change. PolyA-miner scoring aptly suggests an over-
all greater shortening effect in MAPK1 (−0.29) over EGFR
(−0.11). This ranking is critical for any downstream analy-
sis that takes rank as their input, such as Gene Set Enrich-
ment Analysis (GSEA).

PolyA-miner predictions translate to biological insights

Phenotype analysis of PolyA-miner predicted genes with
3′UTR shortening showed enrichment for intellectual dis-
ability, neurodevelopmental delays and other neuropsychi-
atric phenotypes (Figure 3E and Supplementary Table S3).
These align with the recent advances in NUDT21 biology
(39,40). On the other hand, phenotype enrichment of DPU
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A

C

B

Figure 4. Accurate assessment of 3′UTR shortening/elongation using vector projections: (A) Projection of vector u on v. (B) Illustration of 3′UTR changes.
Shown in blue is 3′UTR shrinking with control distal projection is greater than that of treated. Conversely, shown in red is 3′UTR elongation with treated
distal projection is greater than that of control. Shown in green is when control distal projection is equal to that of treated indicating no change in 3′UTR.
(C) APA switch from most distal (PA4) to most proximal site (PA1) in MAPK1 and (D) APA switch from switch PA4 to PA2 in EGFR.

predictions is limited (Supplementary Figure S7c, Table S4).
Furthermore, in de-novo APA site detection mode, PolyA-
miner identified 3074 novel polyadenylation sites that were
otherwise not reported in PolyA DB (Supplementary Table
S5).

Widespread longer 3′UTR isoforms are observed in MAQC
human brain PolyA-seq data

To demonstrate the protocol independent usability of
PolyA-miner, we next evaluated it with MAQC Univer-
sal Human Reference (UHR) and human brain PolyA-seq
datasets (3). PolyA-seq is one of the first generation 3′ se-
quencing protocols and requires complex polyA enrich-
ment, sample preparation and purification steps (12). Data
was obtained from the GEO database (GSM747473-76).
Similar to NUDT21 KD PAC-Seq data, ∼94% of the pu-
tative APA sites are filtered out by mispriming and other
de-noising filters (Figure 2c). This reinforces our conclu-
sion about the magnitude of internal priming events and
noise in the current 3′Sequencing protocols. In de-novo APA

site detection mode, PolyA-miner identified 21338 novel
polyadenylation sites (Supplementary Table S10). Predom-
inantly distal polyA sites (longer 3′UTR isoforms) are
found in human brain, i.e. APA vector projections are
more distal in brain when compared to that of UHR (Fig-
ure 5A). This observation is consistent with the literature
(33).

PolyA-miner identified 2441 3′UTR elongated and 366
shortened genes (Supplementary Table S6). The DPU ap-
proach identified 367 3′UTR elongation and 42 3′UTR
shrinking events (Supplementary Table S7), out of which
356 and 36 events are also detected by PolyA-miner (Fig-
ure 5B). On the other hand, PolyA-miner predicted 2085
and 330 elongations and shortening events that are not de-
tected by DPU. APA heatmap patterns illustrated in Fig-
ure 5C, D and Supplementary Figure S8 conclusively val-
idate PolyA-miner novel predictions. PolyA-miner elonga-
tion predictions are enriched for RNA splicing, mRNA pro-
cessing, post translational regulation, (Figure 5E and Sup-
plementary Table S8) which aligns with the high transcrip-
tional and splicing diversity in the brain (41). Functional
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insights from DPU predictions (Supplementary Figure S9c
and Table S9) are limited when compared to that of PolyA-
miner predictions.

Both PolyA-miner and DPU predicted 3′UTR elonga-
tion in the gene ANKH (Figure 5f). APA proportion matrix
(Figure 5H) and standard RNASeq of samples obtained
from Sequencing Quality Control (SEQC) project also sug-
gest dominant distal polyadenylation site in brain (anno-
tated by an arrow in Figure 5F). However, only PolyA-
miner predicted 3′UTR elongation in the gene DPH3 (Fig-
ure 5G). Both regular RNASeq tracks (Figure 5G) and
APA proportion matrix (Figure 5I) validate PolyA-miner
predictions. There is an increase in proportion of the dis-
tal sites PA4 and PA3 in brain samples. On the other hand,
only DPU predicted 3′UTR elongation in the gene RIOK1
(Supplementary Figure S9a). APA proportions (reads) from
both proximal and distal sites are redistributed to the in-
termediate site (Supplementary Figure S9b) making this a
debatable prediction. It essentially boils down to change
magnitude vs APA site position (length). A detailed experi-
mental investigation is necessary to establish an agreement
between the APA position (length) and the magnitude of
change to assess the downstream effect.

CONCLUSION

PolyA-miner is the first differential alternative polyadeny-
lation usage tool that is specifically designed for 3′Seq data.
We demonstrated the importance of extensive filtering in
pre-processing 3′Seq data. Further, our iterative consen-
sus NMF makes the analysis less susceptible to intra sam-
ple variation. Most importantly, using vector projections,
PolyA-miner can account for all APA changes including
non-proximal to non-distal changes and can distinguish the
most distal to most proximal changes from most distal to
intermediate site changes irrespective of absolute change
magnitude. This sensitivity is extremely important to thor-
oughly estimate of the true breadth of 3′UTR shorten-
ing and elongation. Evaluation on both the first genera-
tion MAQC brain and UHR PolyA-seq data, and recent
Glioblastoma cell line PAC-seq (3′Seq) data strongly sup-
ports the value and protocol independent applicability of
PolyA-miner. We demonstrated a substantial increase in
both the number of dynamic APA events detected and novel
APA sites using PolyA-miner. With the emerging impor-
tance of alternative polyadenylation in understanding de-
velopment and diseases, PolyA-miner can significantly im-
prove data analysis and help decode the missing pieces of
underlying alternative polyadenylation dynamics.

DATA AVAILABILITY

PolyA-miner is implemented in Python and the source code
is freely available at http://www.liuzlab.org/PolyA-miner/.
The PAC-seq data are available in the NCBI Gene Expres-
sion Omnibus (GEO), accession number: GSE147661.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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