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Abstract: For parallel bistatic forward-looking synthetic aperture radar (SAR) imaging, the
instantaneous slant range is a double-square-root expression due to the separate transmitter-receiver
system form. The hyperbolic approximation provides a feasible solution to convert the dual
square-root expression into a single-square-root expression. However, some high-order terms of the
range Taylor expansion have not been considered during the slant range approximation procedure in
existing methods, and therefore, inaccurate phase compensation occurs. To obtain a more accurate
compensation result, an improved hyperbolic approximation range form with high-order terms is
proposed. Then, a modified omega-K algorithm based on the new slant range form is adopted for
parallel bistatic forward-looking SAR imaging. Several simulation results validate the effectiveness
of the proposed imaging algorithm.

Keywords: bistatic synthetic aperture radar (SAR); hyperbolic approximation; phase compensation;
modified omega-K

1. Introduction

Synthetic aperture radar (SAR) attracts massive research enthusiasm among researchers due
to its excellent ability to detect targets without the limitation of the external environment [1]. The
penetration ability of SAR makes it irreplaceable compared with optical imaging, while it is challenging
in traditional monostatic SAR to obtain excellent imaging performance in forward-looking imaging
mode, which limits the application of SAR technology. To solve the problem, bistatic SAR has been
widely used for forward-looking imaging due to its particular system configuration. The separate
transmitter and receiver configuration provides extra advantages like reliable hiding power and system
flexibility [2].

One-stationary bistatic SAR, as a special form of general bistatic SAR, was first studied for
forward-looking imaging. Several methods have been proposed, such as the squint minimization [3,4],
the keystone transform [5], and the ellipse model [2,4]. The Doppler frequency is decided by the
moving transmitter or the moving receiver, which is similar to monostatic SAR. Then, the bistatic
SAR was proposed where both the transmitter and the receiver are moving. The azimuth resolution is
determined by both platforms. For bistatic forward-looking SAR, the difficulty of imaging algorithms
lies in the solution of the two-dimensional spectrum because of its unique double-square-root form
of echo signal expression [6,7]. Some basic studies of bistatic SAR were proposed to illustrate the
advantages [6,8]. Compared with the monostatic situation, the principle of stationary phase (POSP)
cannot be applied to solve the derivative zero point when performing azimuth Fourier transform.
Several methods have been proposed to solve the problem. Loffeld’s bistatic formula (LBF) was
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proposed to solve the double-square-root expression [6]. Respective stationary points of the transmitter
and receiver are obtained first to transform the double-square-root expression into Taylor expansion
form. Then, the ultimate spectrum is solved based on the joint stationary point of the Taylor
expression. The contributions of the transmitter and receiver are assumed to be the same, which
leads to approximation errors. The extended Loffeld’s bistatic formula (ELBF) [9] and the modified
Loffeld’s bistatic formula (MLBF) [10] were proposed later to improve the solution process of stationary
points. These two methods assign different weights on the transmitter and receiver. However, all three
LBF methods need to solve the stationary points three times, which leads to deduction complexity. The
method of series reversion (MSR) [11] is a widely-used method for precisely solving those equations
with series terms. In SAR imaging algorithms, Taylor expansion is regarded as a common operation,
and MSR can be applied to solve the Fourier transform composed of Taylor expansion. However, it is
still challenging to conduct imaging algorithm deduction due to the series form.

To simplify the solution of the spectrum, the hyperbolic approximation was utilized to transform
the echo expression with the double-square-root form into the expression with the single-square-root
form. In the first version, a parameter named the equivalent speed was defined [12]. In the improved
version, two more parameters (the equivalent slant range and the equivalent squint angle) [13]
were added in the hyperbolic function to approximate the range more accurately. Moreover, an
improved hyperbolic approximation model with additional parameters was proposed for residual
compensation [14]. However, considering the solution process in the methods mentioned above, the
defined parameters are solved by setting the constant term, the linear term, and the quadratic term
of the Taylor expansion of echo equal, which means the influence of the cubic term, the quartic term,
and the remaining terms is ignored. In this article, we propose a new model to finish the hyperbolic
approximation.

As for imaging algorithms, range Doppler (RD) imaging algorithms, chirp scaling (CS) imaging
algorithms, back-projection (BP) imaging algorithms, and omega-K imaging algorithms based on the
LBF spectrum, the MSR spectrum, and the hyperbolic approximation spectrum have been proposed
in the past few years [9,14–16]. For RD imaging algorithms, it is too fundamental to handle the
complex situation of bistatic SAR system. The calculation time consumption is a severe problem for
real-time processing when applying BP imaging algorithms. For CS imaging algorithms, it is difficult
for researchers to conduct formula derivation. Thus, the omega-K imaging algorithm is selected in this
article to finish imaging.

To approximate the slant range more accurately, the cubic term and the quartic term are taken into
account in this article. An equivalent hyperbolic range model is introduced first to lay the foundation
of the imaging algorithm. The range error analysis is provided to demonstrate the approximation
ability of the proposed range model immediately. Then, the modified omega-K imaging algorithm
including the signal model and detailed processing steps are presented. Finally, some experimental
simulations are given to prove the efficiency of the proposed algorithm.

This article is organized as follows. Section 2 gives the geometry of the bistatic forward-looking
SAR and the equivalent hyperbolic range model corresponding to the bistatic system. Section 3 gives
the detailed modified omega-K imaging algorithm. Simulation results are given in Section 4 to validate
the proposed algorithm. Section 5 provides the conclusion.

2. Geometry and Equivalent Slant Range Model

The parallel bistatic forward-looking SAR system diagram in the Cartesian coordinate system
and the derived equivalent slant range model are established first. Then, the analysis of range error
based on the equivalent slant range model is provided.

2.1. Equivalent Slant Range Model

Figure 1 shows the geometry of parallel bistatic forward-looking SAR. The transmitter T and the
receiver Rmove along the parallel red lines parallel to the x-axis. ηpc is the synthetic aperture center
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time of the imaging scene. (xc, yc, 0) is the location coordinate of the imaging center, and
(
xp, yp, 0

)
is

the location of an arbitrary target P in the imaging scene. RTc is the slant range between the transmitter
and the target P at the phase center crossing time ηpc, and RRc is the range between the receiver and
the target P at ηpc. The approximate forward-looking angle of the receiver is θR, and the approximate
squint angle of the transmitter is θT . VT and VR represent the speed of the transmitter and the receiver,
respectively. It is assumed that both the transmitter and the receiver can cover the imaging scene
during the aperture synthesis.

Figure 1. Geometry of forward-looking bistatic SAR.

The instantaneous slant ranges from the transmitter and the receiver to the target P are:

RT (η) =
√

R2
Tc + V2

T
(
η − ηpc

)2 − 2RTcVT
(
η − ηpc

)
sin θT ,

RR (η) =
√

R2
Rc + V2

R
(
η − ηpc

)2 − 2RRcVR
(
η − ηpc

)
sin θR,

(1)

where η is the slow time.
Thus, the total range is:

R (η) = RT (η) + RR (η) . (2)

It is challenging to solve the two-dimensional spectrum due to the double-square-root expression
form of R (η). The hyperbolic approximation [12] can be used to convert the double-square-root
form to a single-square-root form by defining the equivalent speed and equivalent angle. Traditional
hyperbolic approximation [12–14] ignored the high-order terms of the Taylor expansion of R (η). To
realize a more accurate compensation, an improved equivalent slant range with high-order terms is
proposed. The range model is expressed as:

Re (η) =

√
R2

e + V2
e
(
η − ηpc

)2 − 2ReVe
(
η − ηpc

)
sin θe + E(η − ηpc)

3 + F(η − ηpc)
4, (3)

R (η) = 2Re (η) , (4)
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where Re, Ve, and θe are the new equivalent slant range at phase crossing time, the new equivalent speed,
and the new equivalent squint angle. Compared with existing hyperbolic approximation algorithms,
the proposed range model adds two additional high-order terms for range error compensation. To
solve the unknown variables, we first expand Equations (1) and (3) into a fourth-order Taylor series at
η = ηpc. Then, we get:

RT (η) =RTc −VT sin θT
(
η − ηpc

)
+

V2
T cos θ2

T
2RTc

(
η − ηpc

)2
+

V3
T sin θT cos2 θT

2R2
Tc

(
η − ηpc

)3
+

V4
T cos2 θT

(
5 sin2 θT − 1

)
8R3

Tc

(
η − ηpc

)4 ,
(5)

RR (η) =RRc −VR sin θR
(
η − ηpc

)
+

V2
R cos θ2

R
2RRc

(
η − ηpc

)2
+

V3
R sin θR cos2 θR

2R2
Rc

(
η − ηpc

)3
+

V4
R cos2 θR

(
5 sin2 θR − 1

)
8R3

Rc

(
η − ηpc

)4 ,
(6)

Re (η) =Re −Ve sin θe
(
η − ηpc

)
+

V2
e cos θ2

e
2Re

(
η − ηpc

)2
+

V3
e sin θe cos2 θe

2R2
e

(
η − ηpc

)3
+

V4
e cos2 θe

(
5 sin2 θe − 1

)
8R3

e

(
η − ηpc

)4
+

E(η − ηpc)
3 + F(η − ηpc)

4.

(7)

Substituting Equations (5)–(7) into Equations (2) and (4) and letting the first five terms of Taylor
expansion be equal, then we get:

RTc + RRc = 2Re

VT sin θT + VR sin θR = 2Ve sin θe
V2

T cos θ2
T

2RTc
+

V2
R cos θ2

R
2RRc

= 2 V2
e cos θ2

e
2Re

V3
T sin θT cos2 θT

2R2
Tc

+
V3

R sin θR cos2 θR
2R2

Rc
= 2

(
V3

e sin θe cos2 θe
2R2

e
+ E

)
V4

T cos2 θT(5 sin2 θT−1)
8R3

Tc
+

V4
R cos2 θR(5 sin2 θR−1)

8R3
Rc

= 2
[

V4
e cos2 θe(5 sin2 θe−1)

8R3
e

+ F
]

.

(8)

Solving the five equations in Equation (8), then we get:

Re =
1
2 (RTc + RRc)

Ve =
√

A2 + B
θe = arcsin (A/Ve)

E = C− V3
e sin θe cos2 θe

2R2
e

F = D− V4
e cos2 θe(5 sin2 θe−1)

8R3
e

,

(9)

where: 

A = (VT sin θT + VR sin θR) /2

B =

(
V2

T cos2 θT
RTc

+
V2

R cos2 θR
RRc

)
Re/2

C =
V3

T sin θT cos2 θT
4R2

Tc
+

V3
R sin θR cos2 θR

4R2
Rc

D =
V4

T cos2 θT(5 sin2 θT−1)
16R2

Tc
+

V4
R cos2 θR(5 sin2 θR−1)

16R2
Rc

.

(10)

At this point, all defined variables are solved. The range error analysis based on the new equivalent
range model is presented next.
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2.2. Range Error Analysis

To evaluate the proposed equivalent range model, an analysis of the range error based on an
X-band bistatic SAR system is given. The simulated parameters are listed in Table 1. The results of the
equivalent hyperbolic slant range error are shown in Figure 2.

Table 1. Simulation parameters.

Parameters Values Parameters Values

Carrier frequency 9 GHz Transmitter center slant range 4300 m
Pulse duration 2 µs Transmitter squint angle 7◦

Bandwidth 200 MHz Receiver center slant range 3600 m
Sampling frequency 300 MHz Receiver forward-looking angle 33◦

Pulse repetition frequency 1 kHz Sensor speed 200 m/s
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(a) Approximation error of the traditional range model.
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(b) Approximation error of the proposed range model.

Figure 2. Approximation error of the bistatic slant range. (a) Approximation error of the traditional
range model. (b) Approximation error of the proposed range model.

Figure 2a is the approximation error of the traditional hyperbolic approximation range model [13],
where the high-order terms are ignored. Figure 2b is the approximation error of the proposed
hyperbolic range model. The constant term, the linear term, and the quadratic term in Equations (5)–(7)
are used to solve the defined variables. Thus, the residual terms lead to the approximation slant range
error. To prove that the proposed model can reduce the range error compared with the traditional
model, we first give the expression of the traditional model and its corresponding Taylor expansion,
which are:

Rt (η) =

√
R2

t + V2
t
(
η − ηpc

)2 − 2RtVe
(
η − ηpc

)
sin θt, (11)

Rt (η) =Rt −Vt sin θt
(
η − ηpc

)
+

V2
t cos θ2

t
2Rt

(
η − ηpc

)2
+

V3
t sin θt cos2 θt

2R2
t

(
η − ηpc

)3
+

V4
t cos2 θt

(
5 sin2 θt − 1

)
8R3

t

(
η − ηpc

)4
(12)

where Rt (η), Rt, Vt, and θt are the variables in traditional range model. The error in Figure 2a is the
difference between the sum of the cubic terms, the quartic terms, and the residual terms in Equations (5)
and (6) and the sum of the cubic term, the quartic term, and the residual term in Equation (12), while
the error in Figure 2b is the difference between the sum of the residual terms in Equations (5) and (6)
and the residual term in Equation (7). The error caused by the cubic and quartic terms is eliminated.
From Figure 2, it can be found that the error in Figure 2a is up to 1.9 m, while the error in Figure 2b is
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less than 0.15 m. According to the parameters listed in Table 1, the approximation slant range error of
the proposed model is much less than a range solution cell. Therefore, the proposed equivalent slant
range model is more accurate than the traditional range model. The following imaging algorithm is
derived based on the proposed range model.

3. Imaging Algorithm

According to the previous analysis, the improved hyperbolic approximation model can equal the
true slant range better than traditional hyperbolic approximate models. In this section, a modified
omega-K algorithm based on the improved equivalent range model is proposed for the parallel bistatic
forward-looking SAR imaging.

3.1. Signal Model

Assume that a linear frequency-modulated signal is transmitted from the transmitter to the
receiver. Then, the base-band echo signal of an arbitrary target P is given as:

S1 (tr, η) = exp
{

jπγ

[
tr −

2Re (η)

c

]}
exp

[
−j

4πRe (η)

λ

]
(13)

where γ is the range chirp rate, c is the light speed, λ is the wavelength, tr is the fast time, and η is the
slow time. To simplify the expression and further derivation, the envelopes of the range and azimuth
are ignored.

Transforming Equation (13) into the range-frequency azimuth-time domain yields:

S2( fr, η) = exp
(
−j

π f 2
r

γ

)
exp

[
−j

4π ( fr + fc)

c
Re (η)

]
(14)

where fr is the frequency domain variable corresponding to tr and fc is the carrier frequency. From
Equation (14), it can be easily found that the first exponential term is the range frequency modulation
term. This term can be compensated by multiplying its complex conjugate in the range frequency
domain. Thus, the first frequency modulation compensation function is:

H1FM ( fr, η) = exp
(

j
π f 2

r
γ

)
. (15)

Multiplying Equation (14) by Equation (15) yields:

S3( fr, η) = exp
[
−j

4π ( fr + fc)

c
Re (η)

]
. (16)

The exponential term in Equation (16) indicates the severe coupling between range and azimuth.
To finish the phase focusing, a modified omega-K algorithm based on the signal model is presented.

3.2. Modified Omega-K Imaging Algorithm

To analyze the exponential term in Equation (16), Equation (3) is substituted into Equation (16)
firstly. Then, we get:

S4 ( fr, η) = exp
{
−j

4π ( fr + fc)

c
[√

R2
e + V2

e
(
η − ηpc

)2 − 2ReVe
(
η − ηpc

)
sin θe

+E
(
η − ηpc

)3
+ F

(
η − ηpc

)4 ]} .
(17)

Equation (17) shows that the signal consists of the traditional hyperbolic term and high-order
terms. The traditional omega-K can handle the hyperbolic term well, but cannot handle the high-order
terms. The first step of the omega-K algorithm is the compensation of the cubic term and the quartic
term. Variable substitution is performed on Equation (17), and then, we get:
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S5 (kr, X) = exp
{
−jkr

[√
R2

e +
(
X− Xpc

)2 − 2Re
(
X− Xpc

)
sin θe

+
E

V3
e

(
X− Xpc

)3
+

F
V4

e

(
X− Xpc

)4 ]} (18)

where kr =
4π( fr+ fc)

c is the wavenumber, X = Veη, and Xpc = Veηpc. Then, we get Re (η) = Re (X).
Transforming Equation (18) into two-dimensional wavenumber domain yields:

S6 (kr, kx) =
∫

S5 (kr, X) exp (−jkxX) dX

=
∫

exp {−jkrRe (X)} exp (−jkxX) dX

=
∫

exp {−jφ (kr, kx, X)} dX

(19)

where kx = 2π fa
Ve

, fa is the azimuth frequency, and:

φ (kr, kx, X) =kr

[√
R2

e +
(
X− Xpc

)2 − 2Re
(
X− Xpc

)
sin θe

+
E

V3
e

(
X− Xpc

)3
+

F
V4

e

(
X− Xpc

)4
]
+ kxX.

(20)

To solve Equation (19), the stationary phase point of φ (kr, kx, X) should be obtained firstly.
However, the existence of high-order terms complicates the solution process. For further analysis, the
phase is first rewritten as:

φ (kr, kx, X) = φt (kr, kx, X) + kr

[
E

V3
e

(
X− Xpc

)3
+

F
V4

e

(
X− Xpc

)4
]

(21)

where φt (kr, kx, X) is the traditional phase term. It is widely accepted that if the phase error is smaller
than π/4 [1], the imaging performance will not be affected much by the approximation. The phase
error simulation is given in Figure 3.

Figure 3. Phase error simulation.

From Figure 3, it can been seen that all absolute phase errors are less than π/4. Thus, the stationary
phase point of φt (kr, kx, X) is regarded as the approximate stationary phase point of φ (kr, kx, X). The
approximate stationary phase point of φ (kr, kx, X) is:

X∗ = − kxRe sin θe√
k2

r − k2
x
+ Re sin θe + Xpc, (22)
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where X∗ is only a designation of the solution and (∗) is not an operator.
Substituting Equation (22) in Equation (19) and applying POSP yield the two-dimensional

wavenumber domain signal as:

S7 (kr, kx) = exp
{
−j
√

k2
r − k2

xRe cos θe − jkx
(

Re sin θe + Xpc
)

−jkr

[
E

V3
e

(
X∗ − Xpc

)3
+

F
V4

e

(
X∗ − Xpc

)4
]}

.
(23)

The cubic term and quartic term in Equation (23) can be easily compensated by multiplying its
conjugate form. Therefore, the high-order filter is:

H2 (kr, kx) = exp
{

jkr

[
E

V3
e

(
X∗∗ − Xpc

)3
+

F
V4

e

(
X∗∗ − Xpc

)4
]}

(24)

where X∗∗ is the value of X∗ at the reference range and (∗∗) is not an operator.
Multiplying Equations (23) and (24), we get the compensated signal for the further omega-K

imaging algorithm. The signal is:

S8 (kr, kx) = exp
{
−j
√

k2
r − k2

xRe cos θe − jkx
(

Re sin θe + Xpc
)}

. (25)

A two-step omega-K is performed on Equation (25) to finish the imaging focusing.
The first step is the bulk focusing. A reference function is designed based on the reference range

to finish coarse focusing. This filter can compensate the phase of signals of those points at the reference
range. The reference function is:

Hr f (kr, kx) = exp
{

j
√

k2
r − k2

xRre f cos θe + jkx

(
Rre f sin θe + Xpc

)}
. (26)

Multiplying Equations (25) and (26) gets:

S9 (kr, kx) = exp
{
−j
√

k2
r − k2

x cos θe

(
Re − Rre f

)
− jkx sin θe

(
Re − Rre f

)}
. (27)

After bulk focusing, the residual phase at the reference range is removed. However, the residual
phase of points not at the reference range remains. Moreover, the phase contains coupling terms
between range and azimuth. For precise focusing of all points, the Stolt interpolation function is
given as:

ky =
√

k2
r − k2

x cos θe + kx sin θe. (28)

After Stolt interpolation, the resampled signal becomes:

S10 (kr, kx) = exp
[
−jky

(
Re − Rre f

)]
. (29)

From Equation (29), it is evident that the coupling between range and azimuth has been removed.
The phase is a linear function of ky. Then, the inverse fast Fourier transform is implemented on
Equation (29) to complete imaging.

According to the analysis mentioned above, the whole imaging process is shown in Figure 4.
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Figure 4. Flowchart of modified omega-K.

The specific steps are as follows:

(1) Performing range fast Fourier transform (FFT) on SAR data gets S2( fr, η).
(2) Multiplying Equation (15) and S2( fr, η) gets S3( fr, η).
(3) Performing azimuth fast Fourier transform (FFT) on S3( fr, η) gets S7(kr, kx).
(4) Multiplying Equation (24) and S7(kr, kx) gets S8(kr, kx).
(5) Multiplying Equation (26) and S8(kr, kx) gets S9(kr, kx).
(6) Performing Stolt interpolation on S9(kr, kx) gets S10(kr, kx).
(7) Performing 2D-IFFT on S10(kr, kx) gets output SAR focusing results.

4. Simulation Results

In this section, to demonstrate the effectiveness of the proposed imaging algorithm, experimental
simulations of parallel bistatic forward-looking SAR are carried out. The system parameters are
listed in Table 1. Four points at different locations were chosen to compare the imaging performance.
They were P0(0, 0), P1(0, 500), P2(200, 0), and P3(200, 500). The unit of the coordinates is meters. The
omega-K imaging algorithm based on the traditional three-parameters hyperbolic range model [13]
was selected as the reference.

Figure 5 is the comparison of the overall imaging performance before geometric correction.
Figure 5a is the result of the traditional imaging algorithm, and Figure 5b is the result of the proposed
imaging algorithm. In Figure 5a, although the four points can be successfully focused, the quality of
the right two points has distortion. In contrast, Figure 5b shows that the proposed algorithm achieves
a better focus quality on the right two points than the traditional algorithm.
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Figure 5. Imaging results. (a) Imaging results of the traditional hyperbolic omega-K algorithm. (b)
Imaging results of the proposed hyperbolic omega-K algorithm.

To observe the imaging performance more intuitively, the sub-images of the four points extracted
from Figure 5 are given by Figure 6. Figure 6a–c presents the imaging results of P0, P2, andP3 achieved
by the traditional hyperbolic range model given in [13], respectively. Figure 6e,f shows the imaging
quality of the three targets obtained by the proposed modified omega-K imaging algorithm. From
Figure 6a,d, both algorithms can obtain an excellent focusing quality of the scene center P0. For the
omega-K algorithm, the scene center is always chosen as the reference point to perform bulk focusing.
For the points away from the center (P2 and P3), it is evident that the proposed algorithm performs
much better than the traditional algorithm. For further analysis, the azimuth impulse response of
the farthest point P3 is given in Figure 7. Table 2 gives out the peak sidelobe ratio (PSLR) and the
integrated sidelobe ratio (ISLR) of targets P3.
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Figure 6. Imaging results. (a) Imaging result of P0 by the traditional algorithm. (b) Imaging result of P2

by the traditional algorithm. (c) Imaging result of P3 by the traditional algorithm. (d) Imaging result of
P0 by the proposed algorithm. (e) Imaging result of P2 by the proposed algorithm. (f) Imaging result of
P3 by the proposed algorithm.
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Figure 7. Azimuth impulse response of P3. (a) Traditional hyperbolic omega-K algorithm. (b) Proposed
hyperbolic omega-K algorithm.

Table 2. Image quality parameters of P3. PSLR, peak sidelobe ratio; ISLR, integrated sidelobe ratio.

Targets PSLR (dB) ISLR (dB)

Azimuth Range Azimuth Range

Traditional omega-K algorithm −1.705 - - -
Proposed omega-K algorithm −12.87 −13.33 −8.86 −9.9558

Figure 7a is achieved by the traditional hyperbolic omega-K algorithm. Figure 7b is achieved by
the proposed hyperbolic omega-K algorithm. Compared with the traditional omega-K algorithm, the
proposed omega-K algorithm can improve the performance of the azimuth impulse response. The
objective image quality values demonstrated the effectiveness of the proposed omega-K algorithm.

5. Conclusions

In this article, an improved hyperbolic range model was proposed to deal with the particular
form of the echo of bistatic forward-looking SAR. The modified omega-K imaging algorithm based
on the hyperbolic range model was used to finish focusing. The high-order terms were taken into
account to reduce the range approximation error. Extra phase compensation benefited the focusing of
the omega-K algorithm. Compared with the range model without high-order compensation terms, the
proposed method showed the effectiveness of imaging quality by simulation results.
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