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Abstract

Transcription elongation can be modelled as a three step process, involving polymerase

translocation, NTP binding, and nucleotide incorporation into the nascent mRNA. This cycle

of events can be simulated at the single-molecule level as a continuous-time Markov pro-

cess using parameters derived from single-molecule experiments. Previously developed

models differ in the way they are parameterised, and in their incorporation of partial equilib-

rium approximations. We have formulated a hierarchical network comprised of 12

sequence-dependent transcription elongation models. The simplest model has two parame-

ters and assumes that both translocation and NTP binding can be modelled as equilibrium

processes. The most complex model has six parameters makes no partial equilibrium

assumptions. We systematically compared the ability of these models to explain published

force-velocity data, using approximate Bayesian computation. This analysis was performed

using data for the RNA polymerase complexes of E. coli, S. cerevisiae and Bacteriophage

T7. Our analysis indicates that the polymerases differ significantly in their translocation

rates, with the rates in T7 pol being fast compared to E. coli RNAP and S. cerevisiae pol II.

Different models are applicable in different cases. We also show that all three RNA polymer-

ases have an energetic preference for the posttranslocated state over the pretranslocated

state. A Bayesian inference and model selection framework, like the one presented in this

publication, should be routinely applicable to the interrogation of single-molecule datasets.

Author summary

Transcription is a critical biological process which occurs in all living organisms. It

involves copying the organism’s genetic material into messenger RNA (mRNA) which

directs protein synthesis on the ribosome. Transcription is performed by RNA polymer-

ases which have been extensively studied using both ensemble and single-molecule tech-

niques. Single-molecule data provides unique insights into the molecular behaviour of

RNA polymerases. Transcription at the single-molecule level can be computationally

simulated as a continuous-time Markov process and the model outputs compared with

experimental data. In this study we use Bayesian techniques to perform a systematic com-

parison of 12 stochastic models of transcriptional elongation. We demonstrate how
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equilibrium approximations can strengthen or weaken the model, and show how Bayesian

techniques can identify necessary or unnecessary model parameters. We describe a frame-

work to a) simulate, b) perform inference on, and c) compare models of transcription

elongation.

Introduction

Transcription is carried out by RNA polymerases: RNAP in Escherichia coli, pol II in Saccharo-
myces cerevisiae, and T7 pol in Bacteriophage T7. It involves the copying of template double-

stranded DNA (dsDNA) into single-stranded messenger RNA (mRNA). RNAP and pol II are

comprised of multiple subunits, and their catalytic subunits are homologous [1, 2]. In contrast,

T7 pol exists as a monomer with a distinct sequence, and resembles the E. coli DNA polymer-

ase I [3].

Optical trapping experiments have been performed on the transcription elongation com-

plex (TEC) from a variety of organisms [4–10]. In a typical experimental setup, two polysty-

rene beads (around 600 nm in diameter) are tethered to the system; one attached to the RNA

polymerase and the other to the DNA [4]. As transcription elongation progresses, the distance

between the two beads increases and the velocity of a single TEC can be computed. Optical

tweezers can be used to apply a force F to the system (Fig 1).

Single-molecule studies of the TEC have revealed that RNA polymerases progress in a dis-

continuous fashion [4, 11–14] with step sizes that correspond to the dimensions of a single

nucleotide (3.4 Å [15]). Consequently, at the single molecule level, transcription is best mod-

elled as a discrete process rather than a continuous one.

A single cycle in the main transcription elongation pathway (Fig 2) requires (1) Forward

translocation of the RNA polymerase, making the active site accessible; (2) Binding of the com-

plementary nucleoside triphosphate (NTP); (3) Addition of the nucleotide onto the 30 end of

the mRNA. This third step involves NTP hydrolysis. Nucleoside monophosphate is added

onto the chain and pyrophosphate is released from the enzyme.

Our study aimed to identify the best model to describe this reaction cycle for RNAP, pol

II, and T7 pol, based on analysis of published force-velocity data. As there are three reac-

tions, up to six rate constants may be necessary for a kinetic model of a single nucleotide

addition. These describe forward and backwards translocation (kfwd and kbck), binding and

release of NTP (kbind and krel), and NTP catalysis and reverse-catalysis (kcat and krev), also

known as pyrophosphorolysis [18]. However fewer than six parameters may be required in

practice.

First, it is reasonable to assume that polymerisation is effectively irreversible [17, 19–21], as

pyrophosphorolysis is a highly exergonic reaction, reducing the number of rate constants to

five. Second, translocation between the pretranslocated and posttranslocated states, and/or

NTP binding, may occur on timescales significantly more rapid than the other steps, in which

case they may be modelled as equilibrium processes. These assumptions simplify the model, as

the respective forward and reverse reaction rate constants are subsumed by a single equilib-

rium constant. Third, thermodynamic models of nucleic acid structure can be used to estimate

sequence-dependent translocation rates kfwd(l) and kbck(l), by invoking transition state theory,

and this can sometimes result in parameter reduction [16, 17, 21].

Irrespective of equilibrium assumptions and parameterisation, transcription elongation

under applied force can be modelled in two fundamentally distinct ways. First, there are the

deterministic equations which can be used to calculate the mean pause-free elongation
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velocity v(F, [NTP]) as a function of force F and NTP concentration [NTP]. This kind of

model can be derived from the differential equations describing the time evolution of all spe-

cies, by application of the steady state approximation. Force effects on the translocation step

are incorporated using transition state theory [22, 23].

Fig 1. Effect of an applied force on elongation velocity. (A) Optical trapping setup showing dsDNA being

transcribed by RNA polymerase (grey ellipse) into mRNA. Two polystyrene beads are tethered to the system allowing

the application of force using optical tweezers. An assisting load F> 0 acts in the same direction as transcription (top)

while a hindering load F< 0 acts in the opposing direction (bottom). Figure not to scale. (B) Schematic depiction of

the effect of applying a force on RNA polymerase. Due to the stochastic nature of transcription at the single-molecule

level, each experiment yields a different distance-time trajectory, even under the same applied force.

https://doi.org/10.1371/journal.pcbi.1006717.g001
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An example is the following 3-parameter model [4].

vðF; ½NTP�Þ ¼
kcat

1þ
KD
½NTP� ð1þ Kte� Fd=kBTÞ

ð1Þ

where δ is the distance between adjacent basepairs (3.4 Å, [15]), KD ¼
krel
kbind

is the equilibrium

constant of NTP binding, Kt ¼
kbck
kfwd

is the equilibrium constant of translocation, kB is the Boltz-

mann constant, and T is the absolute temperature. Increasingly complex equations may be

used as more parameters or states are added to the model [4, 6, 17]. Such equations describe

the velocity averaged across an ensemble of molecules. Parameter inference applied to veloc-

ity-force-[NTP] experimental data is straightforward and computationally fast when using

these equations. However these equations do not describe the distribution of velocity nor do

they account for site heterogeneity across the nucleic acid sequence and therefore cannot pre-

dict local sequence effects.

Second, there are the stochastic models, which can be implemented via simulation of sin-

gle-molecule behaviour using the Gillespie algorithm [24]. The mean velocity can be calculated

by averaging velocities over a number of simulations for a given F and [NTP]. This offers not

just the mean but a full distribution of velocities and could potentially explain emergent prop-

erties unavailable from a deterministic model. Unfortunately, simulating can be very slow and

therefore parameter inference can be a problem.

Fig 2. State diagrams of RNA polymerase. (A) The model of the main transcription elongation pathway, which shows the

postulated states; the pathways for interconversion; and the rate constants that govern each part of the reaction. The transcription

bubble is the set of β1 + h + β2 bases (see main text for definitions) in the double-stranded DNA which are unpaired. States are

denoted by S(l, t) where l is the length of the mRNA and t is the position of the polymerase active site (small grey rectangle) with

respect to the 30 end of the mRNA. Polymerase translocation displaces the polymerase by a distance of δ = 1 bp = 3.4 Å. During

polymerisation the chain is extended by one nucleotide. (B) Instantiated posttranslocated state of RNA polymerase transcribing the

rpoB gene sequence, with β1 = 2, h = 9, β2 = 1. Forward translocation requires melting two T/A basepairs (right arrows). Backward

translocation requires melting two C/G basepairs (left arrows). The mRNA secondary structure would also require reconfiguration

[16, 17].

https://doi.org/10.1371/journal.pcbi.1006717.g002
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In this study we used a Markov-chain-Monte-Carlo approximate-Bayesian-computation

(MCMC-ABC) algorithm [25] to estimate transcription elongation parameters for stochastic

models via simulation. The observed pause-free velocities we are fitting to were measured at

varying applied force and NTP concentration. For each RNA polymerase under study—E. coli
RNAP, S. cerevisiae pol II, and T7 pol—we fit to one respective dataset from the single-mole-

cule literature [4, 26, 27].

Models

Notation and state space

Suppose the TEC is transcribing a gene of length L. Then let S(l, t) denote a TEC state, where

the mRNA is currently of length l� L, and t 2 Z describes the position of the active site with

respect to the 30 end of the mRNA. When t = 0 the polymerase is pretranslocated and cannot

bind NTP, and when t = 1 the polymerase is posttranslocated and can bind NTP (Fig 2). This

study is focused on the main elongation pathway and the observed velocities being fitted have

pauses filtered out. Therefore, although additional backtracked states (t< 0) [4, 28, 29] and

hypertranslocated states (t> 1) [30, 31] exist, these are not incorporated in the model.

Let β1 and β2 be the number of unpaired template nucleotides upstream and downstream of

RNA polymerase, respectively, and let h be the number of basepairs in the DNA/mRNA hybrid

(Fig 2A). Although there are uncertainties in these parameters, they are held constant at h = 9,

β1 = 2, and β2 = 1 [17, 32].

Transcription of the gene begins at state S(l0, 0) and ends upon reaching S(L, 0), where

l0 = β1 + h + 2.

Parameterisation of the NTP binding step

NTP binding has been modelled as both a kinetic and equilibrium process in the literature [4,

17, 21].

In a kinetic binding model, NTP binding occurs at pseudo-first order rate kbind[NTP],

while NTP release occurs at rate krel. In this case, kbind and
krel
kbind

must be estimated.

Under a partial equilibrium approximation NTP binding and release are assumed to be

rapid enough that equilibrium is achieved. In this case, the rate constants kbind and krel are sub-

sumed by the NTP dissociation constant KD ¼
krel
kbind

which becomes the sole binding-related

parameter to estimate.

Parameterisation of the translocation step

While inferences about the rate constants associated with NTP binding and catalysis (kbind,
krel
kbind

, and kcat) can be made directly from the data, the translocation step is more complex. Tran-

sition state theory is invoked in order to estimate kfwd and kbck. Recasting the problem in this

way (1) provides a way of accommodating the effects of applied force on the elongation pro-

cess, and (2) allows the sequence-dependence of translocation to be incorporated by consider-

ing the energetics of basepairing. When allowing for sequence dependence, the total number

of translocation rates required to model translocation of the full gene is 2(L − l0).

Thermodynamic models of base pairing energies. The standard Gibbs free energies

ΔrG0(= ΔG) involved in duplex formation are calculated using nearest neighbour models. The

standard Gibbs energy of state S—arising from nucleotide basepairing and dangling ends—is

Bayesian inference and comparison of stochastic transcription elongation models
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calculated as

DGðbpÞS ¼ DGðbpÞgene þ DG
ðbpÞ
hybrid ð2Þ

where SantaLucia’s DNA/DNA basepairing parameters [33] are used to calculate DGðbpÞgene and

Sugimoto’s DNA/RNA parameters [34] are used for DGðbpÞhybrid. For the latter, dangling end ener-

gies are estimated as described by Bai et al. 2004 [21]. Here, and elsewhere, the (bp) superscript

is used to denote a model parameter that can be evaluated from the sequence alone. Gibbs

energies are expressed on a per molecule basis, relative to the thermal energy of the system, in

multiples of kBT, where kBT = 4.28001 × 10−21 J at T = 310 K.

In order for RNA polymerase to translocate forward (backward), up to two basepairs must

be disrupted: (1) the basepair at the downstream (upstream) edge of the transcription bubble,

and (2) the basepair at the upstream (downstream) end of the DNA/mRNA hybrid (Fig 2B).

Differences in the basepairing energies in these regions confer sequence-dependence on the

rate of translocation.

Calculation of translocation rates or translocation equilibrium constant. The standard

Gibbs energies of the pre and posttranslocated states, DGðbpÞSðl;0Þ and DGðbpÞSðl;1Þ, respectively, are used

with up to four additional terms—ΔGτ1, δ1, DGz
t
, and DGðbpÞTðl;tÞ—to calculate the translocation

rates. The first three are model parameters which must be estimated while the latter is directly

evaluated from the sequence.

Let T(l, t) be the translocation transition state between S(l, t) and S(l, t + 1). Then DGzTðl;tÞ ¼

DGz
t
þ DGðbpÞTðl;tÞ is the sequence-dependent standard Gibbs energy of activation which must be

overcome in order to translocate (Fig 3).

Given an applied force F, the translocation rates governing transition between the pre and

posttranslocated states (kfwd(l) and kbck(l)) are calculated from barrier height DGzTðl;0Þ using an

Arrhenius type relation:

kfwdðlÞ ¼ Ae� ðDG
z

Tðl;0Þ
� DGðbpÞ

Sðl;0Þ
� Fd1=kBTÞ ð3Þ

Fig 3. Parameterisation of the translocation step. (A) Effects of model parameters on state energies. The figure displays a

schematic Gibbs energy landscape of translocation, with backtracked states included for visualisation purposes. The solid red lines

represent translocation states (t = 0: pretranslocated, t = 1: posttranslocated, and t< 0: backtracked), while the dashed red lines

represent transition states. Applying an assisting force F> 0 tilts the landscape in favour of higher values of t. The effect of ΔGτ1 is

observed at the posttranslocated state t = 1. In a translocation equilibrium model, the barrier height is assumed to be so small, =

translocation is so rapid, that the transition states are disregarded. (B) A model for the sequence-dependent transition state between

translocation states S(l, 0) and S(l, 1). This is required for estimating the Gibbs energy of basepairing DGðbpÞTðl;tÞ in the transition state.

The basepairing energy, added to a baseline term DGz
t
, together specify the height of the activation barrier (Eq 10).

https://doi.org/10.1371/journal.pcbi.1006717.g003
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kbckðlÞ ¼ Ae� ðDG
z

Tðl;0Þ
� ðDGðbpÞ

Sðl;1Þ
þDGt1ÞþFðd� d1Þ=kBTÞ ð4Þ

The derived rates kfwd(l) and kbck(l) are therefore dependent on the local sequence. The pre-

exponential factor A is held constant at 106 s−1. This term has been arbitrarily set to a variety of

values in previous studies (106−109 s−1 [16, 17, 21]). This has little consequence for model fit-

ting, however the value of DGzTðl;tÞ is entangled with the value of the pre-exponential factor A
and can only be meaningfully interpreted in light of its value.

If the system has time to reach equilibrium, the probabilities of observing the pretranslo-

cated state S(l, 0) and posttranslocated state S(l, 1) are

pðSðl; 0ÞÞ / e� ðDG
ðbpÞ
Sðl;0Þ
Þ ð5Þ

pðSðl; 1ÞÞ / e� ðDGt1þDG
ðbpÞ
Sðl;1Þ
Þ ð6Þ

This is described by equilibrium constant Kτ.

KtðlÞ ¼
pðSðl; 0ÞÞ
pðSðl; 1ÞÞ

ð7Þ

¼ expf� ðDGSðl;0Þ � DGSðl;1ÞÞg ð8Þ

¼ expf� ðDGðbpÞSðl;0Þ � DG
ðbpÞ
Sðl;1Þ � DGt1Þg ð9Þ

The physical meanings of the terms ΔGτ1, δ1, DGz
t
, and DGðbpÞTðl;tÞ, and the way they are used in

the model, are detailed below.

Energetic bias for the posttranslocated states. ΔGτ1 (units kBT) is a parameter added to

the standard Gibbs energy of the posttranslocated state. If ΔGτ1 = 0, then the sequence alone

determines the Gibbs energy difference between pre and posttranslocated states. In this case,

pretranslocated states are usually favoured over posttranslocated states due to the loss of a sin-

gle basepair in the hybrid of the latter.

ΔGτ1 has frequently been estimated for T7 pol [35–37] and there has been discussion

around whether such a term is necessary for RNAP [6].

Polymerase displacement and formation of the transition state. δ1 (units Å) is the dis-

tance that the polymerase must translocate forward to facilitate the formation of the transition

state. The distance between adjacent basepairs is held constant at an experimentally measured

value δ = 3.4 Å [15], and 0< δ1 < δ. The response of the system to an applied force F depends

on this term. In general, the application of force F tilts the Gibbs energy landscape—the Gibbs

energy difference between adjacent translocation states being augmented by a factor Fd
kBT

(Fig

3A, [38, 39]).

It may be necessary to estimate δ1 to model the data adequately [17], or it may be sufficient

to simply set δ1 = δ/2 [38].

Energy barrier of translocation. DGz
t

and DGðbpÞTðl;tÞ (units kBT) together determine the acti-

vation barrier height in the translocation step. It is assumed that the sequence-dependent stan-

dard Gibbs energy of activation DGzTðl;tÞ can be written as

DGzTðl;tÞ ¼ DGz
t
þ DGðbpÞTðl;tÞ ð10Þ

Bayesian inference and comparison of stochastic transcription elongation models
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DGz
t

is therefore a sequence-independent baseline term used to compute the translocation

barrier heights. The parameter DGz
t

must be estimated in order to evaluate translocation rates.

In contrast DGðbpÞTðl;tÞ is a term that is evaluated directly from the sequence derived from a

model of the transition state (Fig 3B). The term is evaluated as the standard Gibbs energy of a

TEC containing all hybrid and gene basepairs found in both S(l, t) and S(l, t + 1), ie. the inter-

section between the two sets of basepairs.

Model space

The full transcription elongation model makes use of the following 6 parameters:

• kcat (units s−1).

• KD ¼
krel
kbind

(units μM).

• kbind (units μM−1 s−1).

• ΔGτ1 (units kBT).

• δ1 (units Å).

• DGz
t

(units kBT).

However fewer than 6 parameters may be needed to adequately describe the data. If it is

assumed that the energy differences between pre and posttranslocated states are determined

by basepairing energies alone, the parameter ΔGτ1 does not need to be estimated. This is equiv-

alent to holding ΔGτ1 constant at 0. If it is assumed that the displacement required for forma-

tion of the translocation transition state is half the distance between adjacent basepairs, the

parameter δ1 does not need to be estimated. This is equivalent to holding δ1 constant at δ/2.

Partial equilibrium approximations may also simplify the model, as detailed above. If bind-

ing is approximated as an equilibrium process, kbind does not need to be estimated. If translo-

cation is approximated as an equilibrium process, DGz
t

and δ1 do not need to be estimated.

One, both, or neither of these two steps (binding and translocation) could be assumed to

achieve equilibrium, thus yielding four equilibrium model variants (Fig 4A). The introduction

of partial equilibrium approximations for both the NTP binding and translocation steps has

implications when specifying the prior distributions for the Bayesian analysis (S4 Appendix)

The chemical master equations for single nucleotide addition cycles of these models are pre-

sented in S2 Appendix.

Incorporating these simplifications to the model in a combinatorial fashion results in a total

of 12 related models, which together constitute the model space. Our objective was to deter-

mine which of these 12 models provides the best description of the experimental data. The

simplest model (Model 1) contains 2 parameters (kcat and KD). The most complex model

(Model 12) contains all 6 parameters. The full model space is displayed in Fig 4B.

Stochastic modelling

For each model we performed stochastic simulations, appropriate for the modelling of single-

molecule force-velocity data. The simulations, performed using the Gillespie algorithm [24,

40], can be used to estimate the mean elongation velocity under a model.

The estimation of mean velocity can be broken down into three steps. First, the system is

initialised by placing the RNA polymerase at the 30 end of the template—state S(l0, 0)—with

the transcription bubble open and a DNA/RNA hybrid formed. The force and NTP concentra-

tions are assigned their experimentally set values. Second, a chemical reaction is randomly

Bayesian inference and comparison of stochastic transcription elongation models
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sampled. The probability that reaction S!k S0 is selected is proportional to its rate constant k
(Fig 2). The amount of time taken for the reaction to occur is sampled from the exponential

distribution. States which are subject to a partial equilibrium approximation are coalesced into

a single state, which augments the outbound rate constants. The second step is repeated until

the RNA polymerase has copied the entire template. Third, the previous two steps are repeated

c times. The mean elongation velocity is evaluated as the mean of each mean elongation veloc-

ity across c simulations. For further information, see S1 Appendix.

Relation to previous models and stochastic simulations

There is an extensive literature concerned with the kinetic modelling of transcription elonga-

tion. Such models may incorporate backtracking, hypertranslocation, and other reactions.

Here we are concerned only with the central elongation pathway.

A stochastic and sequence-dependent model was proposed by Bai et al. 2004 [21] for

RNAP, with both NTP binding and translocation treated as equilibrium processes. The trans-

location equilibrium constant was calculated entirely from basepairing energies. Therefore

this model is equivalent to Model 1, and the parameters were estimated as kcat = 24.7 s−1 and

KD = 15.6 μM from fit to experimental data. Maoiléidigh et al. 2011 also presented stochastic

simulations of RNAP. The elongation component of their model is equivalent to Model 6 [17].

We build on this work by providing a systematic Bayesian framework for model comparison

and parameter estimation.

While our analysis employed sequence-dependent stochastic models, comparisons can also

be made with some deterministic models.

Fig 4. The space of models to be compared. (A) The four equilibrium model variants. NTP binding, translocation,

both, or neither, could be assumed to achieve equilibrium prior to catalysis. (B) The 12 transcription elongation

models. An arrow connects model i to j if augmentation of model i with a single parameter generates model j. The

number of parameters to estimate k is shown for each level in the network. Equilibrium approximation colour scheme

is the same as in A. ΔGτ1 and δ1 can each be estimated or set to a constant.

https://doi.org/10.1371/journal.pcbi.1006717.g004
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Abbondanzieri et al. 2005 [4], Larson et al. 2012 [41], Schweikhard et al. 2014 [26], and

Thomen et al. 2008. [27, 37] described a deterministic model (for RNAP, pol II, pol II, and T7

pol respectively) which estimated kcat, KD and translocation equilibrium constant Kt ¼
kbck
kfwd

.

These are most similar to Model 4.

Maoiléidigh et al. 2011 for RNAP, and Dangkulwanich et al. 2013 for pol II, however found

that the translocation and catalysis were occurring on similar timescales, and modelled only

NTP binding as an equilibrium process [17, 42]. They also estimated the distance of transloca-

tion. These deterministic models are most similar to Model 11.

Finally, Mejia et al. 2015 [43] used a model that is quite different to all the above models, as

it does not explicitly treat translocation. Instead elongation is modelled with a two step kinetic

scheme, the first step involving NTP binding and conformational change, and the second step

involving nucleotide incorporation and product release. This model is most similar to a special

case of Model 5 where ΔGτ1 becomes extremely negative, driving the polymerase into the post-

translocated position.

Results and discussion

Model selection with MCMC-ABC

Our aim was to 1) use Bayesian inference to select the best of 12 transcription elongation mod-

els for each RNA polymerase; and 2) estimate the parameters for those models appearing in

the 95% credible set of the posterior distribution. Selecting prior distributions behind each

parameter is a critical process in Bayesian inference. A prior distribution should reflect what is

known about the parameter before observing the new data. We have explicated our prior

assumptions, with justifications, in Table 1.

We performed MCMC-ABC experiments which estimated the parameters and model indi-

cator Mi for i 2 Z; 1 � i � 12. Models which appear more often in this posterior distribution

are better choices, given the data. The model indicator is a discrete variable which can take 12

values, and is treated identically to the 6 continuous parameters in the Bayesian framework.

The datasets we fit our models to are all from the single-molecule literature and are pre-

sented in: Figures 5a and 5b of Abbondanzieri et al. 2005 [4] for E. coli RNAP, Figure 2a of

Schweikhard et al. 2014 [26] for S. cerevisiae pol II, and Table 2 of Thomen et al. 2008 [27] for

T7 pol. To computationally replicate these experiments as faithfully as we could with the avail-

able information and computational limitations, simulations in this study were run on the 4

kb E. coli rpoB gene for RNAP (GenBank: EU274658), the first 4.75 kb of the human rpb1 gene

for pol II (NCBI: NG_027747) the first 10 kb of the Enterobacteria phage λ genome for T7 pol

(NCBI: NC_001416). The mean velocities from 32 (for RNAP), 10 (for pol II) and 3 (for T7

pol) simulations of the full respective sequences were used to estimate the mean elongation

velocity during MCMC-ABC, given F and [NTP].

For further information about the MCMC-ABC algorithm [25, 44], or the model indicator

Mi, see S3 Appendix.

The posterior distributions

The posterior distributions from our MCMC-ABC experiments are presented in Table 2, Figs

5 and 6.

A large effective sample size (> 100 [53]) and a small R̂ (< 1.1, as defined by Gelman et al.

1992 [54–56]) are essential for making reliable parameter estimates. Table 2 suggests that the

parameters in the 95% credible set of models are sufficiently estimated by these criteria.
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These results indicate that the best models for the datasets examined are Models 11 and 12

for both RNAP and pol II, and Model 5 for T7 pol (Fig 4B).

For pol II, Model 12 has the highest posterior probability P(M12|D) = 0.71. This is the most

complex model considered, with 6 estimated parameters. In Model 12 translocation, NTP

binding and catalysis are all kinetic processes; the displacement required to facilitate formation

of the translocation transition state, δ1 < δ, is estimated (d̂1 ¼ 3:1 A
�

); and the standard Gibbs

energy of the posttranslocated state is influenced by parameter ΔGτ1 6¼ 0.

The posterior distribution for RNAP consists of the same set models as that of pol II. For

RNAP, Model 11 has the highest probability P(M11|D) = 0.81. This model is a submodel of

Model 12 with one fewer parameter: in Model 11 NTP binding is treated as an equilibrium

process while in Model 12 it is not.

The only model in the 95% credible set for T7 pol is Model 5 P(M5|D) = 0.96. In Model 5 (4

parameters) translocation, but not binding, is treated as an equilibrium process, and ΔGτ1 is

estimated. This positions T7 pol in a quite different area of the model space to the other two

polymerases.

Translocation rates differ among RNA polymerases

For RNAP and pol II, we estimate that a partial equilibrium approximation for the transloca-

tion step is inadequate. The posterior probability that such models are inadequate is 1.00 (see

Table 2). For T7 pol, however, translocation is significantly faster than catalysis and is best

modelled with a partial equilibrium approximation. Using estimates for DGz
t

and ΔGτ1 under

the maximum posterior models (Model 11 for RNAP and Model 12 for pol II) we estimate the

Table 1. Prior distributions used during Bayesian inference.

Parameter Prior distribution(s) Justification of prior distribution(s)

Model M P(Mi) = 2/16 for i 2 {1, 2, 4, 5}

P(Mi) = 1/16 for i 2 {3, 6, 7, 8, 9, 10,

11, 12}

Each model should each have uniformly distributed values. Models with translocation at equilibrium have

double the prior probability since these models do not use δ1.

kcat (s−1) Lognormal(μ = 3.454, σ = 0.587) for

RNAP/pol II

Lognormal(μ = 4.585, σ = 0.457) for

T7 pol

kcat and elongation velocity estimates for E. coli RNAP and S. cerevisiae pol II range from 18 to 50 s−1 for optical

trapping experiments [6–8, 21, 43], but as much as 100 bp/s in vivo [45–48]. Distribution selected such that (10,

100) is central 95% interval. For T7 pol kcat and elongation velocity estimates range from 43–240 bp/s [9, 49–51].

Distribution selected such that (40, 240) is central 95% interval.

KD (μM) Lognormal(μ = 1.844, σ = 1.762) Estimates for KD under binding equilibrium models range from 20-140 μM [6, 20, 37, 41, 52]. In models where

binding is kinetic and slow, KD �
krel
kbind

could be much lower (S4 Appendix). To accommodate for both binding

models, the prior distribution was selected such that the central 95% interval is (0.2, 200).

kbind
(μM−1s−1)

Lognormal(μ = −1.498, Sσ = 1.585) Central 95% interval set so that NTP binding is a slow kinetic step (S4 Appendix). Centered around (0.01, 5).

ΔGτ1 (kBT) Normal(μ = 0, σ = 1.55) for RNAP/

pol II

Normal(μ = −3.3, σ = 1.55) for T7

pol

For RNAP and pol II, centered around 0 with a standard deviation comparable to the free energy of a single

nucleotide basepair doublet, and such that the 95% central interval is (-4, 4). For T7 pol ΔGτ1 has been estimated

as -4.3 [37] and -4.87 kBT [35]. However these estimates are likely resulting partially from dangling ends. Thus,

we subtracted the mean dangling end contribution of * -1 kBT [33] and centered the prior around this interval

with a standard deviation the same as above.

DGz
t

(kBT) Normal(μ = 5.5, σ = 0.97) for

RNAP/pol II

Normal(μ = 2.5, σ = 1.36) for T7 pol

Central 95% interval set so that translocation is a slow kinetic step (S4 Appendix). Selected so that 99% central

interval is (3, 8) for RNAP and pol II, and (-1, 6) for T7 pol.

δ1 (Å) Uniform(l = 0, u = 3.4) Uniformly distributed across all possible values.

Prior distributions behind all estimated parameters and the model indicator. Unless specified otherwise, the prior distribution is used for all three RNA polymerases.

Lognormal priors (parameterised in log space) are used for rates and equilibrium constants while normal priors are used for Gibbs energy terms. To maintain statistical

integrity of the Bayesian analysis, prior distributions were not derived from the data presented by Abbondanzieri et al. 2005 [4] for RNAP, by Schweikhard et al. 2014

[26] for pol II, or by Thomen et al. 2008 [27] for T7 pol.

https://doi.org/10.1371/journal.pcbi.1006717.t001
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mean forward �kfwd and backward �kbck translocation rates averaged across the rpoB sequence as:

230 s−1 and 112 s−1 for RNAP, and 350 s−1 and 12.7 s−1 for pol II, respectively (3 sf). These esti-

mates are within one order of magnitude of the respective estimate for the rate of catalysis (Fig

5) suggesting that translocation and catalysis indeed occur on similar timescales.

For RNAP and pol II, translocation has frequently been modelled as an equilibrium process

[4, 21, 26, 41, 43], however in some recent analyses this assumption has been rejected [16, 17,

42, 57, 58]. Our Bayesian analysis supports this. In contrast, there is general agreement that

translocation in T7 pol is adequately modelled as an equilibrium process [27, 59, 60].

The data does not determine the kinetics of the NTP binding step

It remains unclear how to best model the NTP binding step. Models that describe NTP binding

as a kinetic process have posterior probabilities of 0.19 for RNAP, 0.71 for pol II and 0.96 for

T7 pol (Table 2). However, in an earlier experiment, where we used different a prior distribu-

tion for
krel
kbind

, the latter probability was 0.21 and P(M4|D) was 0.79. The intermediate magnitude

of these posterior probabilities, and sensitivity to the choice of prior, imply that the data con-

tains very little information about which binding model is preferred.

Furthermore,
krel
kbind

and kbind (Models 5 and 12) are unable to be estimated simultaneously. For

pol II and for T7 pol, kbind is estimated at around 0.48 and 1.4 μM−1 s−1 respectively with fairly

narrow 95% highest posterior density (HPD) intervals (Fig 5). However, the HPD interval of
krel
kbind

spans three orders of magnitude and the value of this parameter was therefore poorly

informed by the data. For RNAP, in contrast, neither kbind nor
krel
kbind

were well-informed by the

Table 2. Summary of MCMC-ABC experiments.

Enzyme E. coli RNAP S. cerevisiae pol II Bacteriophage T7 pol

� 2.39 0.705 4.63

Number of

chains

70 10 26

Combined chain

length

3.5 × 107 6.2 × 107 1.2 × 108

i 11 12 11 12 5

Model Description Binding equilibrium,

Translocation kinetic

Binding kinetic,

Translocation kinetic

Binding equilibrium,

Translocation kinetic

Binding kinetic,

Translocation kinetic

Binding kinetic,

Translocation equilibrium

ESS / R̂ k̂ cat
257 / 1.04 1441 / 1.03 549 / 1.02 1203 / 1.01 2110 / 1.00

k̂rel
kbind

328 / 1.01 101 / 1.01 536 / 1.01 133 / 1.05 106 / 1.00

k̂ bind
− 705 / 1.09 − 516 / 1.02 154 / 1.00

DĜ t1
466 / 1.02 1844 / 1.00 1145 / 1.00 2769 / 1.00 1626 / 1.02

d̂ 1
300 / 1.04 2290 / 1.03 658 / 1.01 1469 / 1.00 −

DĜ z
t

340 / 1.02 1680 / 1.03 589 / 1.02 1179 / 1.00 −

Posterior P(Mi|D) 0.81 0.19 0.29 0.71 0.96

Each column summarises the posterior distribution for the respective RNA polymerase, which arises from multiple independent MCMC chains. The combined chain

length refers to the total number of states sampled, a small fraction of which are used to estimate the 6 continuous model parameters and the model indicator M.

Approximate Bayesian computation threshold � is shown for each enzyme; state Θ is accepted into the posterior distribution only if X2(Θ)� � (S3 Appendix). Models

which appear in an RNA polymerase’s 95% credible set and their posterior probabilities P(Mi|D) are shown. The effective sample size (ESS, calculated with Tracer 1.6

[53]) and R-hat (R̂ [54–56]) of each parameter, conditional on Mi, are displayed. A large ESS (> 100) and a small R̂ (< 1.1) imply that the MCMC experiment has

converged. Where a parameter is not incorporated in the kinetic model, a ‘−’ is left in its place.

https://doi.org/10.1371/journal.pcbi.1006717.t002
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data and both have HPD intervals spanning 1-2 orders of magnitude. This non-identifiability—

where two or more parameters are unable to be estimated simultaneously (S4 Appendix)—

highlights the appeal of an NTP binding equilibrium model where only one parameter
krel
kbind

needs to be estimated, despite the unrealistic assumptions it may invoke. In the case of each

enzyme, the data has taught us nothing about one or two of the binding parameters.

The pause-free mean velocities measured during transcription elongation follow Michaelis-

Menten kinetics even though the reaction cycle is more complicated than that of a simple

enzyme [61]. As such, the inability to resolve the timescale of the substrate binding step is

unsurprising [62–64].

Fig 5. Posterior and prior distribution plots. Posterior distributions for all models which appear in the 95% credible

set are displayed (two models for RNAP, two models for pol II, and one model for T7 pol). Plots show the prior

probability density P(θ) of each parameter and posterior probability density of each parameter conditional on the

model P(θ|D, Mi). The geometric median point-estimates and highest posterior density (HPD) intervals (calculated

with Tracer 1.6 [53]) are displayed above each plot (3 sf).

https://doi.org/10.1371/journal.pcbi.1006717.g005
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In the transcription literature, NTP binding is almost always assumed to achieve equilib-

rium for RNAP, pol II, and T7 pol [4, 16, 17, 21, 26, 27, 37, 41, 42, 60]. However Mejia et al.

2015 [43] have shown that NTP binding is indeed rate-limiting, and that mutations in the

RNAP trigger loop impair the binding rate thus suggesting that the trigger loop is coupled

with NTP binding.

RNAP has an energetic preference for the posttranslocated state

In previous stochastic sequence-dependent models [16, 21] the standard Gibbs energies of the

pre and posttranslocated states have been based solely on the nucleic acid basepairing energies.

Our models include an additional term, ΔGτ1, to account for potential interactions between

Fig 6. Posterior distributions of simulated velocities. Black open circles represent experimentally measured mean velocities

reported in the original publication for (A) RNAP, (B) pol II, and (C) T7 pol [4, 26, 27]. Each coloured dot represents a single sample

simulated from the posterior distribution of parameters/models for the respective polymerase. 30 samples were generated from each

of the three posterior distributions. For RNAP, [NTP]eq is defined as [ATP] = 5 μM, [CTP] = 2.5 μM, [GTP] = 10 μM, and [UTP] =

10 μM.

https://doi.org/10.1371/journal.pcbi.1006717.g006
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the protein and the nucleic acid. The marginal posterior probability of a model in which an

additional term ΔGτ1 is required is 1.00 in all three polymerases. In each case ΔGτ1 was esti-

mated to be less than 0 kBT and 0 kBT is not included in the 95% HPD interval (Fig 5). We find

that DĜt1 is the most significant in pol II and T7 pol: −4.6 kBT and −4.0 kBT respectively, while

DĜt1 ¼ � 2:0 kBT for RNAP (2 sf).

These results suggest that structural elements within RNA polymerases can energetically

favour posttranslocated states over pretranslocated states. We note that the sequence-depen-

dent contribution of the dangling end of the DNA/RNA hybrid is included in the thermody-

namic model. The energetic bias for the posttranslocated state is separable from this effect.

To facilitate comparison with previous deterministic models, using our estimates of ΔGτ1

we calculated the equilibrium constant between the pre and posttranslocated states. Geometri-

cally averaged across the rpoB gene, these are

�K t ¼
1

L � l0
expf

XL� 1

l¼l0

lnðkbckðlÞ=kfwdðlÞÞg ¼

0:77 for RNAP

0:057 for pol II

0:10 for T7 pol:

8
>>><

>>>:

ð11Þ

Thus, for all three polymerases, Kτ< 1, indicating that the small energetic preference that

the protein has for the posttranslocated state is sufficient to override the loss of basepairing

energy, thereby biasing the system towards population of the posttranslocated positions. This

is in agreement with estimates made for pol II and T7 pol [26, 27, 35, 36, 41] and Kireeva et al.

2018 [58] for RNAP: “forward translocation occurs in milliseconds and is poorly reversible”.
However these estimates are inconsistent with some RNAP and pol II studies which place this

ratio above 1 [4, 17, 42, 52].

Kinetic modelling can itself suggest no physical mechanism for the stabilisation. Yu et al.

2012 [36] have identified a conserved tyrosine residue near the active site of T7 pol that pushes

against the 30 end of the mRNA, and thus stabilises the posttranslocated state. They propose a

similar mechanism for the multi-subunit RNA polymerases.

δ1 may be an important parameter but its physical meaning is unclear

Our results suggest that δ1, the distance that RNA polymerase must translocate forward by to

reach the translocation transition state, is a necessary parameter to estimate for RNAP and pol

II. Setting δ1 = δ/2 is not sufficient. The marginal posterior probability of models which esti-

mate this term is 1.00. δ1 is irrelevant to the modeling of the T7 pol data because the best mod-

els invoke a partial equilibrium approximation for the translocation step.

While our prior distribution restricted δ1 to lie in the range (0, δ), the upper end our 95%

HPD intervals of δ1 for RNAP and pol II are very close to δ = 3.4 Å. If it was not for this prior

distribution, δ1 estimates would have included values higher than δ. Similar results have been

observed by Maoiléidigh et al. 2011 [17] for RNAP.

Our interpretation of δ1 implies it should never be greater than δ nor should δ be more

than the width of one basepair. The physical meaning of δ1 with values greater than δ is thus

unclear. It is noted that δ1 is only used when F 6¼ 0.

Comparing the kinetics of RNA polymerases

The in vivo rate of transcription elongation varies considerably across RNAP, pol II and T7

pol. The prokaryotic and eukaryotic RNA polymerases have a mean rate ranging from 20-120

bp/s [45, 46, 48, 49, 65–67], which may be slowed down in histone-wrapped regions of
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eukaryotic genomes [7]. In contrast, Bacteriophage T7 pol operates up to an order of magni-

tude faster (around 200-240 bp/s [49, 68]) and is known to be quite insensitive to transcrip-

tional pause sites [9, 27].

In additional to these differences, we have shown that translocation is very rapid in T7 pol,

relative to the rate of NTP incorporation, while the disparity is much less significant in RNAP

and pol II. Furthermore, the model does not fit the data for T7 pol as closely it does for RNAP

and pol II (Fig 6). T7 pol therefore seems to operate under quite a different kinetic scheme

than that of the cellular polymerases, which is not unexpected given their distant evolutionary

relationship [3].

In general, the elongation velocity of RNA polymerase is significantly slower in an optical

trap (with estimates ranging from 9.7-22 bp/s for RNAP [11–13, 43, 69]) compared with that

of the untethered enzyme (with estimates in vitro or in vivo ranging from 25-118 bp/s for

RNAP [45, 49, 70, 71]). This relationship holds for multiple RNA polymerases including E. coli
RNAP, S. cerevisiae pol II [41, 42, 52, 72], Bacteriophage T7 pol [9, 27, 49, 51], and Bacterio-

phage F6 P2 [10, 73]. This suggests that optical trapping perturbs the system to a significant

extent. Additionally, varying degrees of heterogeneity in elongation rate have been observed

across different polymerase complexes even under the same conditions [11, 13, 27].

The velocity perturbations resulting from the optical trapping apparatus will be propagated

into the model parameters, especially kcat, and DGz
t
, and some caution is needed when extrapo-

lating these results to untethered systems.

Bayesian inference of transcription elongation

To our knowledge we are the first to perform Bayesian inference on single-molecule models of

transcription elongation. This was achieved by simulation which necessitated the use of

approximate Bayesian computation. An alternative would be to build and use a likelihood

function (ie. the probability of taking exactly t units of time for RNA polymerase to copy the

sequence n times). The latter approach can be achieved using chemical master equations, as

opposed to (Gillespie) sampling from the distribution. Finding analytical, stable numerical, or

approximate solutions to the chemical master equations could provide a similar insight in less

computational time, however is susceptible to a multitude of analytical and numerical issues

associated with the exponentiation of an arbitrary transition rate matrix that grows with the

length of the sequence (S2 Appendix) [74]. This problem would be amplified by the introduc-

tion of backtracking, hypertranslocation, or NTP misincorporation reactions into the model,

for instance. The Bayesian framework we have presented, although computationally intensive

due to its simulation requirement, is general and will work on any model of transcription with-

out the need to resolve these issues. The path has been paved for modelling transcriptional

pausing, for instance [16, 21, 75]. Nevertheless, likelihood-based Bayesian inference is an

approach that should be explored in the future.

We have demonstrated that single-molecule data can be usefully analysed using a Bayesian

inference and model selection framework. This analysis would have even greater statistical

power if applied to the progression of individual RNA polymerase complexes instead of mean

velocities averaged across multiple experiments.

Conclusion

In this article we evaluated some simple Brownian ratchet models of transcription elongation

(Fig 2). By varying the parameterisation of the translocation step (Fig 3) and incorporating

partial equilibrium approximations commonly invoked in the literature (Fig 4A) we enumer-

ated a total of 12 related models (Fig 4B). Using stochastic simulations and approximate
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Bayesian computation, we then assessed which of these models were capable of describing the

force-velocity data previously measured for several RNA polymerases (Table 2 and Fig 5)

using single-molecule optical trapping experiments [4, 26, 27].

Our analysis suggests that 1) different partial equilibrium approximations of the transloca-

tion step are appropriate for the multisubunit RNA polymerases versus the single subunit T7

RNA polymerase. 2) Treatment of the NTP binding step remains a point of ambiguity. The

existing data does not place strong constraints on the modelling of this step. 3) There is an

energetic bias for posttranslocated state. 4) The model of the force-dependent translocation,

which invokes transition state theory, is not physically realistic.
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S1 Fig. Simulations of the elongation pathway. Each point is a single simulation of the full

rpoB gene (4029 nt). For (A-C), Parameters on the x- and z-axis are sampled uniformly at ran-

dom from the displayed range at the beginning of each trial. The y-axis of each plot (mean

elongation velocity) is then measured from the respective simulation. [NTP] and F held con-

stant at 1000 μM and 0 pN respectively. (A) and (B): Relationship between DGz
t

and kcat for the

melting model with binding at equilibrium (Model 8). ΔGτ1 set to its prior mean (0 for RNAP

and pol II, and -3.3 for T7 pol). (C) Relationship between kbind and kcat for the kinetic binding

model with translocation at equilibrium (Model 2). (D) Relationship between KD and kbind
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bp/s were discarded. [NTP] = 10 μM and kcat = 100 s−1.
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