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A square-root topological insulator with
non-quantized indices realized with photonic
Aharonov-Bohm cages
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Topological Insulators are a novel state of matter where spectral bands are characterized by

quantized topological invariants. This unique quantized nonlocal property commonly man-

ifests through exotic bulk phenomena and corresponding robust boundary effects. In our

work we study a system where the spectral bands are associated with non-quantized indices,

but nevertheless possess robust boundary states. We present a theoretical analysis, where

we show that the square of the Hamiltonian exhibits quantized indices. The findings are

experimentally demonstrated by using photonic Aharonov-Bohm cages.
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The Klein–Gordon Hamiltoninan is a famous example,
where taking its square-root lead to fundamentally new
insides: with the help of the resulting Dirac Hamiltonian,

describing a massive spin-1/2 fermionic particle, it was possible to
explain the fine-structure spectra of atoms and the anomalous
Zeeman effect1. Interestingly, as it emerged much later, the
square-root procedure has proven to be useful also in other fields:
it explains the robust boundary modes of mechanical lattices and
connects it to the topological band theory of electronic systems2,
it relates bosons and fermions via supersymmetric transforma-
tions3, and, in addition, it generates rich models from nontrivial
topological insulators (TIs)4.

TIs—a new phase of matter—have to date seen a variety of
manifestations with prominent examples including the two
dimensional (2D)5 and four dimensional (4D) quantum Hall
effects6, one dimensional (1D) topological superconductors7, 2D8

and three dimensional (3D) TIs9, crystalline and quasi-crystalline
TIs10,11, and higher-order TIs12. All available realizations of TIs,
however, share a common feature: their spectral bands are
attributed a nonlocal topological index that is quantized13–15.
Hence, whereas different realizations of TIs can vary locally, as
long as their topological characterization persists, they will exhibit
the same topological phenomena. In other words, the quantiza-
tion of topological indices lies at the foundation of the char-
acteristic robustness of bulk responses and associated boundary
phenomena in TIs.

In our work, we use a square-root procedure to provide a
topological framework of a 1D TI with non-quantized bulk
indices. This explains the robust boundary states found in its
spectrum. Specifically, we analyze a system with three spectral
bands, which possess non-quantized Zak’s phases. However,
spectral symmetries lead to quantized topological invariants,
revealed when squaring the Hamiltonian, which determine its
topological phase. The resulting states, related to the invariants
by the bulk boundary correspondence, may be seen as in-gap,
protected and controllable qubits. Photonic platforms have
proven to serve as versatile platforms for the implementation of
topological phenomena15, such as Floquet TIs16, TIs on a sili-
con platform17, 2D11 and 4D topological Hall physics18, as
well as non-Hermitian topological physics19. Along these
lines, we utilize photonic waveguide arrays with a specifically
tailored effective negative hopping to implement our theoretical
findings.

Results
Theoretical model. We consider a chain made of Aharonov–Bohm
cages, i.e., a quasi-1D lattice composed of interconnected pla-
quettes, see Fig. 1a. Each lattice site is coupled to its neighbors with
hopping amplitude t, while each plaquette is threaded by a flux ϕ.
The momentum space Hamiltonian of this model is given by

HðkÞ ¼ t

0 1þ e�ik e�iϕ þ e�ik

1þ eik 0 0

eiϕ þ eik 0 0

0
B@

1
CA � t

X4
i¼1

diλ3þi;

ð1Þ
where λi, with i = 1, . . , 8, are the eight Gell–Mann matrices
(defined in Supplementary Note 5) and d= (d1, d2, d3, d4) is a 4-
component real-valued vector with d1 ¼ 1þ cos k, d2 ¼ sin k,
d3 ¼ cos ϕþ cos k, and d4 ¼ sin ϕþ sin k. The spectrum of H(k)
has three bands: a central band that remains nondispersive for all
values of the flux ϕ, and two additional particle–hole symmetric
bands. For ϕ= 0, the three bands cross, while for ϕ= π the spec-
trum is gapped with three flat bands at energies Ei∈ {−2t, 0, 2t}, see

Fig. 1b. The latter case corresponds to the Aharonov–Bohm caging
effect, where the particles become immobile due to destructive
interference20–22.

For each band, we can evaluate a 1D topological invariant,
Zak’s winding phase γi ¼

R
BZdkAiðkÞ, where AiðkÞ ¼

i viðkÞh j∂k viðkÞj i is the Berry connection of the ith band and
viðkÞj i is the corresponding eigenstate23. For a standard 1D TI
(e.g., the Su–Shrieffer–Heeger (SSH) model), the winding phase
takes quantized values of π (or 0) corresponding to encircling
(or not encircling) a singularity in quasi-momentum phase
space24. For our model, we find that the zero-energy band has a
winding phase γ2= π, whereas the top and bottom bands have
γ1= γ3=−π∕2. Moreover, the winding phases are quantized to
these values, γ2 ∈ {0, π} mod 2π and γ1 ¼ γ3 2 f0; π2g mod 2π,
by a nonsymmorphic transformation χ ¼ 1

31� eikλ3 � 1
3 λ8

(see Supplementary Note 1 for the transformation for a general
ϕ flux). The Hamiltonian H(k) holds one additional non-
symmorphic symmetry Π ¼ 1

31þ eikλ3 � 1
3 λ8 (see Supplemen-

tary Note 1 for the transformation for a general ϕ flux) that
quantizes the winding phases to γ2 ∈ {0, π} mod 2π and γ1+
γ3 ∈ {0, π} mod 2π25. Thus, a χ-breaking term in the
Hamiltonian H(k) makes the phases γ1 and γ3 of the spectrally
separated bands non-quantized and continuously mixed.

The AB-cages chain, with ϕ= π and open boundary condi-
tions, has two in-gap states at energies ±

ffiffiffi
2

p
t localized on the

same boundary. Interestingly, their localization and energy are
robust against disorder that does not break the Π- or χ-symmetry
(see Fig. 2 and Supplementary Note 7). Hence, the AB-cages
chain has robust boundary states, even when the winding phases
γ1 and γ3 are not quantized. Commonly, robust boundary states
appear in a gap that lies above bands that have a quantized
topological index13–15. The appearance of such symmetry-
protected states is a surprising occurrence for our case where
non-quantized bulk windings arise.
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Fig. 1 The Aharonov–Bohm cages. a A chain of Aharonov–Bohm cages [cf.
Eq. (1)], with three sites an, bn, cn in the nth unit cell and a flux ϕ threading
each plaquette. b The energy dispersion E(k) of the chain as a function of
the flux ϕ. c The energy dispersion E(k) at ϕ= π consists of three flat band
at energies 0 and ±2t. The band at E= 0 has a quantized Zak's phase γ= π
while the other two bands show a non-quantized winding of π∕2. At a
termination of the chain with site an, two in-gap boundary states appear at
E ¼ ±

ffiffiffi
2

p
t. d Squaring the Hamiltonian (1) yields a model (2) with one flat

band at E= 0 and two degenerate flat bands at E= 4t2. Both bands have a
quantized Wilzcek–Zee phase ∣γ∣= π.
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The topological aspects of the model are revealed by taking the
square of the Hamiltonian matrix (1)

H2ðkÞ ¼ t2
2m0 0 0

0 m0 þm3 m1 þ im2

0 m1 � im2 m0 �m3

0
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where m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þm2

3

p
, m1 ¼ 1þ cosðkÞ þ cosðϕÞþ

cosðk� ϕÞ, m2 ¼ sinðkÞ þ sinðϕÞ � sinðk� ϕÞ, and m3 ¼
cosðkÞ � cosðk� ϕÞ. The squared Hamiltonian is block diagonal
with a single band w1j i at energy Λ1= 2t2m0 and a 2 × 2 subblock
with w2j i and w3j i eigenstates at energies Λ2= 0 and Λ3= 2t2m0,
respectively. The latter two form a subblock that corresponds to a
topologically nontrivial 1D model which maps to the SSH model

by a rotation with eiλ3
ðπ�ϕÞ

4 eiλ2
π
4 . Specifically, at ϕ= π, the resulting

2 × 2 subblock is equivalent to the SSH-chain with 0 intra-cell
coupling, 2t2 inter-cell coupling, and a constant 2t2 energy shift
(see Supplementary Fig. 3).

Importantly, w1j i and w3j i form a degenerate subspace at energy
Λ1=Λ3= 2t2m0. Therefore, these bands are assigned a Wilzcek–Zee
phase which generalizes Zak’s phase to multiband scenarios26,
γ ¼ R

BZTr ðAðkÞÞdk, where AðkÞnm ¼ hvnðkÞj∂kjvmðkÞi, and n, m
run over the involved states. For the squared Hamiltonian H2(k), the
Wilzcek–Zee phase of both the zero-energy band and the degenerate
subspace is quantized to {0, π} mod 2π due to the Π- and χ-
transformations (see Supplementary Note 3). As a result, the
standard bulk-boundary correspondence of 1D TIs applies27 and the
open boundary spectrum of the Hamiltonian (2) maintains mid-gap
states localized at the boundary. When ϕ= π, the energy of these
states is pinned to 2t2. Hence, the two energetically separated states
appearing at the boundary of the AB cages are mapped, under the
squaring operation, onto topological boundary states of the squared
Hamiltonian. This leads to their characteristic robustness, both in
localization and energy, against disorder that preserves the
corresponding symmetry that quantizes the topological phases in
H2(k) (see Fig. 2).

Experimental realization. We implement the AB-cages chain (1)
in photonic waveguide lattices fabricated using the femtosecond
laser writing technique in bulk glass28. The evolution of light
propagating along the z-direction of an array of single-mode
waveguides can be well described in the paraxial approximation
through a set of coupled mode equations i∂zψ= Hψ. The wave-
function ψ represents the excited optical wavepacket as a super-
position of bound modes of the waveguides. The matrix H has
diagonal elements corresponding to the refractive indices of the
waveguides and off-diagonal coupling elements being propor-
tional to the overlap between the bound modes of neighboring
waveguides. Thus, discrete Schrödinger equations can be simu-
lated in waveguide arrays with the benefit that the time coordi-
nate in the quantum regime is mapped onto a spatial propagation
distance in the optical system. In other words, the propagation of
an optical wavepacket through a waveguide system simulates the
temporal dynamics of an electron in a potential landscape.
Notably, using fluorescence microscopy we can directly image the
light propagation along the device29.

In order to generate an effective AB-phase threading each cage,
we use Peierls’ substitution and associate an effective phase to one
of the hopping amplitudes, see Fig. 3. Engineering a hopping
phase for photons is challenging since the positive refractive
index of each waveguide always results in a real and positive
coupling between the waveguides. Nevertheless, by positioning an
auxiliary waveguide with a well-tuned refractive index in between
two waveguides30, an effective negative coupling between the two
original waveguides is generated (see Supplementary Note 8).
Crucially, the auxiliary waveguide is engineered such that it does
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t, as a function of the
disorder strength σ. Three different disorder types are used, which either do
not break one of the symmetries (χ or Π) or break both. All three disorder
types are chosen such that on average both symmetries, χ and Π, are
preserved, i.e., the disorder distribution has a vanishing mean. The vertical
solid line indicates the size of the gap between the boundary state and the
nearest bulk band. The red and green regions define an energy offset that is
bigger (red) or smaller (green) than (σ∕t)2, which corresponds to the
energy scale of the disorder. The disorder-averaging simulations were run
using a lattice with 99 sites and every disorder strength σ was realized
10,000 times.
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Fig. 3 Experimental implementation. a Light dynamics in the three level
system of two waveguides and an auxiliary waveguide with carefully chosen
refractive index. Since most of the amplitude is in the original waveguides,
we can trace out the dynamics of the auxiliary waveguide and obtain a two-
level system with an effective negative hopping −t. The horizontal scale
bar corresponds to 1 cm, while the vertical scale bar corresponds to 25 μm.
b Placing such a defect within each plaquette of the lattice structure
generates a total flux of ϕ= π. c An illustration of the quasi-1D array of
evanescently coupled waveguides used in the experiment. Light is
selectively injected into an input facet of the device and directly imaged
using fluorescence microscopy.
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not contribute significantly to the dynamics of the system, see
Fig. 3a. By choosing the refractive index of the two original
waveguides to energetically match the effective two-level system
with the rest of the lattice (see Supplementary Note 8) and placing
a negative coupling in each plaquette of our waveguide structure
(see Fig. 3b), an overall flux of π within the plaquettes is created,
resulting in the desired AB-caging effect (see Fig. 3c for an
illustration of the device).

We first establish our ability to generate the AB-caging effect in
the bulk of the chain by probing the light dynamics to test the
flatness of the bands, see Fig. 4. Exciting a single waveguide
within a plaquette will excite all k-states of Bloch bands that
overlap with this site. For flat bands, the light will stay bound to
the injection point and will not disperse. We perform two
experiments corresponding to two different injection sites within
the unit cell, see Fig. 4a–c. Indeed, despite of some residual
spreading due to imperfect injection and weak disorder in the
device, in both experiments the propagating wavepacket remains
confined to the injected unit cell. The experimental measure-
ments agree well with tight-binding simulations of the AB chain.
In contrast, light propagation for the case of vanishing flux ϕ=
0 shows no localization and the wavepacket spreads to the entire
lattice (see Supplementary Fig. 7).

From the light propagation along the sample (see Fig. 4), we
can additionally measure the energy of the bands: launching light
into a waveguide that connects two plaquettes solely excites
the two states in the bands at E= ±2t, as the state from the band
at E= 0 has no weight in this site, see Fig. 4c, d. The resulting
beating pattern is, therefore, generated by two modes with a
beating length lb that is connected to the energy difference ΔE of
the participating modes by31 lb ¼ π

ΔE. From the beating in Fig. 4c,
we measure lb= 0.9 cm, which corresponds to ΔE= ±3.4 cm−1.
Taking into account the particle-hole symmetry of the
model, the energy of the two bands are therefore measured to
be at E= ±1.7 cm−1 while the third band lies at E= 0.

We, now, demonstrate the existence of the boundary states in
our square-root model. The amplitude distribution of the
predicted boundary modes is shown in Fig. 5a, b. The two states
differ by a phase flip and appear at two inequivalent
eigenenergies, cf. Fig. 1c. Hence, similarly to the bulk experiments
above, light injected into the outermost waveguide simultaneously
excites both boundary modes and the resulting light pattern
exhibits a beating with a frequency corresponding to the
difference between their eigenenergies, see Fig. 5c. Our experi-
mental data agree well with tight-binding simulations shown in
Fig. 5d. From the beating structure, we can determine the energy
of the boundary modes Ee: we observe a beating with lb= 1.3 cm
and, hence, deduce that Ee= ±1.2 cm−1. Comparing the observed
energies in the bulk and in the boundary, we find that E2

E2
e
� 2, in

agreement with the predictions of the model (1).

Discussion
In our work, we have predicted and demonstrated the physics of a
square-root TI, using a photonic platform. Specifically, we show
that the AB cages with ϕ= π have in-gap states at energies ±

ffiffiffi
2

p
t,

above bands possessing π/2 or π mod 2π Zak’s phases. We find
that these states are robust, both in energy and localization,
against disorder that does not break the symmetries that quantize
the topological indices in the corresponding system where the
square of the Hamiltonian is taken. Furthermore, we show that
the squaring operation bijectively maps the boundary states of H
to specific boundaries of H2. Extending this description to the
regime where γ1 and γ3 are not quantized, e.g., by adding a term
that preserves Π but breaks χ, we find that the localization and
energy deviation of the boundary states remain robust against

additional Π-preserving disorder, but their energies are now fixed
to a different value (see Supplementary Note 6). In this case, the
mapping of the square operation is generalized using the prop-
erties of SU(3) algebra, while the symmetry protection in the
square-root model still manifests due to the quantization of
the topological indices of the squared Hamiltonian by the
Π-symmetry (see Supplementary Note 6). Contrary to previous
implementations of photonic AB cages using different experi-
mental techniques22, we provide an interpretation to the under-
lying physics which is independent of the specific model.
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Fig. 4 Bulk dynamics. a Light dynamics when exciting the top waveguide in
a bulk plaquette. The total envelope remains localized and shows breathing
only within the plaquette. Differences between simulations and experiment
arise mainly due to small amounts of light leaking into neighboring
waveguides during the excitation of the waveguide. This generates a slightly
different initial state launched into the system resulting in small deviations
of the propagation dynamics. The horizontal scale bar corresponds to 1 cm,
while the vertical scale bar corresponds to 50 μm. b The two waveguides
that are probed in the experiments demonstrating the flatness of the bulk
spectrum. c Light dynamics in the structure when a waveguide between two
plaquettes is excited. The total envelope shows a local breathing while being
localized within the plaquette. The horizontal scale bar corresponds to 1 cm,
while the vertical scale bar corresponds to 50 μm. d The amplitude
distribution of the three bulk eigenstates of the system.
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With our work, we hope to stimulate a range of new theoretical
and experimental studies exploring the implications and breadth
of such phases of matter. In this vein, our experimental results
give rise to various important questions: First, can our square-
root TI phase be realized in ultracold atomic setups, where
topological quantities can be observed via bulk wavepacket
dynamics, rather than by detection of boundary states? Second,
the boundary states appearing at ±

ffiffiffi
2

p
t energies form a two-level

system (with states 1=2
ffiffiffi
2

p
aj i± bj i � cj ið Þ� �

) that can be used as a
qubit that is energetically separated from the bulk bands and is
robust to disorder. Making the hopping of the last site weaker or
methodically breaking the nonsymmorphic symmetries of the
AB-cages model offer a control handle to reduce or asymme-
trically tune the energy splitting of the boundary states. Can this
be used for single-qubit operations? Third, our procedure differs
from recent works2,4 where the square of a even-dimensional
model has been used to map between models with different
degrees of freedom but same quantized winding phase. In our
work the dimension of the Hilbert space is fixed, and the topo-
logical invariant reveals itself upon squaring; the question arises if
there are other nonlinear maps between Hamiltonians that admit
such a description? Fourth, the phenomenology of our model
resembles the valence-bond structure of the Affleck, Kennedy,
Lieb, and Tasaki ground state of the Haldane spin-chain32: each
unit cell in the bulk has three states that form a spin-1 subspace,
coupling to their neighbors with a specific tunnel coupling such
that an unpaired spin-1/2 is left at the boundary. Can our work
suggest a connection to the topology of spin models? Fifth, the
quantized π ∕ 2 phases of the AB-cages model in the electronic

domain will result into a boundary state with a e/4 charge. Can
such a novel quasiparticle have nontrivial braiding statistics?
Could its charge be tuned by controllably breaking the symme-
tries of the system? Finally, can the theoretical framework be
generalized to higher dimensions? The answers to these questions
are now in experimental reach.

Methods
Sample fabrication. The waveguides were written inside a high-purity 10 cm long
fused silica wafer (Corning 7980) using a RegA 9000 seeded by a Mira Ti:Al2O3

femtosecond laser. Pulses centered at 800nm with duration of 150 fs were used at a
repetition rate of 100 kHz and energy of 450 nJ. The pulses were focused 500 μm
under the sample surface using an objective with a numerical aperture of 0.35 while
the sample was translated at constant speed of 40, 200, and 220 mm/min, corre-
sponding to the different detunings, by high-precision positioning stages (ALS130,
Aerotech Inc.). The mode field diameters of the guided mode were 10.4 μm×
8.0 μm at 633 nm. Propagation losses were estimated to be 0.2 dB/cm. The wave-
guides are equally spaced by 21.5 μm for the positive and 28 μm for the negative
coupling, resulting in an inter-site hopping of tj j ¼ 0:85 cm−1.

Fluorescence imaging. For the direct monitoring of the light propagation in our
samples, we used a fluorescence microscopy technique29. A massive formation of
nonbridging oxygen hole color centers occurs during the writing process, when
fused silica with a high content of hydroxide is used, resulting in a homogeneous
distribution of these color centers along the waveguides. When light from a
Helium–Neon laser at λ= 633 nm is launched into the waveguides, the nonbrid-
ging oxygen hole color centers are excited and the resulting fluorescence (λ=
650 nm) can be directly observed using a CCD camera with an appropriate narrow
linewidth filter. As the color centers are formed exclusively inside the waveguides,
this technique yields a high signal-to-noise ratio.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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