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Abstract

Even with an overarching functional dysconnectivity model of adolescent-onset

schizophrenia (AOS), there have been no functional connectome (FC) biomarkers

identified for predicting patients' specific symptom domains. Adolescence is a period

of dramatic brain maturation, with substantial interindividual variability in brain anat-

omy. However, existing group-level hypotheses of AOS lack precision in terms of

neuroanatomical boundaries. This study aimed to identify individual-specific FC bio-

markers associated with schizophrenic symptom manifestation during adolescent

brain maturation. We used a reliable individual-level cortical parcellation approach to

map functional brain regions in each subject, that were then used to identify FC bio-

markers for predicting dimension-specific psychotic symptoms in 30 antipsychotic-

naïve first-episode AOS patients (recruited sample of 39). Age-related changes in bio-

marker expression were compared between these patients and 31 healthy controls.

Moreover, 29 antipsychotic-naïve first-episode AOS patients (analyzed sample of 25)

were recruited from another center to test the generalizability of the prediction

model. Individual-specific FC biomarkers could significantly and better predict AOS

positive-dimension symptoms with a relatively stronger generalizability than at the

group level. Specifically, positive symptom domains were estimated based on connec-

tions between the frontoparietal control network (FPN) and salience network and

within FPN. Consistent with the neurodevelopmental hypothesis of schizophrenia,
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the FPN–SN connection exhibited aberrant age-associated alteration in AOS. The

individual-level findings reveal reproducible FPN-based FC biomarkers associated

with AOS positive symptom domains, and highlight the importance of accounting for

individual variation in the study of adolescent-onset disorders.
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1 | INTRODUCTION

Schizophrenia is a devastating psychiatric disorder with a typical onset in

early adulthood. Adolescent-onset schizophrenia (AOS), a relatively rare

form, has more pronounced clinical symptomatology (Frazier et al., 2007)

and tends to be more resistant to antipsychotic treatment, with worse

prognosis (Hollis, 2000). Moreover, AOS is also characterized by more

extensive neuropathological changes (Douaud et al., 2007). According to

the overarching dysconnectivity hypothesis, the large-scale organization

of the brain—that is, the functional connectome (FC) plays an important

role in the pathophysiology of schizophrenia (Li et al., 2018; Narr &

Leaver, 2015; Woodward & Cascio, 2015). Patients with AOS have been

reported to show FC abnormalities across widespread brain networks,

including the default mode network (DMN) (Tang et al., 2013), limbic

network (LMB) (White et al., 2008), frontoparietal control network (FPN)

(Kyriakopoulos et al., 2012), and frontotemporal network (Yang

et al., 2014). Dysconnectivity of these networks may scale with the

severity of psychotic symptoms in patients (Tang et al., 2013; White

et al., 2008). For example, aberrant LMB (White et al., 2008) and cor-

ticostriatal (Zheng et al., 2018) FC were separately reported to have

implications for positive symptoms in AOS. Abnormally increased FC in

DMN was also reported to be associated with positive symptoms (Tang

et al., 2013). However, these dimensional findings have not cohered into

a categorical set of brain-based biomarkers that can be reproducibly used

to predict AOS symptom burden.

To date, no reliable brain-based biomarker that links neuroana-

tomical substrates to disease-related behaviors has been identified for

schizophrenic symptoms in adolescent patients. Brain-based bio-

marker, as an indicator of neuronal function, can facilitate current

diagnosis, prognosis, and treatment of psychotic illnesses (Tregellas,

2014; Yamada et al., 2017). Biomarkers for schizophrenic symptoms,

which were supposed to be involved in patient's pathology, may be

used to determine if therapeutic candidates evoke their targeted bio-

logical effects (Tregellas, 2014). Connectome-based biomarkers are

promising candidates for this purpose with recent advances in func-

tional neuroimaging (Fan et al., 2020; Xiaonan Guo et al., 2020;

Shaoqiang Han et al., 2020; Yamada et al., 2017). For instance, FC bio-

markers have been identified to monitor social cognitive and

neurocognitive performance in schizophrenia, which can further

inform the treatment of cognitive deficits (Viviano et al., 2018). The

lack of connectome-based biomarkers for psychotic symptoms in AOS

has thus far prevented progress in the diagnosis and treatment of this

disorder.

Previous group-level studies on AOS have been hampered by low

precision in the mapping of functional cortical networks. Specifically, the

brain undergoes dramatic alterations during adolescence, including corti-

cal network reorganization and refinement (Cao, Huang, Peng, Dong, &

He, 2016). Moreover, the brains of adolescents show greater inter-

individual variability than that of adults (Foulkes & Blakemore, 2018); this

is especially true of the association cortex, which has been implicated in

AOS pathology (Mueller et al., 2013). Inaccurate and indistinct neuroana-

tomical boundaries determined from group-based approaches can pre-

vent the delineation of brain connectome, and may obscure biologically

important signals that can reveal brain–behavior associations in AOS

(Gordon et al., 2017). Thus, accounting for the neuroanatomical variabil-

ity among individuals is essential for establishing brain connectome and

its relationship to symptomatology in AOS.

Recently, a reliable and reproducible cortical parcellation approach

that account for individual heterogeneity in cortical functional anatomy

has been developed by Wang et al. (Li et al., 2019; Wang et al., 2015).

Based on an iterative functional network parcellation procedure, this

individual-level strategy maps cortical functional networks by localizing

functional regions of interest (ROIs) in individual subjects.

Dysconnectivities among these individual-specific functional networks

were reported in various psychiatric disorders including obsessive–

compulsive disorder (Brennan et al., 2019), depression and AOS (Wang

et al., 2018). Compared with group-level analyses, FC based on

individual-level strategies had more robust predictive performance for

whether cognitive abilities in healthy individuals (Li et al., 2019) or clinical

symptoms in psychiatric illnesses (Brennan et al., 2019; Wang

et al., 2018). Thus, using the individual-specific parcellation approach may

facilitate the discovery of FC biomarkers for psychotic symptoms in AOS.

To this end, the present study recruited 68 antipsychotic-naïve first-

episode AOS patients including two independent replication cohorts. We

employed functional connectivity analyses on resting-state functional

magnetic resonance imaging (MRI) signals of individual-specific regions

identified by the novel cortical functional network parcellation method,

and applied a data-driven prediction model to examine brain–behavior

relationships. We speculated that the individual-based strategy would

increase statistical power by improving the specificity of functional sig-

nals in brain regions compared with the traditional group-level approach.

Specifically, we assumed that individual-specific FC biomarkers could

reproducibly and better predict specific schizophrenic symptom domains

in the maturing adolescent brain than group atlas-based biomarkers.

According to the neurodevelopmental hypothesis of schizophrenia

(Douaud et al., 2009), we also assumed that the predictive FC would
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show aberrant age-related alterations in AOS compared with 31 healthy

control (HC) subjects.

2 | MATERIALS AND METHODS

2.1 | Subjects

Thirty-nine antipsychotic-naïve first-episode AOS patients and

31 sex- and age- matched HC subjects were recruited from outpatient

treatment centers of the Second Affiliated Hospital of Xinxiang Medi-

cal University. Patients were diagnosed based on the consensus by

two senior psychiatrists with more than 10 years of experience (Y. Z.,

and J. Z.) using the Structured Clinical Interview for Diagnostic and

Statistical Manual of Mental Disorders, Fourth Edition, and the diag-

nosis was confirmed after a follow-up of at least 6 months. Controls

were recruited through media advertisements. Exclusion criteria for all

subjects were as follows: neurological or other psychiatric diseases;

current (within the last 12 months) substance use; neurological MRI

anomalies; or any electronic or metal implants. The Positive and Nega-

tive Syndrome Scale (PANSS) was performed by the consensus of

abovementioned two psychiatrists, which was used to assess the

severity of psychotic symptoms in AOS patients. All participants were

right-handed, Han Chinese ethnicity, and aged from 12 to 18 years

old. These subjects have previously participated in three hypothesis-

driven studies (Wang et al., 2017; Zheng et al., 2016; Zheng

et al., 2018), which revealed disrupted frontoparietal functions in

AOS. Our recent group-level study examined the global efficiency of

whole-brain FC and reported disrupted large-scale integration func-

tion (Li et al., 2018). However, previous group-level studies were not

enough to provide unbiased whole-brain functional biomarkers for

AOS symptoms. In the current study, three patients were excluded

due to incomplete scanning, one patient due to excessive head motion

(mean frame-wise displacement, [FD] >0.2 mm), and five patients due

to poor quality of intrasubject brain registration (cost >0.5). Ulti-

mately, data for 30 AOS patients were used in the analysis. The demo-

graphic and clinical information is summarized in Table 1.

This study was reviewed and approved by the Ethics Committee

of the Department of Psychiatry at the Second Affiliated Hospital of

Xinxiang Medical University and the Second Xiangya Hospital of Cen-

tral South University, and written consent was obtained from all par-

ticipants and their parents.

2.2 | Data acquisition

Imaging data were collected using a 3 T MRI scanner (MAGNETOMVerio;

Siemens, Germany). Patients were scanned before they were ever treated

with antipsychotics. Specifically, they were scanned immediately after the

first diagnosis was confirmed. Participants were instructed to stay awake

with their eyes closed during the scan, and were asked if they had fallen

asleep during the scanning at the end. Functional images were acquired as

an echo-planar imaging sequence with the following parameters: repetition

time (TR) = 2,000 ms; echo time (TE) = 30 ms; matrix = 64 × 64, 33 axial

slices; slice thickness = 4 mm, 0.6 mm gap; flip angle = 90�; field of

view = 220 × 220 mm2; voxel size = 3.4375 × 3.4375 × 4 mm3; and

240 volumes. T1-weighted anatomical images were acquired as a three-

dimensional fast-spoiled gradient-echo sequence with the following

parameters: TR = 2,530 ms; TE = 2.43 ms; matrix = 256 × 256, 158 axial

slices; slice thickness = 1.2 mm, no gap; flip angle = 7�; field of

view = 256 × 256 mm2; and voxel size = 1 × 1 × 1 mm3.

2.3 | Data preprocessing

Resting-state functional images were preprocessed as previously

described (Yeo et al., 2011). Briefly, the first four volumes were discarded;

slice-time and head motion (cut-off <2 mm) were corrected with the

TABLE 1 Demographic and Clinical
Characteristics

Characteristic AOSs (n = 30) HCs (n = 31)

Group comparisons

Statistic values p-Values

Sex (male/female) 15/15 13/18 0.40a .53

Age (years) 15.10 ± 0.32 15.35 ± 0.28 0.59b .55

Mean FD (mm) 0.02 ± 0.001 0.03 ± 0.004 383c .11

PANSS scores

Total scores 75.17 ± 2.00 — — —

General scores 34.13 ± 1.25 — — —

Positive scores 20.33 ± 1.08 — — —

Negative scores 20.70 ± 1.68 — — —

Note: Mean ± SEM.

Abbreviations: AOSs, adolescent-onset schizophrenia patients; FD, frame-wise displacement; HCs,

healthy control subjects; PANSS, Positive and Negative Symptom Scale.
aThe χ2 value for gender distribution was obtained by chi-square test.
bThe T values were obtained by two-sample t test.
cThe U values were obtained by Mann–Whitney tests.
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FSL package; global mean signal intensity was normalized; a

0.01–0.08 Hz band-pass temporal filter was applied; and head motion,

ventricular, white matter, and cerebrospinal fluid signals were

regressed out along with whole brain signal to improve the correction

of motion-related artifacts (Fan et al., 2019; Han et al., 2019; Yan

et al., 2013). The mean FD was calculated for each participant. Sub-

jects with the mean FD value exceeding the 0.2 mm were excluded

from the analysis. Motion-confounded time points were not censored

as data scrubbing can increase connectivity estimates in specific

regions (Guo et al., 2019; Zeng et al., 2014). However, head motion-

related functional connections (p < .01) among homologous

individual-specific ROIs were excluded in the subsequent prediction

analysis (Wang et al., 2018). The contribution of head motion to the

prediction results was further estimated by correlating mean FD and

predicted scores for each subject. No correlation between mean FD

and predicted scores (r = −.15, p = .44; See Figure S3 in Supplemen-

tary 3) indicated that head motion had no contribution to the results.

T1-weighted anatomical images were preprocessed using the

FreeSurfer v.5.3.0 software package (https://surfer.nmr.mgh.harvard.edu/).

A validation analysis was added by normalizing the anatomical images into

an adolescent template (http://www.bic.mni.mcgill.ca/ServicesAtlases/

NIHPD-obj1) to exclude the influence of normalization template (see Sup-

plementary 1 for detailed validation results). The structural and functional

images were aligned by boundary-based registration. Participants with the

intrasubject registration cost exceeding the 0.5 were discarded. Functional

images were registered to the FreeSurfer surface template; smoothed with

a 6 mm full-width half-maximum smoothing kernel; and then downsampled

to a mesh of 2,562 vertices in each hemisphere.

2.4 | Identifying individual-specific functional
regions

The analytical procedure that was implemented for identification of

individual-specific functional ROIs has been previously described (Wang

et al., 2018). Briefly, we used the iterative parcellation algorithm (Wang

et al., 2015) to map 18 individual-level cortical networks based on a

group-level functional network atlas (see Table S2 in Supplementary 3)

(Wang et al., 2015), which was adapted from the original 17-network

atlas derived from 1,000 healthy subjects (Yeo et al., 2011). Specifically,

individual-level network boundaries were iteratively adjusted using the

interindividual variability and signal-to-noise distributions. Based on the

assumption that a group-level ROI might roughly represent the center of

the homologous ROIs across different individuals (Li et al., 2019), we used

the group-level ROI as the common reference. Thus, individual-level cor-

tical networks were segmented into discrete patches, and were matched

to the 116 cortical ROIs extracted from the group-level functional net-

work atlas by using a clustering approach in FreeSurfer (mri_surfcluster).

If a patch overlapped with a single or multiple ROIs in the atlas, it was

labeled as the same ROI or split into multiple matched patches; however,

if there was no overlap with an ROI, the patch was assigned to the

nearest one (or labeled as “unrecognized”) if the mean distance between

them was within a certain threshold (or exceed the threshold), which was

selected as the mean distance between any two vertices in the nearest

ROI. Finally, patches that matched the group-level atlas-based ROIs were

labeled as the homologous ROIs in the individual. Functional connectivity

analyses were performed on homologous ROIs across individuals to gen-

erate individual-specific FC.

2.5 | Predicting AOS symptoms

Based on FC among individual-specific ROIs, the L2-regularized and

L2-loss support vector machine for regression (SVR; using the default

parameter C = 1) in the Library for Support Vector Machines toolbox

was trained to predict the severity of AOS symptoms including posi-

tive and negative symptom scores, separately. Sex and head motion

(mean FD) were included in the model as covariates. Age was not

regressed out so that age-related FC changes could be examined. The

10-fold cross-validation (CV) approach was applied to avoid biased

estimates (Varoquaux et al., 2017). Specifically, the model was trained

using randomly splitting 90% of the subjects and was used to estimate

the symptom severity of the remaining subjects. Given the redundant

feature sets, connections that were significantly correlated with symp-

toms (p < .01) were manually selected as training features in each CV to

reduce redundancy and prevent over-fitting. After repeating the proce-

dure 10 times, predicted symptom scores were obtained for all subjects.

The correlation coefficient between observed and predicted scores was

calculated, which was used to evaluate the prediction performance. A

permutation test (5,000 permutations) was performed by randomly

reshuffling the observed clinical scores among the subjects to determine

whether the correlation was simply due to chance. The entire SVR steps

including the feature selection were rerun in each permutation.

The weight score of each feature in the SVR model was calculated

to quantify the contribution of each cortical connection. Specifically,

the score was computed by summing the times that the feature is not

zero across all folds. If a connection was not selected out in one fold,

then its contribution to this fold was set to zero. To summarize cur-

rent results, these ROI-ROI features were further grouped into

network-level connections according to seven well-studied canonical

networks, including visual network (VIS), sensorimotor network

(MOT), attention network (ATN), salience network (SAL), FPN, LMB,

and DMN. Statistical significance of the contribution of each

between- or within-network connection was estimated by comparing

the weight values for each network-level feature with the

corresponding null distribution established by permutation tests. The

Bonferroni-corrected significance level was p < .05 divided by the

number of network-level connections (including 21 between-network

connections and seven within-network connections).

2.6 | Exploring age-related alterations in predictive
FC biomarkers

The neurodevelopmental hypothesis of schizophrenia (Douaud

et al., 2009) posits that delayed and altered maturation of brain
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networks contributes to this disorder (Li et al., 2018; Zalesky

et al., 2015). We therefore compared age-related changes in predic-

tive FC biomarkers between AOS patients and HC subjects. Specifi-

cally, we separately calculated correlations between age and

connectivity values within the seven-network model, which were

obtained by averaging connectivity values (z values) of belonging

ROI-level connections, in the two groups. We used Shepherd's pi

correlation to account for potential outliers and increase statistical

power. The Bonferroni-corrected significance level was p < .05

divided by the number of network-level connections (including

21 between-network connections and seven within-network con-

nections). The Fisher's z test was used to compare correlation coeffi-

cients of the two groups.

2.7 | Validation analyses

To test the generalizability of the prediction model (Varoquaux

et al., 2017), we recruited an independent replication cohort

(29 age-, sex-, and psychotic symptom severity-matched right-

handed antipsychotic-naïve AOS patients) from outpatient treat-

ment settings at the First Hospital of ShanXi Medical University

(see Supplementary 2 for detailed participants' information and

data acquisition). Data preprocessing of the replication cohort was

identical with abovementioned preprocessing pipeline of the pri-

mary cohort. Two patients were excluded due to excessive head

motion (mean FD > 0.2 mm) and two due to poor quality of

intrasubject brain registration (cost >0.5). Ultimately, data for

25 AOS patients were used as a test set to compute predictive

power of the model trained by all the primary data. Specifically, the

SVR model used in the primary sample was applied without modifi-

cation to the replication cohort, thus suggesting that the training

features in the replication model were identified completely inde-

pendently of the replication sample.

3 | RESULTS

We identified 79 homologous ROIs for each subject, which were

extracted from 18 individual-specific cortical functional networks

using an iterative parcellation algorithm. These ROIs were further

grouped according to seven well-studied canonical functional net-

works, including VIS, MOT, ATN, SAL, FPN, LMB, and DMN. From a

visual perspective, the sizes and locations of the ROIs varied among

individuals (Figure 1). Substantial interindividual variability in ROI size

and position was demonstrated in Supplementary 4. Individual-

specific connectomes across these ROIs were evaluated and used to

predict AOS symptoms in order to identify FC biomarkers based on

the relationship between neuronal connectivity and behavior.

3.1 | Individual-level FC biomarkers predict
specific symptom severity

PANSS positive scores of AOS could be predicted by a set of func-

tional connections (r = .57, p = .004; permutation test) (Figure 2b).

From a visual perspective, individual-specific connections that con-

tributed most to the positive score prediction were mainly negative

connections of the DMN and positive connections of the FPN

(Figure 2a). The contribution of each network-level connection to

symptom prediction were quantified by summing weights of the

included cortical ROI connections, and were further compared with

corresponding random results obtained by permutation tests to esti-

mate its statistical significance. Network-level connections between

FPN and SAL (p = .006; Bonferroni-corrected) and within FPN

(p = .02; Bonferroni-corrected) had significant contribution in AOS

patients (Figure 2d). Additionally, a group-level functional network

atlas was used to establish the connectome for comparing the

predicted results based on individual- and group-level ROIs. For the

group atlas analysis, all steps were repeated including feature

F IGURE 1 Interindividual
spatial differences in six exemplary
regions of interest (ROIs). (a) These
cortical ROIs, which belong to the
12th network (i.e., the central
executive network, CEN),
demonstrate evident interindividual
differences in size and position.
(b) The frequency map of each
vertex occurred in a certain ROI
across all subjects was calculated to
demonstrate the degree of
interindividual spatial overlap
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selection in order to avoid biases in favor of the individualized analy-

sis. The group-level atlas-based FC was unable to predict PANSS posi-

tive scores in AOS patients (r = .22, p = .12; permutation test)

(Figure 2c). Moreover, the correlation coefficient of individualized

atlas-based prediction model was significantly stronger (z = 2.72,

p = .003; Steiger's z test) than that of group-level model, indicating a

better prediction power of the individual-based strategy compared

with group-level approach. PANSS negative scores could not be

predicted by either individual or group-level atlas-based

FC. Additional exploratory analyses based on two PANSS five-factor

models (Lindenmayer, Bernstein-Hyman, & Grochowski, 1994;

Marder, Davis, & Chouinard, 1997; Wallwork, Fortgang, Hashimoto,

Weinberger, & Dickinson, 2012) were performed, results of which

supported our main results (see Supplementary 5 for detailed

information).

3.2 | Predictive FC biomarker of AOS shows
aberrant age-related alterations

To validate the neurodevelopmental hypothesis of schizophrenia, we

separately calculated correlations between network-level connectivity

values and age in AOS patients and HC subjects. In network-level

connections that predicted positive scores, the significantly weighted

FPN–SAL connection showed age-related increases in the HC group

(pi = 0.69, p = .002; Bonferroni-corrected) (Figure 3A), while no such

changes were observed in AOS patients (pi = 0.19, Punc = 0.66). More-

over, the significantly different correlation coefficients between the

two groups (z = 2.43, p = .02; Fisher's z test) indicated abnormal FC

alterations as age increased in AOS. The predictive FPN–SAL connec-

tion mainly consisted of positive connections between SAL and a

frontoparietal subnetwork—that is, the central executive network

(CEN) (Figure 3b), which includes the dorsolateral prefrontal cortex

(dlPFC), medial and lateral posterior prefrontal cortices and some parts

of the intraparietal sulcus and posterior temporal gyrus) (Vincent,

Kahn, Snyder, Raichle, & Buckner, 2008).

3.3 | Predictive power of these FC biomarkers in
another independent cohort

These FPN-based Individual-level FC biomarkers, which were trained

by the primary data, could approximately predict PANSS positive

scores of the replicated cohort (r = .31, p = .06; permutation test)

(Figure 4a). On the contrary, the group-level atlas-based FC was

unable to predict the scores entirely (r = −.0005, p = .51; permutation

test) (Figure 4b). Moreover, the prediction power of the individualized

prediction model tended to be better than that of the group-level

model (z = 1.49, p = .06; Steiger's z test). Thus, the replication results

approximately supported the individualized ROI-based prediction

F IGURE 2 Individual-level positive symptom prediction model. The individual-specific functional connectome (FC) predicts positive symptom
severity in adolescent-onset schizophrenia (AOS). (a) Plot of 302 predictive connections among 79 homologous regions of interest (ROIs), which
were extracted from 18 functional networks (shown outside the wheel) that are color-coded according to seven well-studied canonical networks,
including the visual network (VIS), sensorimotor network (MOT), attention network (ATN), salience network (SAL), frontoparietal control network
(FPN), limbic network (LMB), and the default model network (DMN). (b) Scatterplot illustrating the correlation (r = .57, p = .004; permutation test)
between observed Positive and Negative Syndrome Scale (PANSS) positive scores and scores predicted by individual-specific FC in AOS patients.
(c) Group-level atlas-based ROIs were used to predict PANSS positive scores; this group-level model could not predict the severity of AOS

positive symptoms (r = .22, p = .12; permutation test). Solid line and dashed lines represent the best-fit line and 95% confidence interval,
respectively. (d) Statistical significance of predictive weight of each network-level connection (color-coded on the map) estimated by permutation
test (with Bonferroni correction)
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model, and indicated relatively better generalizability of the prediction

model by using individual-based strategy compared with group-level

approach.

4 | DISCUSSION

In this study, we identified reproducible FC biomarkers among

individual-specific functional regions that could predict positive symp-

tom domain in antipsychotic-naïve first-episode AOS. However,

connectome based on group-level atlas could not estimate AOS clini-

cal symptoms in any specific dimensions. More robust predictive per-

formance has been observed for individual as compared to group-

level strategies in multiple psychiatric disorders, including depression,

AOS (Wang et al., 2018), and obsessive–compulsive disorder

(Brennan et al., 2019). Moreover, recent study of AOS consistently

indicated close relation between positive symptoms and FPN-

associated between-network or within-network connectivities,

supporting the neurobiological continuity between AOS and its adult

counterpart in terms of individual-level biomarkers. A meta-analysis

showed that interindividual behavioral variability was primarily related

to the connectome of the association cortex that had larger anatomi-

cal differences across individuals (Mueller et al., 2013). Therefore, it is

possible to underestimate the correspondence between the

connectome and behavior using the group-level atlas-based FC

(Li et al., 2019). The present findings highlight the importance of

accounting for the variability in cortical functional region boundaries

in adolescents when screening for FC biomarkers of AOS symptom

F IGURE 3 Age-related alterations in individual-specific functional connectome (FC) biomarker expression. In adolescent-onset schizophrenia
(AOS), network-level connections between frontoparietal control network (FPN) and salience network (SAL) contributing the most to the
prediction of Positive and Negative Syndrome Scale (PANSS) positive scores showed abnormal age-related changes. (a) Scatterplot illustrating
Shepherd's pi correlation (with Bonferroni correction) between age and FPN–SAL connectivity values estimated by averaging all included ROI
connectivities in AOS (gray) and HC (black) groups. Filled circles were included in the correlation analyses, whereas open circles were excluded.
The pi is Pearson's r value estimated by the remaining data, and the p is doubled to account for outlier removal. (b) Predictive ROI connections
belonging to the FPN–SAL between-network connection were plotted. Red and blue lines represent positive and negative ROI connections,
respectively
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F IGURE 4 Predictive power of the primary
positive symptom prediction model in another
independent cohort. (a) Scatterplot illustrating
the correlation (r = .31, p = .06; permutation test)
between observed Positive and Negative
Syndrome Scale (PANSS) positive scores and
scores predicted by individual-specific functional
connectome (FC) in AOS patients. (b) FC based
on group-level atlas could not predict PANSS
positive scores in AOS entirely (r = −.0005,
p = .51; permutation test)

FAN ET AL. 1481



burden. Connectome-based biomarkers can reveal AOS positive

symptom-related circuits; moreover, individual-specific FC biomarkers

map symptom-related circuits onto the individual brain, providing a

basis for more precise diagnosis and treatment in AOS.

The severity of AOS positive symptoms was linked to FPN-based

connections. The FPN is responsible for high-order executive control func-

tions in working memory (Coull, Frith, Frackowiak, & Grasby, 1996), object

orientation (Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000), and

attention (Corbetta & Shulman, 2002; Kanwisher & Wojciulik, 2000;

Kastner & Ungerleider, 2000), and continuously updates and maintains

changes to attended stimuli in order to adapt to the environment

(Duncan, 2010). During adolescence, frontoparietal regions undergo struc-

tural fine-tuning and maturation (Gogtay et al., 2004; Lenroot &

Giedd, 2006). However, dysregulation of these processes can lead to

frontoparietal gray matter abnormal loss (Burke, Androutsos, Jogia,

Byrne, & Frangou, 2008) and disruption of FC (Kyriakopoulos et al., 2012;

White, Schmidt, Kim, & Calhoun, 2011). Impaired inhibitory control of the

FPN may underlie the positive symptoms of schizophrenia—for example,

disordered self-monitoring of internal speech (Rubio Gomez et al., 2010).

Our findings revealed an association between the FPN dysconnectivity

and AOS positive symptoms, suggesting the critical role of FPN in AOS

positive symptom manifestation. Moreover, the novel individual-level find-

ings indicate the possibility to develop personalized target-therapy

schemes of AOS positive symptoms in terms of FPN-based FC

biomarkers.

In support of the neurodevelopmental hypothesis of schizophrenia

(Murray & Lewis, 1987), we observed that AOS patients showed atypi-

cal age-related alterations of FPN–SAL connection, which made signifi-

cant contribution to the prediction of AOS positive symptoms. In

accordance with evidence for aberrant development of frontoparietal

regions in AOS (White et al., 2011), the current findings further reveal

its association with the manifestation positive symptoms of AOS. Spe-

cifically, positive connections between dlPFC-based frontopaterial sub-

network (i.e., CEN) and SAL increased with age in HC subjects, but not

in AOS patients. The dlPFC is one of the last regions to fully mature at

the end of adolescence, with synaptic pruning and myelination occur-

ring in parallel (Gogtay et al., 2004). Abnormal age-related maturation

has been reported in the dlPFC-based network connectivity of AOS

(Kyriakopoulos et al., 2012). Furthermore, during adolescence, rein-

forcement of network-level connectivity between CEN and SAL may

reflect an increased capacity for high-order cognitive control, which

governs appropriate responses to salient external stimuli and internal

events (Duan et al., 2019; Menon, 2011). Accordingly, altered matura-

tion of CEN–SAL connectivity during adolescent could underlie the

delusions and hallucinations experienced by in AOS patients (Sommer

et al., 2008), which might shed some new insights into early diagnosis

or treatment of schizophrenia.

This study had several limitations. First, the sample size was rela-

tively small, which may have limited the statistical power of the pre-

diction model of the brain–behavior relationship; therefore, our model

requires validation in a larger sample size of antipsychotic-naïve, first-

episode AOS patients. Second, the reliability of our findings on age-

related development was limited by the lack of a longitudinal study, as

cross-sectional developmental trajectories could be due to inter-

individual differences rather than the effects of age. Third, our model

could not estimate negative symptoms for two possible reasons: some

ROIs were excluded if they were absent in any participant so that we

could identify consensus ROIs across all participants; this may have

discounted potentially important functional information associated

with negative symptoms. However, the influence of such an omission

was reduced by the fact that the remaining 79 consensus ROIs (cov-

ered area ratio = 76.89 ± 1.39%) included all 18 cortical functional

networks. Alternatively, subcortical connectivity was not included in

our prediction model due to the lack of a reliable technique for map-

ping individual-level subcortical regions. Adapting a method of

individual-level functional parcellation to subcortical regions is rec-

ommended in view of their involvement in psychiatric disorders.

Finally, the group-level functional network atlas which we used in the

iterative parcellation algorithm was based on the adult population,

which may disturb individual-specific cortical parcellation results of

adolescent subjects. For example, this limitation may partly account

for lower covered area ratio of homologous ROIs compared with pre-

viously studies (Brennan et al., 2019; Wang et al., 2018). Future stud-

ies based on a pediatric-based functional parcellation atlas are needed

to validate current results.

5 | CONCLUSION

Using a novel individual-specific cortical parcellation approach, we

identified reproducible FPN-based cortical network connection bio-

markers underlying positive AOS symptoms, which reflected aberrant

age-related alterations consistent with the neurodevelopmental

hypothesis of schizophrenia. Our findings provide insight into the

neural correlates of AOS positive symptom manifestation and suggest

that individual-level FC biomarkers can lead to more precise diagnosis

and personalized target-therapy schemes for this disorders.
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