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Background: People with HIV (PWH) on antiretroviral therapy (ART) still
experience an increased risk of morbidity and mortality, presumably driven by
chronic inflammation, yet predictors of discrete or combinatorial outcomes
remain unclear. Galectin-9 (Gal-9), a driver of both inflammatory and immunosup-
pressive responses, has been associated with HIV disease progression and
multimorbidity.

Objective: To determine whether plasma Gal-9 levels are associated with the occur-
rence of specific non-AIDS events (NAEs) in PWH initiating ART.

Design: We performed a nested case–control study of PWH enrolled from 2001 to
2009 and evaluated pre-ART (66 cases, 97 controls), a year post-ART (112 cases, 211
controls), and immediately preceding an event (89 cases, 162 controls). Events included
myocardial infarction/stroke, malignancy, serious bacterial infection, or death.

Methods: Plasma Gal-9 levels were assessed by ELISA. Conditional logistic regression
assessed associations with NAEs and Spearman’s correlations compared Gal-9 with
other previously assessed biomarkers.

Results: NAEs occurred at a median of 2.8 years (1.7–4.6) after ART initiation.
Higher Gal-9 levels were associated with increased risk of NAEs at year 1 and
preevent [odds ratio (OR) per 1 interquartile range¼1.4–1.6; all P<0.05], specifi-
cally myocardial infarction/stroke at year 1 (OR¼1.9; P¼0.029). Gal-9 also
correlated with multiple inflammatory and immune activation predictors of NAEs
(all timepoints).
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Conclusion: Elevated Gal-9 levels are predictive of deleterious NAEs, particularly
cardiovascular complications. Whether the Gal-9 pathway, potentially binding to its
putative ligands, is active in the pathogenesis of these outcomes warrants further
investigation to determine if targeting Gal-9 may slow or reverse the risk of NAEs.
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Introduction

People with HIV (PWH) experience non-AIDS events
(NAEs), such as cardiovascular disease, non-AIDS-defin-
ing malignancies, and mortality, earlier and at a higher rate
than people without HIV despite the use of antiretroviral
therapy (ART) [1,2]. Persistent inflammation and immune
activation are hallmarks of HIV infection and are thought
to be significant contributors to these comorbid events
[3,4], and the cause of this chronic inflammation is likely
multifactorial and varies by individual and over time [3].
Although several markers of inflammation, coagulation,
and immune activation are predictive of NAEs [5,6],
mechanisms involved in the progression of morbidities in
HIV is still not fully understood.
Glycoimmunology, glycan–lectin interactions governing
immune responses, is an emerging field in host–pathogen
research, with several glycan and lectin members historically
being associated with HIV pathogenesis [7,8]. Galectin-9
(Gal-9), a glycan-binding immunomodulatory protein, is
elevated in plasma of PWH on ART [9] and associates with
pathogenesis, increased risk of mortality, and the extent of
multimorbidity [10–12]. Gal-9 has been linked to several
age-related complications in the general population,
including cardiovascular, kidney, and liver dysfunction
[13–16], and proposed as a promising biomarker for various
cancers and autoimmune diseases [17–24]. Given the
pleiotropic nature of Gal-9 in immunosuppression and
inflammation [25–31], and in line with studies on HIV
pathogenesis and morbidity, the significance of Gal-9 in the
occurrence of NAEs warrants consideration.
To investigate the predictive efficacy of plasma Gal-9 for
NAEs, we conducted a case–control study of participants
enrolled in the AIDS Clinical Trials Group (ACTG)
Longitudinal Linked Randomized Trials (ALLRT) [32],
evaluated prior to ART, 1 year after ART initiation, and a
timepoint prior to an NAE. We also explored potential
Gal-9 relationships with pre-ART factors and biomarkers
previously linked to NAEs. Further elucidating novel
biomarkers, such as Gal-9, that track immune perturba-
tions and associate with NAEs will help identify and/or
monitor interventions aimed to reduce morbidity and
mortality in PWH on effective ART.
Methods

Cohort descriptions
NWCS 411 is an ALLRT-nested case–control study to
examine potential predictive biomarkers and their
relationships with NAEs in PWH enrolled from 2001
to 2009 [32]. This study builds off a previous case–control
study, NWCS 329, which found associations between
several biomarkers of immune activation and NAEs [6].
NAEs in participants (cases) include myocardial infarc-
tion/stroke, malignancy, serious bacterial infections, or
mortality. For each case, 1–3 participants (controls) with
an event-free follow-up equal or greater than the relevant
case, were matched for age, sex, pre-ART CD4þ T-cell
count, and ART regimen. All participants were
ART-naive when enrolled and had plasma HIV RNA
less than 400 copies/ml a year post-ART initiation.

Galectin-9 quantification
Stored plasma aliquots were measured for Gal-9 in
duplicate using the solid-phase Human Galectin-9
Quantikine ELISA kit (R&D Systems, Minneapolis,
Minnesota, USA) according to manufacturer’s instruc-
tions. Optical density was read with a microplate
spectrophotometer (Bio-Rad, Hercules, California,
USA) and data analysis, including four parameter logistic
standard interpolation, was carried out using MyAssays
Ltd. data analysis. Average intra-assay coefficient of
variation (CV) was 4.11% and inter-assay CV was 9.95%.

Statistical analyses
Demographic and clinical characteristics are presented
using median (IQR) for continuous variables and frequency
for categorical variables. Baseline to year 1 Gal-9
distributions were compared using Wilcoxon matched-
pairs signed rank test to calculate P values and Hodges–
Lehmann estimate of the location shift (with 95% CI).
Conditional logistic regression analysis assessed associations
of Gal-9 and NAEs in models unadjusted and adjusted for
pertinent covariates at every timepoint.As participants were
matched by pre-ART CD4þ count and suppressed by week
48, adjusted analyses considered HIV-RNA levels at
baseline and CD4þ count for postbaseline analyses.
Relationships among biomarkers at each timepoint among
controls were assessed by Spearman correlations. Soluble



Plasma galectin-9 and non-AIDS morbid events Premeaux et al. 2491
markers were log10 transformed prior to analyses. All
statistical tests used a two-sided 5% type-I error rate,
without adjustment for multiple testing, and were
performed in SAS version 9.4 (SAS Institute, Cary, North
Carolina, USA).
Results

Cohort and plasma galectin-9 distributions
Three time points were considered in this analysis:
baseline (pre-ART; 66 cases, 97 controls), a year post-
ART initiation (112 cases, 211 controls), and immediately
preceding an event (89 cases, 162 controls). Overall, 84%
of participants were men, median (Q1–Q3) age was 45
(39–51) years, CD4þ T-cell count was 213 (79–334)
cells/ml, and plasma HIV RNA was 4.8 (4.4–5.4)
log10 copies/ml (Table 1). CD4þT-cell count at year 1 for
controls and cases were 404 (269–561) and 347 (229–
479) cells/ml, respectively, reflecting an expected rebound
of counts after ART initiation. NAEs occurred at a
median of 2.8 years (1.7–4.6) after ART initiation and
10.5 (6, 19) weeks from the preevent timepoint. Among
cases, 13.4% were nonaccidental deaths (n¼ 18), 28.4%
were myocardial infarction (MI)/strokes (n¼ 38), 37.3%
were malignancies (n¼ 50), and 26.9% were serious
bacterial infections (n¼ 36). Distributions of plasma Gal-
9 among cases and controls at each timepoint are shown in
Fig. 1a. Baseline plasma Gal-9 levels were similar for cases
and controls: median value 15.39 (IQR¼ 10.35–24.61)
and 15.00 (10.05–24.03) mg/ml, respectively. As
previously observed [33], plasma Gal-9 levels after
Table 1. Cohort demographic and clinical characteristics.

Characteristic

Age at parent study entry
Regimens evaluated, by parent study

ACTG 384: (AZT þ 3TC vs. d4T þ ddI) þ (EFV vs. NFV vs. NFV þ EFV
ACTG 388: (AZT þ 3TC vs. d4T þ 3TC) þ (IDV vs. NFV vs. IDV þ NF
A5014: NVP þ [LPV/r vs. (ABC þ 3TC þ d4T)]
A5095: AZT/3TC þ (ABC vs. EFV vs. ABC þ EFV)
A5142: (EFV þ AZT/d4T þ 3TC) vs. (LPV/r þ AZT/d4T þ 3TC) vs. (EFV
A5202: (ABC/3TC vs. TFV/FTC) þ (ATV/r vs. EFV)

Sex
Male
Female

Race/ethnicity
White non-Hispanic
Black non-Hispanic
Hispanic (regardless of race)
Asian, Pacific Islander
Native American, Alaskan native
Participant does not know
More than one race

Baseline CD4þ T-cell count (cells/ml)
Baseline log10 HIV-1 RNA (copies/ml)

Categorical variables are represented as frequency and continuous varia
ritonavir-boosted atazanavir; AZT, zidovdine; d4T, stavudine; ddl, didanosin
boosted lopinavir; NFV, nelfinavir; NVP, nevirapine; TFV, tenofovir.
ART initiation (year 1) differed significantly compared
with baseline values, here in cases [95% CI¼ 0.20
(0.13–0.27), P< 0.001) and to a greater extent in
controls [95% CI¼ 0.28 (0.22–0.33), P< 0.001].

Galectin-9 associations with pre-antiretroviral
therapy factors and previously assessed
biomarkers among controls
Higher Gal-9 levels at baseline were correlated with
higher HIV RNA (r¼ 0.49, P< 0.0001) and with lower
CD4þT-cell counts (r¼ -0.58, P< 0.0001), as previously
reported (Fig. 1b, Supplementary Table 1, http://
links.lww.com/QAD/C257) [34]. We also found several
strong associations between plasma Gal-9 and previously
analyzed biomarkers. Baseline levels of Gal-9 highly
correlated with interleukin-6 (IL-6), soluble tumor
necrosis factor receptor (sTNFR) I and II, soluble
urokinase plasminogen activator receptor (suPAR),
sCD14, interferon gamma-induced protein 10, and D-
dimer (all r� 0.45, P< 0.0001), and were moderately
associated with 1,3-b-D-glucan (BDG), liposaccharide-
binding protein, intestinal fatty-acid binding protein, and
sCD163 (all r¼ 0.22–0.36, P� 0.008). Strong associa-
tions among Gal-9 with sTNFR-I, sTNFR-II, and
suPAR remained at year 1 post-ART initiation and
preevent (all r� 0.45, P< 0.0001).

Galectin-9 as a predictor of non-AIDS events
Higher plasma levels of Gal-9 were associated with having
a NAEs at year 1 (unadjusted odds ratio (OR) per 1
IQR¼ 1.4; 95% CI, 1.0–1.9; P¼ 0.036) and preevent
(OR¼ 1.6, 1.0–2.3; P¼ 0.029) (Fig. 1c). Although not
statistically significant, a similar effect size was observed at
Case (N¼134) Control (N¼292) Total (N¼426)

47 (40–53) 44 (39–50) 45 (39–51)

) 40 (30%) 85 (29%) 125 (29%)
V)

62 (46%) 144 (49%) 206 (48%)

þ LPV/r)
32 (24%) 63 (22%) 95 (22%)

112 (84%) 247 (85%) 359 (84%)
22 (16%) 45 (15%) 67 (16%)

70 (52% 138 (47%) 208 (49%)
48 (36%) 82 (28%) 130 (31%)
15 (11%) 61 (21%) 76 (18%)
0 (0%) 6 (2%) 6 (1%)
1 (1%) 2 (1%) 3 (1%)
0 (0%) 1 (0%) 1 (0%)
0 (0%) 2 (1%) 2 (0%)

207 (87–334) 220 (76–332) 213 (79–334)
4.8 (4.4–5.3) 4.8 (4.4–5.4) 4.8 (4.4–5.4)

bles as median (Q1–Q3). 3TC, lamivudine; ABC, abacavir; ATZ/r,
e; EFV, efavirenz; FTC, emtricitabine; IDV, indinavir; LPV/r, ritonavir-

http://links.lww.com/QAD/C257
http://links.lww.com/QAD/C257
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Fig. 1. Plasma galectin-9 predicts non-AIDS events post-antiretroviral therapy initiation. (a) Distribution of plasma galectin-0
(Gal-9) among cases (blue) and controls (black) at each time point. Jitter plots including median and interquartile range (box), and
minimum and maximum (vertical lines) are displayed. (b) Spearman correlations for galectin-9 with pre-ART factors and
previously assessed biomarkers among controls; all correlations P less than 0.05; ribbon width is proportional to respective r
value (range: 0.17–0.64); band color represents associated parameter; +Indicates inverse correlations. (c) Associations between
galectin-9 levels and odds ratios (ORs) the occurrence of a non-AIDS event; adjusted analyses controlled for concurrent HIV viral
load at baseline and CD4þ T-cell count at year 1 and preevent; �P less than 0.05, aP¼0.10 to less than 0.05. BDG, 1,3-b-D-glucan;
I-FABP, intestinal fatty-acid binding protein; IL-6, Interleukin 6; IP-10, interferon gamma-induced protein 10; LBP, liposaccharide-
binding protein; MI, myocardial infarction; suPAR, soluble urokinase plasminogen activator receptor; TNFR, tumor necrosis factor
receptor.
baseline (OR¼ 1.4, 0.7–2.8; P¼ 0.312). Furthermore,
the association at year 1 remained significant with
adjustment for CD4þ count (OR¼ 1.4, 1.0–1.9;
P¼ 0.046). However, adjustment in other biomarkers
previously linked to NAEs, particularly IL-6, TNFRI/II,
and suPAR, attenuated Gal-9 associations (Supplemen-
tary Tables 2–4, http://links.lww.com/QAD/C258,
http://links.lww.com/QAD/C259, http://links.lww.-
com/QAD/C260). When examining component-
specific analyses by type of NAEs (Fig. 1c, Supplementary
Table 5, http://links.lww.com/QAD/C261), higher year
1 Gal-9 levels were associated with increased risk of MI/
stroke (n¼ 32 events; OR¼ 1.9, 1.1–3.4; P¼ 0.029);
while not statistically significant, higher levels of Gal-9
was associated with increased risk of death (n¼ 14 events;
OR¼ 2.8, 0.9–8.2; P¼ 0.069) at year 1 and increased
risk of malignancy at preevent (n¼ 35 events; OR¼ 1.8,
1.0–3.3; P¼ 0.050).

http://links.lww.com/QAD/C258
http://links.lww.com/QAD/C259
http://links.lww.com/QAD/C260
http://links.lww.com/QAD/C260
http://links.lww.com/QAD/C261
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Discussion

Given that PWH on effective ARTremain at an increased
risk in developing age-related comorbidities or death
[1,2], reliable screening to mitigate risk and monitor
interventions is required. Uncovering effective biomark-
ers that predict adverse HIVoutcomes at any time during
the disease course prior to or during ART are key in this
regard. We show here that plasma Gal-9 associates with an
increased risk of overall NAEs post-ART initiation
despite significant decreases in levels after treatment, in
line with previous studies of Gal-9 levels reflecting severe
outcomes in infectious diseases and associating with
multimorbidity and mortality risk in treated HIV [11,35].
Furthermore, we found that Gal-9 levels predicted MI/
stroke 1 year after ART, of importance as PWH have a
higher risk of developing coronary heart disease and
Gal-9 is associated with cardiovascular outcomes in the
general population [15,16]. Overall, our data suggests that
Gal-9 may serve as a novel, predictive, and easily
measurable marker to evaluate alone or incorporated in a
biomarker composite panel to strengthen the monitoring
of PWH at high risk and interventional studies.

Elevated levels of Gal-9 levels have been shown to correlate
with multiple biomarkers of inflammation and immune
activation previously linked to NAEs (i.e. sTNFRI/II,
suPAR) [5,6]. Gal-9 itself is known to drive multiple
immune pathways, including both the immunosuppres-
sion and proinflammatory cytokine induction of myeloid
cells [36,37] and the impairment of T, B, and natural killer
(NK) lymphocyte function [25,29,30]. Gal-9 can elicit
pathways involved in apoptosis [26] and immune negative
checkpoint activation [38–40], which are relevant to
outcomes in HIV infection [41–44]. Investigating the
cellular expression of Gal-9 ligands, including TIM-3 and
Dectin-1, will contribute to understanding the pathogenic
effect of elevated Gal-9. Interestingly, both Gal-9 and BDG
bind Dectin-1 on myeloid cells [45,46]. As BDG is the
main ligand of Dectin-1 on myeloid cells, and also
predictive of NAEs at year 1, unraveling their intertwined
pathways would be particularly interesting. Ultimately,
unraveling the role Gal-9 may play in HIV-associated
adverse outcomes would reveal whether modulation
through targeting Gal-9 and/or Gal-9-induced pathways
would prove valuable in altering the trajectory of disease.
However, given proinflammatory cytokines can induce the
cellular release of Gal-9 [47], it remains unclear whether
elevations observed could merely be a consequence of
residual inflammation that persists during infection.

Limitations to this study include that our analysis was
restricted to PWH during chronic infection with low
baseline CD4þ counts, limiting inference for patients
today. Given comorbidity-free life expectancy is increased
with early ART administration and rapid viral decline
with current regimens that include integrase inhibitors
[48,49], investigating whether Gal-9 still predicts NAEs
following early modern ART intervention is warranted.
Although Gal-9 was not significantly associated with
NAEs at baseline, the effect size was notably consistent
with our other findings and may be because of its strong
link with viremia and immune suppression [9,12,34], as
well as insufficient plasma for many participants at
baseline. However, no major differences for baseline
characteristics or Gal-9 levels were observed at year 1
among participants with a year 1 result who did or did
not have one at baseline. We were also not able to
evaluate Gal-9 changes from year 1 to preevent as the
preevent time point varied across participants and
sometimes occurred before year 1. Finally, the relative
strength of the association between Gal-9 and disease
outcomes were attenuated for and lower as compared
with several previously assessed biomarkers, such as IL-6
and suPAR; although, calculated risks were relatively
similar [5,6].

In conclusion, further dissecting Gal-9 pathways that
interlink with viral persistence, immune activation, and
inflammation leading to NAEs will determine the
potential of Gal-9 as a target for intervention in
the setting of suppressive ART. As Gal-9 is only one
component of the emerging field of glycoimmunology,
elucidating the importance of glycosylation and glycan–
lectin interactions in HIV infection, particularly in the
context of NAEs, should be pursued.
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