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A B S T R A C T

Computational QSAR studies together with molecular docking calculations have been performed on 118 different
derivatives of organic molecules potentially used as herbicides. The Becke's three parameter exchange functional
(B3) hybrid with Lee, Yang and Parr correlation functional (LYP), termed as B3LYP hybrid function and 6-31G*
basis set (B3LYP/6-31G*) were used to develop five models of QSAR using the GFA technique. Models 1, was
preferred as the best model because it possesses certain statistical implications (Friedman LOF ¼ 0.52567, R2 ¼
0.9034, R2

adjst¼ 0.8943, Q2
CV¼ 0.87 98 and R2

pred:¼ 0.8403).” The prepared model was validated internally and
externally using training and test inhibitors. The molecular docking studies conducted in this study has actually
outline the binding affinities of the 10 selected compounds (5, 25, 26, 27, 29, 35, 52, 55, 98 and 114) which were
all in good correlation with their pIC50 values. The binding affinities of the 10 selected compounds range between
-5.9 kcal/mol to -10.1 kcal/mol. The compounds 25 and 27 with binding affinities of -10.1 kcal/mol and -9.7
kcal/mol formed the most stable complexes with the receptor (HPPD) as compared to other inhibitors. The
complexes of these inhibitors show two most important types of bonding; Hydrogen bonding and hydrophobic
bond interaction with the target amino acid residues. The computational QSAR study together with the molecular
docking has actually provided a valuable approach for agrochemical researchers in synthesizing and developing
new herbicides with high potency against the target enzyme.
1. Introduction

The chemicals describe as herbicides are substances in a chemical
form that tend to impede or inhibit different metabolic processes
responsible for growth in plants [1]. The substances are broadly used for
cultivated tenacities as a scheme used to compensate for undesirable
crops (weeds) or to clear off uncultivated farmland. However, weeds
habitually have the aptitude to strive with other variability of crops for
sunshine, and nutrients. “In addition, weeds have the budding to slow
down plant growth, causes deterioration in production and yield quality
[2]. However, weeds are typically the main origin of disease outbursts in
the plant. The first viable herbicides synthesized at the commencement of
1948 was 2.4-dichlorophenoxyacetic acid [3]. In addition, the structural
characteristics and the chemical bustle of the 2.4-D were used in the
description of numerous other inhibitors [4].

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an enzyme which
is proficient to break tyrosine down into homogentisate [5] and with the
r).
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help of an enzyme Homogentisic acid oxidase, the homogentisate serve
as a precursor for the biosynthesis of plastoquinones and Tocopherols
[6]. The Tocopherols is use in the formation of carotenoids and the ca-
rotenoids is the pigment that is responsible for protecting the chlorophyll
from being destroyed by the sunlight [7]. Hence, when this enzyme is
inhibited, the green plant can no longer synthesized its food (sugar)
which result to wilting and drying off of the green plant due to lack of
chlorophyll [8]. The trivial flowering plant Arabidopsis thaliana is
intrinsic to Eurasia and Africa that fits the mustard family [9] which has
become the distinguishing plant of special interest for study today in
Plant biology [10]. The plant Arabidopsis Thaliana is viewed as a weed
when it seems on farmland or in a fallow land. However, with the
noteworthy understanding of plant evolution and development, it orig-
inated a good research area to the agricultural scientist to focus on the
molecular heredities of the studied flowering plant and all other chlo-
rophyll dependent plant.

The quantifiable structure-activity relationship (QSAR) is a practise
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Table 1
General minimum recommended value for an acceptable QSAR model.

Symbol Name Acceptable
Value

R2 Coefficient of determination � 0:6
P95% Confidence interval at 95% confidence level < 0:05
Q2

cv Cross-validation Coefficient � 0:5

R2 � Q2
cv Difference between R2 and Q2

cv < 0:3
Next: test set Minimum number of external test set � 5:0
cR2

p The coefficient of determination for Y-
randomization

> 0:5

Table 2
QSAR models for the Herbicide derivatives (Sulfonyl urea, Pyridines, Pyrimi-
dines, Triazines etc.).

S/
N

Models R2 Q2
CV Rext

2

Standard �0.5 �0.5 �0.6

1 pIC50 ¼ 0.256966263 *nCl þ0.9491052000
*BCUTp-1l - 5.963111430 *SCH-5 þ
0.126975986 *maxsOmþ 0.245629890
*LipoaffinityIndexþ 0.816750061 *MDEC-24
- 0.013154034 * ATS5s þ 0.8714865420 *
WNSA-1I þ 1.272338365. Ntraining ¼ 94,
Ntest ¼ 24

0.9034 0.8798 0.8402

2 pIC50 ¼ 0.231648312 *nCl þ0.452867262
*BCUTp-1l -8.913193523*SCH-5 þ
3.153579106 *VCH-7 þ 0.125692436
*maxsOm þ0.266741571 *LipoaffinityIndex
- 0.013943208 *ATS5s - 0.013344655
*WNSA-1I þ 1.031108425. Ntraining ¼ 94,
Ntest ¼ 24

0.9033 0.8709 0.8006

3 pIC50 ¼ 0.232826016 *nCl þ0.451981644
*BCUTp-1l- 8.915474315 *SCH-5 þ
0.125528607 *maxsOmþ 0.266522498
*LipoaffinityIndex- 0.013796916 *ATS5s -
3.151712115 *VCH -7 - 0.013319734 *
WNSA-1I þ 3.390377329. Ntraining ¼ 94,
Ntest ¼ 24

0.9032 0.8708 0.7610

4 pIC50 ¼ 0.397919950 *nCl þ0.451626613
*BCUTp-1l - 6.043846561 * SCH-5 þ
0.121564676 *maxsOm þ0.231791378 *
LipoaffinityIndexþ0.834455606 *MDEC-24 -
0.545070632 *SpMax8_Bhs - 0.011385837
*WNSA-1I þ 1.444156973. Ntraining ¼ 94,
Ntest ¼ 24

0.9027 0.8788 0.7214

5 pIC50 ¼ 0.232484324 * nCl þ0.451682402 *
BCUTp-1l - 8.903303507 *SCH-5 þ
0.125834826 *maxsOm þ0.267695294
*LipoaffinityIndex- 0.013778622 * ATS5s -
3.206311385 * VCH-7 - 0.013245963 *
WNSA-1I þ 3.29483375. Ntraining ¼ 94, Ntest ¼
24

0.9020 0.8682 0.6818

Table 4
Y-randomization test parameters.

Model R R2 Q2

Original 0.911225 0.830332 0.765508
Random 1 0.307614 0.094626 -0.12441
Random 2 0.275489 0.075894 -0.09142
Random 3 0.273353 0.074722 -0.15235
Random 4 0.370389 0.137188 -0.04283
Random 5 0.320099 0.102463 -0.11135
Random 6 0.339911 0.115539 -0.11133
Random 7 0.254737 0.064891 -0.16892
Random 8 0.262175 0.068736 -0.12241
Random 9 0.255073 0.065062 -0.14825
Random 10 0.185379 0.034365 -0.17398
Random Models Parameters
Average r: 0.284422
Average r2: 0.083349
Average Q2: -0.12472
cRp2: 0.788848

Table 5
List of the descriptors, their description, classes, and their statistical parameters.

S/
N

Descriptors Description Descriptor
Class

VIF ME

1 nCl Number of chlorine
atoms

2D 1.616 0.048

2 BCUTp-1l nhigh lowest
polarizability
weighted BCUTS

2D 2.035 0.344

3 SCH-5 Simple chain, order 5 2D 1.145 -0.016
4 maxsOm Maximum atom-type

E-State: -O-
2D 1.325 0.032

5 LipoaffinityIndex Lipoaffinity index 2D 1.585 0.283
6 MDEC-24 Molecular distance

edge between all
secondary and
quaternary carbons

2D 1.319 0.010

7 ATS5s Broto-Moreau
autocorrelation - lag
5/weighted by I-state

2D 2.195 0.045

8 WNSA-1 PNSA-1 (Partial
negative surface area
– the sum of surface
area on negative parts
of a molecule) * total
molecular surface
area/1000

3D 2.413 0.254
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that generates a good scientific or computational correlation among
molecular descriptors and observed property (IC50) bymeans of the MLR-
GFA [12]. The molecular docking study helps us to understand the
Table 3
Pearson's association matrix of the descriptors used in the model.

nCl BCUTp-1l SCH-5 max

nCl 1
BCUTp-1l -0.00042 1
SCH-5 -0.02429 0.177746 1
maxsOm -0.09986 -0.37896 -0.22546 1
LipoaffinityIndex -0.10145 0.033268 0.064203 -0.2
MDEC-24 -0.24002 -0.00519 0.141807 0.02
ATS5s -0.33785 -0.42588 0.018333 0.04
WNSA-1 0.25611 -0.55883 0.067396 0.04

2

interaction mode between the inhibiting substances and the receptor
when link together purposely to attain a stable conformation. “The core
of this research was to develop a validated QSAR model that will well
predict the IC50 values of the studied compounds.” The docking process is
supported out between studied molecules with the highest pIC50 values
and the prepared crystalline structure of the HPPD receptor that was
obtained from Arabidopsis Thaliana flowering plant.
sOm Lipoaffinity
Index

MDEC-24 ATS5s WNSA-1

2306 1
4764 0.408618 1
734 0.392048 0.21808 1
3026 0.241172 0.005096 0.49961 1
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Fig. 1. Showing the plot of experimental pIC50 and predicted pIC50 values of
training and test set compounds of model 1.
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Fig. 2. A plot of Experimental pIC50 versus Residual values of the training and
test set compounds of model 1.

Fig. 3. Williams Plot, A plot of standardized residual versus Leverage of
model 1.
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2. Materials and methods

2.1. Experimental dataset

The large data set encompassing 334 different derivatives of com-
pounds used as herbicides was gotten from the literature researched [11].
However, out of the 334 compounds, only 118 chemical compounds were
designated for this study. This dataset includes the following classes of
inhibitors; Sulfonylurea, triazines, pyrimidine, benzoic acid, ester,
3

pyridine, etc. The chemical Abstract Service record numbers (CASRN),
IUPAC names, generic names, and various physicochemical properties of
the selected 118 compounds were found from a simplified molecular
input line file entry system (SMILES), while the inhibitory activities
(IC50) against HPPD receptor of the selected ligands were obtained
together with the SMILE document file in an Excel sheath.
2.2. Geometry energy minimization

The determination of the equilibrium geometry or the minimum en-
ergy conformation of a molecule is called Energy minimization [13]. The
ChemDraw software version 12.0 was one among the widely known
software used to draw the 2D structures of the compounds and the drawn
2D molecular structures will be saved in CDX file format [14]. The 3D
conformations of the molecules were optimized using the wave function
version I. 1.4 of the software Spartan [15]. The 3D molecular structures
were pre-optimized using the semi-empirical method primary to lessen
the tension absolutely. The Spartan file optimized for all molecules was
then converted to "SDF " file format [16].
2.3. Determination of molecular descriptor

The common term molecular descriptor can be defined as a scientific
or mathematical figure that designates the properties of the character-
istics of a molecule attained from a precise algorithm or trial process
[17]. The quantum chemical descriptors remained calculated using a
software called Spartan 14 version 1.1.4 [18]. The molecular descriptors
stayed calculated using the PaDEL descriptor software version 2.1.8. The
middling of 1875 molecular descriptors remained generated by the
software PaDEL and Spartan 14 software [19].
2.4. Pre-treatments of dataset

The molecular descriptor resulting from PaDEL-software was be-
forehand preserved with a drug theoretical Cheminformatics laboratory
(DTC Lab.) software. The pre-processing process vicissitudes the corre-
lation among the less dismissed descriptions [20]. The data dispensation
procedure abolished the molecular characteristics viewing almost equal
values and very low variance descriptions, with the complete dataset to
reduce the Loch descriptor. The molecular characteristics with a lower
level of correlation are maintained [21].
2.5. Test and Training set development

In QSAR model Expansion, datasets of 118 compounds were divided
into 80% training and 20% test set rendering to the Kennard and Stone
Algorithm using DTC Lab. Software [22]. However, 80% of the entire
dataset was used for setting the model up while, the remaining 20% of
the data collection was used for external validation of the former model.
2.6. Comparative implication of individually descriptor to the model

“The mean effect (ME) of each descriptor parameter which appraises
the absolute distinction of each descriptor and its effect on the model, can
be calculated using Formula (1) below:

ME¼ βj
Pn

i DjPm
J

�
βj
Pn

i Dj
� (1)

ME, defines the average effect of descriptor J, while βj is a descriptor
co-efficient, Dj is the value of each study material descriptor, m repre-
sents the number of characteristics in the model and the number of
compounds representing N in the training set [23].



Fig 4. Prepared structure of 4-Hydroxyphenylpyruvate dioxygenase (HPPD) Receptor and 3D structure of the prepared Ligand (25).
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2.7. Model development

The MLR/GFA techniques remained of used in developing models
[24]. The technique of GFA definitely selects an outstanding number of
descriptors in regression model and by so doing, it creates the MLR
equation in a linear form and in higher polynomial [25]. The general
MLR expression is given below in Eq. (2):

P¼ p0 þ p1X1 þ p2X2 þ p3X3 þ…pnXn (2)

The symbol P denotes the IC50 value, X1, X2,…, Xn are the value of
descriptors prevailing in the model with their individual coefficients p1,
p2,…, pn. The term p0 characterise the constant value in the regression
equation. The meaning of the discrete descriptors X1, X2,…, Xn is subject
to their greatness (significant value) and their algebraic sign (� ) [20].
The numeral of compounds and the number of descriptors exist in a ratio
of 5:1 for an upright model.

2.8. Assessment of the QSAR models

The QSAR model gotten from the MLR model was weighed according
to the following statistical limitations: N (number of compounds), P
(descriptor number), R2 (square correlation coefficient), F-Test (Fischer
value), Q2

CV (cross-validation coefficient), R2
pred: (external test set Corre-

lation coefficient). In the assortment of the QSARModel, justification was
taken looking at the R2 and Q2

CV values [26]. The model is only pertinent
if the following conditions are factual: R2> 0.6, Q2

CV > 0.6 and R2
pred: >

0.5. Given the earlier criteria, the higher theQ2
CV and.R2Values, the more

robust and accurate is the prescribe model.

2.9. Calculation of internal authentication of the QSAR model

Internal validation is the foremost step to take into justification in
validation of any QSAR model [27]. A square correlation coefficient
R2characterizes all the models for the dispersal of the predicted variables.
The nearer the R2value to 1.0, the better the model formed. R2 Can be
calculated using Eq. (3) as shown below:

R2 ¼ 1�
P�

Pobs: � Ppred:
�2P�

Pobs: � Ptraining
�2 (3)

where, Pobs:, Ppred:and Ptraining constitute the experimental, projected and
cruel activity value of the training set [28]. The value of R2 was found to
be largely dependent on the number of model descriptors.

Therefore, the value of the field model R2 must be adjusted. The
adjusted R2 can be calculated using Eq. (4) below:

R2
adj: ¼ 1� �

1�R2
� n� 1
n�m� 1

¼ðn� 1ÞR2 �m
n�mþ 1

(4)
4

Here, n stand for the number of training set and m stand for the
number of descriptors used in the model.

However, the extrapolative strength of the QSAR model was also
measured via Friedman's deficiency (LOF) [29], which was also among
the key criteria for the assessment of other internal validation. LOF was
calculated using Eq. (5), expressed below:

LOF¼ SEE�
1� c þ dp

N

�2 (5)

The acronym SEE, describe the standard error of estimate or standard
deviation (SD), p is the number of attributes in the model, d is defined by
the debug parameter, c is the relentless term used in the model, n is the
training set molecules. However, if the model SEE value is small, it is
alleged that, the model established MLR model is robust. The SEE can be
calculated using Formula (6), expressed below;

SEE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Yexp: � Ypred:

�2
N � P� 1

s
(6)

Where Yexp:and Ypred: characterise trial and foretold pIC50 values of
training set. N is the number of compounds in the training set, P is the
number of descriptors [30]. In addition, the second parameter, which
should be regarded as very important when entering the internal vali-
dation of the QSAR model, is the leave-one-out cross validation co-
efficients. The Cross-validation regression coefficients (Q2

CV ) can be
calculated using Eq. (7) below.

Q2
CV ¼ 1�

Pn
i¼1

�
Yexp: � Ypred:

�2Pn
i¼1

�
Yexp: � Y

�2 (7)

Where Yexp:;Ypred:;andYare trial, foretold and the mean inhibition activity
values of the training set compounds [14].
2.10. Assessment of External authentication of the QSAR model

The created QSAR model was validated externally to authorise its
strength. Therefore, an external validation of the model was evaluated
using the R2

test expression for test compounds. Therefore, the external
predictive force of the model was calculated using the regression coef-
ficient expression as shown below in Eq. (8):

R2
test ¼ 1�

P�
Ppred:test � Pexp:test

�2P�
Ppred:test � PTraining

�2 (8)

Where, Ppred:test , Pexp:test , are the forecast and tentative activity of the test
set and PTraining is the average experimental activity of the training set
compounds [31].

In addition, other Computable relations between the activities and



Table 6
Binding Affinity, Hydrogen Bond and Hydrophobic Bond Interaction formed
Between the Ligands with the highest pIC50 Values and the Active Site of the
Hydroxyphenylpyruvate dioxygenase (HPPD) Receptor.

Ligand
ID

Binding
Energy
[Kcal/mol]

Hydrophobic
bond

Hydrogen
bond

Hydrogen bond
length [A0]

5 -8.4 PHE392,
PHE381,
PHE392

GLN379 2.93328

25 -10.1 PHE381,
PHE392,
LEU265
PRO384,
LEU265,
VAL269
RO280,
PHE419,
PHE424

SER267,
GLN307,
HIS308

2.32652, 2.38559,
2.45207

26 -8.5 MET335,
LEU265,
ILE294,
PHE381

GLN293,
HIS308

2.41845

27 -9.7 HIS308,
SER267,
PHE392
PHE381,
LEU265,
LYS421

GLN379,
PHE419,
ASN282

2.84333, 2.43391,
2.48039

29 -7.6 LEU427,
PRO280,
HIS226
HIS308,
PHE419,
PHE424

SER267,
ASN282

2.4535, 2.8447

35 -8.1 PHE381,
PRO280,
LEU427
LEU265,
ILE294,
PHE419
PHE424

SER267,
HIS308,
GLU252
ASN282

2.52058, 2.76242,
3.0342, 3.48822

52 -6.1 VAL228,
PRO280,
VAL269
HIS226,
HIS308,
PHE381
PHE419

SER267 2.0812

55 -8.0 PHE424,
VAL228,
LEU265
LYS421,
LEU265,
HIS308
PHE381

- -

98 -8.7 VAL269,
PRO280,
LEU265
HIS226,
HIS308,
PHE381
PHE419,
PHE424

SER267,
ASN282

2.23157, 2.73159

114 -5.9 PHE72, ALA61,
ARG62
LEU90,
LEU217,
VAL209
PHE72

ARG62,
ARG62,
SER65
PHE72,
PRO216,
PHE72
GLU210

2.5645, 2.99795,
2.18236, 2.15507,
3.04285, 3.54983,
3.39371
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the descriptors were examined by means of randomisation testing. The
range of the Y- segment is speckled and the new QSAR models were
developed using the same variable priority as the variables present in the
non-random model. However, we use the parameter that is represented
5

by R2
p , which is the model difference between the average square corre-

lation coefficient R2
and: of the random model and square correlation co-

efficient R2 of the non-random model. The R2
p parameter was calculated

using Eq. (9) given below as:

R2
p ¼R2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R2 � R2

and:

�q
(9)

“The levitating R2
p ensures that the generated models were not ac-

quired by fortuitous. Meanwhile, we have projected that the estimation
of R2

p protrudes more at p < 0.05 (95%) confidence limit for a steadfast
model.

2.11. External Y-randomization test

Y- Randomization test is used to remotely validate the established
QSAR model. The Y-randomisation test was accomplished using the
training set, as recommended by Tropsha [31]. However, for the model
to fractious the Y-randomization test, the cR2

pmust be superior than 0.5

(cR2
p>0.5). The cR2

pcan be calculated using Eq. (10) as shown below:

cR2
p ¼R

�
R2 � ðRrÞ2

�2 (10)

Where, cR2
p is the Strength coefficient of Y-randomization test, R is the

correlation coefficient of Y-randomization test, and Rr is the normal R of
the random model [32]. The multivariate linear regression model in the
randomization test, was prevented by mixing the pIC50 values while
retaining the descriptor value unbothered. The models after the initial
model usually have a lower R2 and Q2

CVvalues. Ten randomization tests
were performed and the results showed that approximately 9 models
have R2 and Q2

CV of estimate <0.5. This evaluation confirms that the
resulting model is strong enough and capable of making good predictions
[26].

2.12. Domain of applicability evaluation of the generated QSAR model

“The domain of applicability (Williams plot) is the plot of standard-
ized residual versus a distance (leverage). The applicability domain of the
QSAR model was intentionally used to check for outliers and influential
compounds [14]. Leverage is used to sketch the applicability domain of
the model. Leverage can be calculated using Eq. (11), expressed below as:

hi ¼QiðQTQÞ�1QT
i ; ði¼m;…p;Þ (11)

Where Qi represent the training set matrix I, Q is a n� mdescriptor
matrix of the training set, and QT is the transpose matrix Q used to
develop the model. However, training or test set compounds with
leverage values hi lower than the warning leverage h* are capable of
making predictions. The domain of applicability with the reliable pre-
dictive aptitude is that which has compounds (entire dataset) with
leverage values within the threshold (hi < h*) and a standardized
outstanding value of�3 [16]. The applicability domain helps in choosing
compounds with the best structural features [25]. The warning leverage
(h*) can be calculated using Eq. (12), given below by the expression:

h* ¼ 3ðgþ 1Þ
n

(12)

The symbol n represents the number of training set, and g is the
number of descriptors used in developing the model.

2.13. Superiority declaration of the model

The internal and external QSAR authentication methods were the two
main practices for appraising model strength. The validation constraints
were related with the recommendation standard [32]. Table 1.0 below
provides an overview of the standard recommended values for internal



Fig. 5. a) 3D and 2D molecular interaction for complex 2 (-10.1 kcal/mol). b) 3D and 2D molecular interaction for complex 4 (-9.7 kcal/mol).
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and external endorsement parameters that pledge the acceptance of the
model.
2.14. Molecular docking

The concept of Molecular docking refers to modeling method that
predicts the direction or orientation of two molecules when they bind
together in order to form a stable complex. A docking knowledge was
6

steered between 10 selected compounds (5, 25, 26, 27, 29, 35, 52, 55, 98
and 114). All of the Spartan files for the nominated compound were
transformed to a protein data bank (PDB). The crystal structure of the
target receptor (HPPD) with a PDB code of 1sp9 was attained from the
PDB website. Fig. 4 shows the receptor and a prepared ligand in 3D
structure (compound 25). The prepared ligands were equipped with a
prepared receptor, using the PyRx software and the Autodock Vina in the
combined PyRx software [16].



Fig. 6. H-bond molecular interaction between Ligand 25 and the target.
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3. Result and discussion

The Multiple Linear Regression coupled with Genetic Function Al-
gorithm (MLR- GFA) was used to produce fivemodels as shown in Table 2
below. Model 1, was chosen because of its statistical effect as the best
model (Friedman LOF ¼ 0.52567, R2 ¼ 0.9034, R2

adjst¼ 0.8943, Q2
CV¼

0.87 98 and R2
pred:¼ 0.8403). However, the standard corroboration pa-

rameters for the acceptable model were given in Table 1. However, based
on the model parameters above, model 1 has completed all the pre-
requisites for an acceptable QSAR model. The smaller the residual values
indicate that the generated model has good forecasting capability. Eight
descriptors remained designated to construct the linear model, which
was able to predict the corresponding IC50 values of all the selected
compounds using MLR-GFA practices.

Table 3 presents the Pearson correlation matrix for the eight de-
scriptors. The correlation coefficient flanked by each descriptor of the
model is significantly low, meaning that no much correlations exist. The
Y-randomization test was shown in Table 4. However, the higher nu-
merical values of the R2and Q2

CV indicate that the model was significant
statistically. It was evident in the result that the cR2

p value is greater than
0.5, therefore, the resulting model was powerful and did not receive a
prepotential inference.

Table 5 make available the list of descriptions, descriptions, classes
and other related statistical parameters (VIF and ME) that may take a
superior influence on nominated descriptors. For all eight descriptors, the
numerical values of the variance inflation factor (VIF) were all less than
3, indicating that the specifications of the model were coronal, and the
model's consistency is of great significant [19]. Table 7 shows the
chemical names of the compounds, the chemical Abstract Service regis-
tration number (CAS-RN), the trial pIC50, the foreseen pIC50 and
outstanding values.

Fig. 1 shows the trial pIC50 graph compared to the estimated pIC50 of
the compounds in the training and test molecules. A graph of the re-
siduals and trial pIC50 values of the entire dataset was shown in Fig. 2.
The plot shows, in fact, there exist no sensible slip-up in the generated
model because the standardized residual values were practically at zero
line on both sides [28].
3.1. Interpretation of the molecular descriptors in model 1

The descriptor nCl, which stand for the Number of chlorine atoms, is a
descriptor that belongs to the 2D class, while, the 2D descriptor BCUTp-
1l, which is defined as the nhigh lowest polarizability weighted. More-
over, the 2D descriptor SCH-5, stands for Simple chain, order 5, the 2D
descriptor maxsOm, refers to maximum atom-type.

E-State: -O-. Furthermore, the 2D descriptor LipoaffinityIndex, stand
for the measure of the lipophilic property of a molecule and the 2D
descriptor MDEC-24, which means the Molecular distance edge between
all secondary and quaternary carbons. Moreover, ATS5s, a 2D descriptor
7

which stand for Broto-Moreau autocorrelation - lag 5/weighted by I-
state. Lastly, the 3D descriptor, WNSA-1 stand for the PNSA-1 (Partial
negative surface area –

The sum of surface area on negative parts of a molecule) * total
molecular surface area/1000. However, the eight descriptors nCl,
BCUTp-1l, SCH-5, maxsOm, LipoaffinityIndex, MDEC-24, ATS5s, WNSA-
1 has a positive mean effect value of 0.048, 0.344, -0.016, 0.032, 0.283,
0.010, 0.045, 0.254 which means that, increase in the concentration of
these descriptors will lead to increase the inhibition concentrations of the
inhibitor molecules which results to increase in the activity of the mol-
ecules against the target. While, SCH-5, descriptor with negative mean
effect value of -0.016, reveal that, a decrease in the concentration of this
descriptor will lead to increase in the activity of the inhibitor molecules.

The leverage values for the entire dataset were presented together
with standardized residual values. The Williams plot is depicted in Fig. 3.
However, based on our results, it is clear that all compounds (training
and test molecules) were all within the square demarcation, in which all
of the compound has a standardized residual value within�3. Therefore,
no extraneous compound was found in this study. In addition, it was
found that approximately 40% of the test compounds were influential.
This comportment was instigated by significant structural modifications
between the compounds found in the domain and those found outside the
domain.
3.2. discussion of docking results

Molecular docking studies were carried out on 10 selected com-
pounds (5, 25, 26, 27, 29, 35, 52, 55, 98, 114) having the highest pIC50
values with the aim of studying their mode of interactions with the HPPD
receptor. The docking results reported in Table 6 shows that the binding
affinity of the selected ligands ranges between -5.9 kcal/mol to -10.1
kcal/mol. The docking results reveal that the ligand with the highest
pIC50 value has the highest binding affinity, which indicates that the
binding affinities of these ligands were proportional to their pIC50 values.
The results show that Ligand 25 with the highest pIC50 value have the
highest binding affinity of -10.1 kcal/mol, followed by Ligand 27, with
the binding affinity of -9.7 kcal/mol. Moreover, using Discovery Studio
Visualizer software, two complexes of Ligand 25, and 27 were selected
for visualization in 3D and 2D, as shown in Figs. 5a and 5b respectively.
Ligand 25 form three hydrogen bonds with SER267, GLN307 and HIS308
at 2.32652 Å, 2.38559 Å and 2.45207 Å of the target. The carbonyl C¼O
attached to the ester functional group and the C¼O of the pyrazide ring
both serves as hydrogen acceptors and forms one hydrogen bond each at
GLN307 and HIS308 of the target. The fluorine atom attached to the
pyrazide ring of ligand 25 also act as hydrogen acceptor and form one
hydrogen bond with SER267 of the target. In addition, nine hydrophobic
bond interactions were observed in ligand 25 at PHE381, PHE392
LEU265, PRO384, LEU265, VAL269, RO280, PHE419 and PHE424 of the
target. Moreover, Ligand 27 also forms three hydrogen bonds with
GLN379, PHE419 and ASN282 at 2.84333 Å, 2.43391 Å and 2.48039 Å
of the target. The nitrogen atom attached to the diazole ring (-N-H) act as
hydrogen acceptor and form two hydrogen bond with GLN379 and
PHE419 at different distance of 2.84333 Å and 2.43391 Å of the target.
Another hydrogen bond was observed with ligand 27 in which the
carbonyl C¼O of the keto functional group act as hydrogen acceptor and
form one hydrogen bond with ASN282 of the target. Furthermore, six
hydrophobic bond interactions were observed in ligand 27 at HIS308,
SER267, PHE392, PHE381, LEU265 and LYS421of the receptor. Fig. 6,
below shows the hydrogen bond interaction formed between the ligands
25 and the target. The hydrogen bond and the hydrophobic bond inter-
action formed between ligand 25 with the highest binding affinity of
-10.1 kcal/mol suggest that ligand 25 forms the most stable complex and
can be regarded as a template molecule in designing new potent
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compounds against the HPPD receptor.

4. Conclusion

In summary, the eight molecular descriptors nCl, BCUTp-1l, SCH-5,
maxsOm, LipoaffinityIndex, MDEC-24, ATS5s and WNSA-1 used in
the selected model (Model 1) were sufficiently potent and capable of
predicting the herbicidal property of the selected compounds. A molec-
ular docking study shows that the best two among the set of 10 com-
pounds (25 and 27) with the lowest Gibbs free energies binding of -10.1
kcal/mol and -9.7 kcal/mol, formed the two most stable complexes
after binding to the receptor. Furthermore, the two best compounds show
two important type of interactions; Hydrogen and hydrophobic in-
teractions with amino acid residues of the target receptor. Probably,
these two compounds could be potentials inhibitors agents for better
activity against the target enzyme.
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