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Meta-analysis provides important insights for evidence-based medicine by syn-
thesizing evidence from multiple studies which address the same research ques-
tion. Within the Bayesian framework, meta-analysis is frequently expressed by a
Bayesian normal-normal hierarchical model (NNHM). Recently, several publi-
cations have discussed the choice of the prior distribution for the between-study
heterogeneity in the Bayesian NNHM and used several “vague” priors. How-
ever, no approach exists to quantify the informativeness of such priors, and thus,
we develop a principled reference analysis framework for the Bayesian NNHM
acting at the posterior level. The posterior reference analysis (post-RA) is based
on two posterior benchmarks: one induced by the improper reference prior,
which is minimally informative for the data, and the other induced by a highly
anticonservative proper prior. This approach applies the Hellinger distance to
quantify the informativeness of a heterogeneity prior of interest by comparing
the corresponding marginal posteriors with both posterior benchmarks. The
post-RA is implemented in the freely accessible R package ra4bayesmeta and
is applied to two medical case studies. Our findings show that anticonservative
heterogeneity priors produce platykurtic posteriors compared with the reference
posterior, and they produce shorter 95% credible intervals (CrI) and optimistic
inference compared with the reference prior. Conservative heterogeneity priors
produce leptokurtic posteriors, longer 95% CrI and cautious inference. The novel
post-RA framework could support numerous Bayesian meta-analyses in many
research fields, as it determines how informative a heterogeneity prior is for the
actual data as compared with the minimally informative reference prior.

K E Y W O R D S

Bayesian meta-analysis, conservative/anticonservative heterogeneity priors, normal-normal
hierarchical model, prior informativeness quantification, reference analysis

1 INTRODUCTION

Meta-analysis is a common statistical tool to synthesize evidence from multiple studies addressing the same research ques-
tion. Meta-analyses play an important role in evidence-based medicine, since they provide an overall estimate of the effect

Abbreviations: NNHM, normal-normal hierarchical model; post-RA, posterior reference analysis.
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of an intervention. To date, the Cochrane initiative has coordinated and published more than 8000 healthcare-related sys-
tematic reviews (https://www.cochranelibrary.com), many of them containing a meta-analysis. Although meta-analysis
allows us to quantify heterogeneity between studies, precisely estimating the between-study heterogeneity is challeng-
ing, especially if the number of studies included is small.1,2 An alternative approach to this heterogeneity is to use the
Bayesian normal-normal hierarchical model (NNHM), which incorporates a prior on the between-study heterogeneity.

When introducing the Bayesian framework, prior choice needs to be thoroughly addressed3-5 because, “Every prior
specification has some informative posterior or predictive implications”.6 Even for the well-known and widely used
Bayesian NNHM, the prior distribution for the between study heterogeneity parameter is particularly difficult to choose
and to justify. In fact, a practical and easy to use methodology is currently needed to assess the informativeness of a chosen
heterogeneity prior in a Bayesian NNHM.

It is already well-known that “knowing little a priori” can only have meaning relative to the information provided
by an experiment,7 so the concepts of “vagueness” and “informativeness” are both elusive when the priors are detached
from the actual observations (data). Thus, the informativeness of a heterogeneity prior cannot be judged alone but must
always be seen with respect to the observed data. For example, anticonservative heterogeneity priors deliberately guard
against the overestimation of random effects variability with respect to the data variability.8 In practice, it can also be
useful to perform a Bayesian analysis in which the prior has, in some well-defined sense, a minimal effect on the final
inference.6,9,10 Such a prior is called a reference prior and is one part of the reference analysis.

Reference analysis originates in a formal, mathematically well-defined decision- and information-theoretic procedure.
This procedure is designed to determine a limiting minimally informative reference prior for the data and a Bayesian
model at hand, which lets the data dominate the posterior distribution.6,9-12 Note that the reference prior is not entirely
noninformative, but it is uniquely minimally informative for the data and the model at hand with respect to all other
admissible priors. The reference prior is a mathematical formalization of the intention to “let the data speak for them-
selves” in a Bayesian setting. By definition, the reference prior is a minimally influential mathematical tool, which
represents “vague beliefs” or (maximal possible) “ignorance” within a Bayesian model given the available data.6 In agree-
ment with the nomenclature suggested by Gelman and Hennig,13 the reference prior can be perceived as a mathematical
embodiment of “maximal possible impartiality” in a Bayesian setting.

The original reference analysis suggested by Bernardo9 and Bernardo and Smith6 operates at the posterior level and
provides an indirect approach to assessing the informativeness of an actual prior (see Section 3.3). However, it gives no
guidance on how to use such a reference analysis in practice and on how to quantify the informativeness of the actual
heterogeneity prior with respect to the minimally informative reference prior.

In the context of the Bayesian meta-analysis, Lambert et al14 asked an important question—“How vague is vague?”.
They assumed 13 different heterogeneity priors, which they referred to as “vague” priors, and showed that posterior
results differ depending on the heterogeneity prior assumed. Although Lambert et al14 demonstrated the strong impact
of these 13 different heterogeneity prior assumptions on posterior results, the question, “How vague is a heterogeneity
prior of interest for actual data?”, remained unanswered.

Recently, Bodnar et al15 used a reference prior to get reference posterior estimates in medical Bayesian meta-analyses.
They analyzed a small dataset of four trials on the treatment of cocaine dependency with auricular acupuncture (AA) and
a larger dataset of 22 trials on the prevention of respiratory tract infections in intensive care unit patients (RTI), both of
which we will revisit here. In these case studies, Bodnar et al15 assumed two priors (U100 and DM in Table 1) used already
in Lambert et al14 and a standard half-Cauchy (HC1 in Table 1) prior as suggested by Gelman,16 again referring to them as
“vague.” Bodnar et al15 demonstrated that posterior results differ depending on the heterogeneity prior assumed. They did
not, however, specify how vague the three chosen heterogeneity priors actually are, because there was no methodology
to estimate this vagueness.

Our goal is to fill this gap by developing a principled methodology for a reference analysis suitable for the Bayesian
NNHM. Because the reference prior is, by definition, minimally informative given the data, it represents the maximal
possible vagueness, ignorance, and impartiality for these data. Here, we do not attempt to quantify vagueness, ignorance,
or impartiality, but rather we aim at answering the question of how informative a heterogeneity prior is for the actual
data as compared with the minimally informative reference prior.

Inspired by Bernardo,9 our principled approach to assess heterogeneity prior informativeness in the Bayesian NNHM
is based on the reference prior and the resulting reference posterior. In the reference analysis conducted at the pos-
terior level (post-RA), we indirectly quantify the informativeness of the actual heterogeneity prior relative to the
minimally informative reference prior. This is achieved by computing the Hellinger distance between the posterior
induced by the actual heterogeneity prior and the reference posterior as defined in Section 3.6. The post-RA proposed

https://www.cochranelibrary.com
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T A B L E 1 The four prior
distributions on 𝜏 ∈ [0,∞)
considered in the case studies

Name 𝝉 parametrization bayesmeta call

DM 𝜋(𝜏) = 𝜎0
(𝜎0+𝜏)2

“DuMouchel”

HC1 𝜋(𝜏) = 2
𝜋(1+𝜏2)

function(t)dhalfcauchy(t, scale=1)

U100 𝜋(𝜏) = 1
100

for 𝜏 ∈ [0,100] function(t)dunif(t, min=0, max=100)

BD 𝜋(𝜏) ∝
∏k

i=1

(
𝜏

𝜎2
i +𝜏2

)1∕k
“BergerDeely”

Note: For the DM prior, 𝜎2
0 is the harmonic mean of the within-study variances 𝜎2

1 , … , 𝜎2
k . Note that the

Berger-Deely (BD) prior is improper.

T A B L E 2 Benchmark prior distributions on 𝜏 ∈ [0,∞): HN0 denotes the proper half-normal prior
distribution with scale parameter 𝜆 = 0.002 and J abbreviates Jeffreys improper reference prior

Name 𝝉 parametrization bayesmeta call

HN0 𝜋(𝜏) = 1
𝜆

√
2
𝜋

exp
(
− 𝜏2

2𝜆2

)
function(t)dhalfnormal(t, scale = lambda)

J 𝜋(𝜏) ∝
√∑k

i=1

(
𝜏

𝜎2
i +𝜏2

)2
“Jeffreys”

is easily accessible to users of the Bayesian NNHM through a freely accessible R package ra4bayesmeta on CRAN
(Section 3.8).

This article is structured as follows: In Section 2, we introduce two medical case studies. In Section 3, we describe
the Bayesian NNHM (Section 3.1) and the heterogeneity priors used in the case studies (Section 3.2). Sections 3.4 to 3.7
cover the methodology for the post-RA, and Section 4 presents the results of applying the post-RA to our two medical
case studies. The article concludes with a discussion in Section 5.

The Supplementary Material contains more information on the methodology, additional results for the case studies,
and a third case study. Moreover, the Supplementary Material describes additional methodological developments, includ-
ing alternative benchmarks to discriminate between reference affine and anticonservative heterogeneity priors, and a
proposal for a reference analysis at the prior level. These additional tools are also implemented in the ra4bayesmeta
package.

2 CASE STUDIES

Bodnar et al (15, sections 4.1-4.2) analyzed two datasets, which are available in the R package ra4bayesmeta. The
AA dataset (Table 3 in the Supplementary Material, table I in Bodnar et al15) consists of data from k= 4 randomized,
controlled trials comparing treatment completion among cocaine addicts treated with AA or sham acupuncture. The RTI
data (Table 12 in the Supplementary Material, table II in Bodnar et al15) address the success of selective decontamination
of the digestive tract for the prevention of RTI in intensive care unit patients. The patients in the treated group received
oral antibiotics, and those in the control group received no prophylaxis. The RTI data summarize the results of k= 22
randomized, controlled clinical trials involving 3836 patients in total.

Bodnar et al15 used numerical approximation for the Bayesian meta-analysis and the methodology for the reference
prior in the Bayesian NNHM developed by Bodnar et al.17 They considered four priors: the DuMouchel (DM) prior, a
standard HC1 prior, and a uniform prior (U100), given in Table 1, and Jeffreys reference prior J in Table 2. Bodnar et al15

showed that the posterior means produced by Jeffreys reference prior are close to the corresponding estimates induced
by the priors DM, HC1, and U100 (see also Tables 6, 7, 13, and 14 in the Supplementary Material).

Note that our perception of a reference prior clearly differs from that of Bodnar et al.15 Whereas Bodnar et al15

call the reference prior noninformative, we prefer to speak about the reference prior that is minimally informa-
tive given actual data. In this respect we agree with Lambert et al,14 who recognize that all priors contribute some
information.

In Section 4, we demonstrate how our post-RA methodology can be applied to the AA and RTI datasets. Note that
Bodnar et al15 compare the results induced by the reference prior with three “established, vague” priors for 𝜏, namely
priors DM, HC1, and U100, to illustrate that the reference prior induces “reasonable” results. By contrast, we prefer to
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set the reference prior as a minimally informative benchmark and compare the surplus of informativeness contained in
these three heterogeneity priors relative to this minimally informative benchmark. We do not claim that these three het-
erogeneity priors are “vague,” but instead assess their informativeness by directly comparing them with the minimally
informative benchmark. More precisely, we complement the analysis provided by Bodnar et al15 with explicit informa-
tiveness estimates for the heterogeneity priors DM, HC1, U100, and an additional improper prior (BD in Table 1) with
respect to the minimally informative reference prior.

3 METHODS

3.1 The normal-normal hierarchical model

We focus on the Bayesian NNHM, also called the Bayesian random effects model,18,19 which has three levels: the sampling
model (likelihood), the random effects model and priors for unknown parameters. On the first level, the sampling model
assumes normally distributed response variables Y i, which arise around study-specific means (random effects) 𝜃i and
have known SDs 𝜎i, that is

Yi | 𝜃i, 𝜎i ∼ N(𝜃i, 𝜎
2
i ), i = 1, … , k.

Here, k is the number of studies included in the meta-analysis. On the second level, we assume a normal distribution for
the random effects parameters 𝜃i with mean 𝜇 and between-study heterogeneity SD 𝜏:

𝜃i | 𝜇, 𝜏 ∼ N(𝜇, 𝜏2). (1)

On the third level, we specify priors for 𝜇 and 𝜏. As prior distribution for 𝜇, we choose

𝜇 ∼ N(𝜈, 𝛾2),

with 𝜈 = 0 and 𝛾 = 4, as suggested in Röver20 for the case when the response yi is on the log odds ratio scale. The choice
of the prior for the between-study SD 𝜏 is addressed in Sections 3.2 and 3.4.

In meta-analysis applications, the overall mean parameter 𝜇 is usually the main parameter of interest. Aside from
the posterior estimates of the parameters 𝜇, 𝜏, 𝜃1, … , 𝜃k, we also consider a predicted effect 𝜃new for a new study, which
is often relevant in applications.20 For this article, we fit Bayesian NNHMs using the R package bayesmeta,20 which
applies Bayesian numerical approximation.

One important special case of the above Bayesian NNHM is the so-called Bayesian fixed effects (FE) model,
which is also called the common effect model.19,21 The FE model is obtained by setting 𝜏 = 0 in Equation (1). This
leads to

Yi | 𝜇, 𝜎i ∼ N(𝜇, 𝜎2
i ), i = 1, … , k,

with

𝜇 ∼ N(𝜈, 𝛾2).

This is a conjugate Bayesian normal-normal model and the normal posterior distribution of the common mean parameter
𝜇 can be derived analytically and turns out to be

𝜇 | y1, … , yk ∼ N
⎛⎜⎜⎝
∑k

i=1
yi
𝜎2

i
+ 𝜈

𝛾2∑k
i=1

1
𝜎2

i
+ 1

𝛾2

,

( k∑
i=1

1
𝜎2

i

+ 1
𝛾2

)−1⎞⎟⎟⎠ . (2)

Note that estimation of the random effects model allows us to check the validity of the 𝜏 = 0 assumption of the FE
model.22
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F I G U R E 1 Auricular
acupuncture data (k= 4),
marginal posterior and
heterogeneity prior densities: Top
panels and bottom left panel:
Marginal posterior for 𝜇, 𝜏 and
the predicted effect 𝜃new based on
the prior 𝜋(𝜇) ∼ N(0, 42) and the
heterogeneity priors listed in the
legend in the top left panel.
Bottom right panel: Density of the
proper priors U100, DM, and HC1
in Table 1 and the proper HN0
benchmark prior (The improper
priors are not shown here)
[Colour figure can be viewed at
wileyonlinelibrary.com]
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3.2 Priors used in the case studies

The four competing heterogeneity priors used in this article are shown in Table 1. The DM prior,23 the standard HC1
prior, and the uniform prior on [0, 100] (U100) were studied by Bodnar et al.15 The DM prior corresponds to a uniform
prior on 𝜎0∕(𝜎0 + 𝜏), where 𝜎2

0 is the harmonic mean of 𝜎2
1 , … , 𝜎2

k . The DM prior has its mode at 0 and its median at 𝜎0.
See Spiegelhalter et al (1, p173) for more information on this prior. The densities of these priors (for the AA and RTI data
in the case of DM) are shown in Figures 1 and 2 (bottom right panels).

In addition, we consider the improper (ie, its density does not integrate to any finite value) Berger-Deely (BD in Table 1)
heterogeneity prior, which has been introduced as an alternative to the improper uniform prior in the case where no or
little prior information is available.24 Note that the BD and the DM prior both depend on the data via the SD 𝜎i values. If all
SDs 𝜎i, i= 1, … , k, are equal, then the BD prior and Jeffreys reference prior J (see Table 2) are identical.20 Although the BD
prior is improper, the posterior distribution poBD(𝜓) induced by BD is proper for all parameters𝜓 ∈ {𝜇, 𝜏, 𝜃1, … , 𝜃k, 𝜃new}
if the dataset contains at least k= 2 studies.20

3.3 Reference analysis

A reference prior is not necessarily a proper distribution, but rather it is frequently just a mathematical device (ie, a
positive function) to be formally used in Bayes theorem to produce a reference posterior.11 The posterior distribution based
on a reference prior is maximally informed by the data and is called the reference posterior distribution. The reference
posterior distribution functions as a benchmark, or a baseline, for the class of posterior distributions obtained from other
admissible proper priors.9 According to Bernardo and Smith,6 the reference posterior should always be reported in a
Bayesian analysis.

http://wileyonlinelibrary.com
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F I G U R E 2 Respiratory
tract infections data (k= 22),
marginal posterior and
heterogeneity prior densities:
Top panels and bottom left panel:
Marginal posterior for 𝜇, 𝜏 and
the predicted effect 𝜃new based
on the prior 𝜋(𝜇) ∼ N(0, 42) and
the heterogeneity priors listed in
the legend in the top left panel.
Bottom right panel: Density of
the proper priors U100, DM, and
HC1 in Table 1 and the proper
HN0 benchmark prior (The
improper priors are not shown
here) [Colour figure can be
viewed at
wileyonlinelibrary.com]

The original reference analysis6 proceeds according to the following four steps: First, given a Bayesian model and a
dataset, a minimally informative reference prior is used to obtain a reference posterior. Second, an actual admissible prior
of interest yields a corresponding posterior. Third, the posterior implied by the actual prior and the reference posterior
are compared. Finally, this leads to indirect conclusions regarding the informativeness of the actual prior relative to the
minimally informative reference prior.

By comparing different posterior distributions with the reference posterior benchmark, the relative impact of the
underlying priors on the corresponding posterior results can be assessed.6 Bernardo and Smith6 recommended a reference
analysis for the following two purposes: either as a “what if” baseline in considering a range of actual prior to posterior
analyses, or as a default option, when there are insufficient resources for detailed elicitation of actual prior knowledge.
A carefully conducted reference analysis may be very relevant in practice, because users are often not cognizant of the
precise informativeness of the chosen priors.11

Reference priors are a well-accepted standard, useful in cases where it is difficult to elicit an appropriate subjective
prior. However, they are not intended to replace subjective priors.10 Indeed, in cases that require a contribution of external
information and some regularization by the prior, it is not necessarily ideal to add too little information to the data.1,5,10 If
an actual posterior has a small distance to the reference posterior, it only means that the actual heterogeneity prior adds
only slightly more information to the data than the minimally informative reference prior. This distance does not reflect
the quality or appropriateness of the actual subjective prior choice.

Recently, several publications have contributed important developments to the field of reference analysis, see, for
example, Consonni et al.25 The reference analysis has also become relevant in the context of the Bayesian meta-analysis.
As mentioned in Section 2, Bodnar et al15 used the methodology developed by Bodnar et al17 to compare the posterior
descriptive statistics obtained from the reference posterior with results from the use of other priors and several classical
meta-analytical methods.

http://wileyonlinelibrary.com


OTT et al. 4511

3.4 The reference prior and posterior benchmarks

The reference prior for the between-study SD (Table 2) in the NNHM is implemented in the R package bayesmeta20 and
can be accessed by specifying tau.prior=“Jeffreys”.15 For the reference analysis, we will consider this Jeffreys (J)
reference prior.20 Note that this prior is improper. However, the posterior benchmark distribution poJ(𝜓) resulting from
Jeffreys prior is proper in the Bayesian NNHM for all parameters 𝜓 ∈ {𝜇, 𝜏, 𝜃1, … , 𝜃k, 𝜃new} if the dataset contains at
least k= 2 studies.15,17,20

In general, heterogeneity priors for 𝜏 can put their main probability mass on two sides of the minimally informa-
tive reference prior J: either on the side closer to 𝜏 = 0 (anticonservative) or on the side closer to 𝜏 = ∞ (conservative).
Whereas anticonservative heterogeneity priors cast doubt on the existence of random effects variation and allow the
real between-study SD 𝜏 to be underestimated, conservative priors can substantially overestimate the random effects
variation.8 Note that this terminology follows the conventions in the meta-analysis context,20,26,27 whereas Gustafson et al8

use the term “conservative prior” differently in the context of general Bayesian hierarchical models. Posteriors induced
by an anticonservative and a conservative heterogeneity prior could hypothetically end up equally far from the reference
posterior benchmark J. To distinguish between these two kinds of priors, we take a familiar half-normal prior HN(𝜆) with
a small scale parameter 𝜆 as a benchmark (Table 2). A wide range of scale parameters 𝜆 (from 1/600 to 1/100) were ade-
quate and all computations ran smoothly. For computation, we fixed this scale parameter at a very small value, 𝜆 = 0.002.
We abbreviate the HN(0.002) prior as HN0 in the sequel. HN0 puts the majority of probability mass close to 𝜏 = 0 (mean
=0.0016, SD = 0.0012, 2.5% quantile = 0.00006, median = 0.0013, 97.5% quantile = 0.0045) and is light-tailed. Posteriors
induced by HN0 lead to benchmark posterior distributions poHN0(𝜓) for all parameters 𝜓 ∈ {𝜇, 𝜏, 𝜃1, … , 𝜃k, 𝜃new} in the
Bayesian NNHM.

We consider one additional posterior benchmark poFE which applies only to the overall mean parameter 𝜇. It
corresponds to assuming a point mass at 𝜏 = 0, which leads to the normal benchmark FE posterior provided in
Equation (2).

3.5 The Hellinger distance and its normal calibration

The Hellinger distance28 is conveniently defined in two steps. First, for two probability densities 𝜋0 and 𝜋1, the
Bhattacharyya coefficient (BC) is defined as

BC(𝜋1, 𝜋0) = ∫
∞

−∞

√
𝜋1(x)𝜋0(x)dx.

The BC quantifies the affinity of the two densities. BC attains the maximal value 1 if the two densities are equal and the
minimal value 0 if the supports of the densities do not overlap. The Hellinger distance between the two densities is then
given by

H(𝜋1, 𝜋0) =

√
1
2∫

∞

−∞

(√
𝜋1(x) −

√
𝜋0(x)

)2
dx =

√
1 − BC(𝜋1, 𝜋0).

The Hellinger distance is symmetric (ie, H(𝜋1, 𝜋0) = H(𝜋0, 𝜋1)) and attains the value 1 for complete disagreement
and the value 0 for complete agreement of the two densities. We will use the Hellinger distance H to compare the
marginal posterior of interest poact(𝜓) with the reference posterior poJ(𝜓) and the posterior benchmark poHN0(𝜓), for
𝜓 ∈ {𝜇, 𝜏, 𝜃1, … , 𝜃k, 𝜃new}. In the case studies, the actual heterogeneity priors of interest (act) are DM, HC1, U100, and
BD.

To interpret Hellinger distance values, Roos et al29 proposed a calibration of the Hellinger distance, which is based
on two unit variance normal distributions with shifted locations. The choice of normal distributions for the calibration is
convenient because the normal distribution is well known. Moreover, any density can be approximated to the first order
by a normal distribution.30,31 Roos et al29 showed that for a given Hellinger distance value h, we have

H(N(𝜇(h), 1),N(0, 1)) = h, where 𝜇(h) =
√
−8 log(1 − h2). (3)
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T A B L E 3 Normal calibration of the Hellinger distance h in terms of the shift 𝜇(h) between two unit variance
normal distributions and their area of overlap AO(𝜇(h)) defined in Equations (3) and (4)

h 𝝁(h) AO(𝝁(h)) h 𝝁(h) AO(𝝁(h)) h 𝝁(h) AO(𝝁(h))

0.010 0.028 0.989 0.100 0.284 0.887 0.910 3.753 0.061

0.020 0.057 0.977 0.200 0.571 0.775 0.920 3.871 0.053

0.030 0.085 0.966 0.300 0.869 0.664 0.930 4.002 0.045

0.040 0.113 0.955 0.400 1.181 0.555 0.940 4.148 0.038

0.050 0.142 0.944 0.500 1.517 0.448 0.950 4.315 0.031

0.060 0.170 0.932 0.600 1.890 0.345 0.960 4.513 0.024

0.070 0.198 0.921 0.700 2.321 0.246 0.970 4.757 0.017

0.080 0.227 0.910 0.800 2.859 0.153 0.980 5.082 0.011

0.090 0.255 0.899 0.900 3.645 0.068 0.990 5.598 0.005

Abbreviation: AO, area of the overlap of two shifted normal distributions.

We extend this calibration and provide estimates of the area of the overlap (AO) of the two shifted normal distributions:

AO(𝜇(h)) = Φ(𝜇(h)∕2;𝜇(h), 1) + (1 − Φ(𝜇(h)∕2; 0, 1)), (4)

whereΦ(⋅)denotes the normal cumulative distribution function. Table 3 shows the normal calibration of the Hellinger dis-
tance with the shift 𝜇(h) and the area of overlap AO(𝜇(h)) for a selection of Hellinger distance values h. The function 𝜇(h)
is almost linear for small values of h, more precisely 𝜇(h) ≈ 2.83 h for h< 0.5. Note that the Hellinger distance h= 0.451,
which corresponds to the shift 𝜇 = 1.349 and the area of overlap AO(𝜇(h)) = 0.5, is a convenient point of reference. Two
densities with h< 0.451 have AO> 0.5 and vice versa. An application of this calibration is given in Section 4.3.

3.6 Posterior reference analysis

The post-RA in the Bayesian NNHM quantifies the informativeness of any chosen actual heterogeneity prior in rela-
tion to the minimally informative, improper reference prior indirectly based on proper marginal posteriors. For the
post-RA, we suggest two posterior benchmarks poHN0(𝜓) and poJ(𝜓), where poJ(𝜓) denotes the marginal posterior dis-
tribution for 𝜓 under Jeffreys reference prior J for 𝜏 (Table 2), for 𝜓 ∈ {𝜇, 𝜏, 𝜃1, … , 𝜃k, 𝜃new}. The actual prior of interest
priact leads to marginal posteriors poact(𝜓) for all parameters 𝜓 ∈ {𝜇, 𝜏, 𝜃1, … , 𝜃k, 𝜃new} in the Bayesian random effects
model. Comparison of poact(𝜓) with the benchmarks poHN0(𝜓) and poJ(𝜓) by means of the Hellinger distance leads to
H(poHN0(𝜓), poact(𝜓)) and H(poact(𝜓), poJ(𝜓)) estimates for each parameter𝜓 . These estimates introduce an indirect par-
tial ordering of the informativeness of priors for the Bayesian NNHM based on the marginal posteriors, because they
specify if priact leads to posterior results poact(𝜓)which are closer to poHN0(𝜓) or poJ(𝜓) for each parameter𝜓 . The induced
partial ordering of priors is always with respect to a certain parameter𝜓 . This means that one may get a different ordering
for 𝜇 than for 𝜏. For the parameter 𝜇, we additionally consider the FE benchmark FE and proceed with the corresponding
marginal posterior for 𝜇 in the same way as for the J and HN0 benchmarks.

With the two HN0 and J benchmarks, we can decide whether the actual prior is anticonservative or conservative for the
parameter of interest 𝜓 . If the Hellinger distance between the actual posterior and the poHN0 benchmark is smaller than
the Hellinger distance between the poHN0 benchmark and the reference posterior poJ, that is, H(poHN0(𝜓), poact(𝜓)) <
H(poHN0(𝜓), poJ(𝜓)), then the actual heterogeneity prior is anticonservative (puts more probability mass on small 𝜏 values
than the reference prior). If we have H(poHN0(𝜓), poact(𝜓)) > H(poHN0(𝜓), poJ(𝜓)), then the actual heterogeneity prior is
conservative (puts more probability mass on large 𝜏 values than the reference prior).

In order to distinguish anticonservative and conservative heterogeneity priors with respect to the reference prior, we
define a signed informativeness. The informativeness of an actual heterogeneity prior H(poact, poJ) is multiplied by the
sign of the difference H(poHN0, poact) - H(poHN0, poJ). The sign of this difference is negative when the poact is closer to
poHN0 than poJ, indicating that the actual heterogeneity prior is anticonservative relative to the reference heterogeneity
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prior J. By contrast, the sign of this difference is positive for poact that are further away from poHN0 than poJ, indicating
that the actual heterogeneity prior is conservative relative to the reference heterogeneity prior J.

3.7 Platykurtic and leptokurtic distributions

Now we introduce the definition of a platykurtic and leptokurtic posterior distribution poact(𝜓) induced by an actual
heterogeneity prior relative to the reference posterior poJ(𝜓) for 𝜓 ∈ {𝜇, 𝜃new}. If the marginal posterior poact has lighter
(thinner) tails than the marginal posterior poJ, then the posterior poact is platykurtic with respect to poJ. Platykurtic
posterior distributions have a smaller spread than poJ and their posterior densities are more peaky than poJ. If a poact has
heavier (fatter) tails than poJ, we call it leptokurtic with respect to poJ. The spread of a leptokurtic poact is larger than
the spread of poJ, and the marginal posterior density of poact is flatter than poJ. This definition follows the definition of
platykurtic and leptokurtic distributions relative to a normal distribution with the normal distribution replaced by the
reference posterior poJ.32

Whether a posterior distribution is platykurtic or leptokurtic can have direct practical implications. If a posterior dis-
tribution is platykurtic, then the 95% CrI for the overall mean parameter 𝜇 is shorter. Consequently, 0 may be excluded
from that CrI, thus producing a rather optimistic inference. By contrast, a leptokurtic distribution has a longer 95%
CrI. In this case, 0 may be contained in the 95% CrI for the overall mean parameter 𝜇, thus producing a cautious
inference.

3.8 R package ra4bayesmeta

The functions to perform the post-RA are bundled in the R package ra4bayesmeta (https://cran.r-project.org/
package=ra4bayesmeta), entitled “Reference Analysis for Bayesian Meta-Analysis.” The main function post_RA pro-
duces a table with posterior summaries and Hellinger distance estimates, see Table 4 in Section 4.1 for an example.
Alternative benchmarks can be studied using the more flexible function post_RA_fits. This package also contains a
function for the normal calibration of Hellinger distances and a function to produce density plots as shown in Figure 1,
as well as the datasets used in the case studies. The functions operate on data frames compatible with the bayesmeta
package.

4 RESULTS

This section reports the post-RA of the AA (k= 4) and RTI (k= 22) data. Moreover, it compares some results obtained for
these two datasets.

4.1 Post-RA for the AA dataset

Table 4 provides posterior medians, equi-tailed 95% CrIs, their lengths L(CrI), and post-RA of 𝜇, 𝜏, and 𝜃new for AA
obtained for DM, HC1, U100, and BD heterogeneity priors. Posterior medians and equi-tailed 95% CrIs are also illustrated
in a forest plot in the left column of Figure 3. Moreover, the relation between the signed informativeness of heterogene-
ity priors and L(CrI) is depicted in Figure 4. The posterior estimates and informativeness values for the random effect
parameters 𝜃1, … , 𝜃4 are provided in Table 4 of the Supplementary Material.

Inspection of the H(poact, poJ) estimates for 𝜇, that is, the absolute values of the numbers in the last column of Table 4,
reveals that HC1 is the least informative heterogeneity prior for 𝜇, because it induces a posterior poHC1 that attains the
smallest distance (H = 0.041) to the reference posterior poJ. Note that poHC1 is even closer to the reference posterior than
the posterior induced by the improper BD heterogeneity prior (H = 0.049). By contrast, DM is the most informative het-
erogeneity prior for 𝜇, because it is farthest from the reference posterior poJ and attains H = 0.136. The resulting post-RA
ranking of informativeness from smallest to largest is HC1, BD, U100, DM.

Inspection of the H(poHN0, poact) column of Table 4 for 𝜇 reveals that DM (H = 0.196) and HC1 (H = 0.291)
lead to posteriors that are closer to poHN0 than poJ (H = 0.326). This means that DM and HC1 are on the

https://cran.r-project.org/package=ra4bayesmeta
https://cran.r-project.org/package=ra4bayesmeta
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T A B L E 4 AA data (k= 4), post-RA: For each parameter 𝜓 ∈ {𝜇, 𝜏, 𝜃new} and each actual heterogeneity prior
priact specified in the second column, the following estimates for the marginal posterior poact(𝜓) are given: The
posterior median, the equi-tailed 95% CrI, the length L(CrI) of that CrI, the Hellinger distance to the poHN0

benchmark and the signed informativeness (Sign. Inf.) sign(H(poHN0, poact)−H(poHN0, poJ))H(poact, poJ)

Par. priact Median (95% CrI) L(CrI) H(poHN0, poact) Sign. Inf.

𝜇 FE 0.10 (−0.24, 0.44) 0.68 0.000 −0.326

HN0 0.10 (−0.24, 0.44) 0.68 0.000 −0.326

DM 0.12 (−0.40, 0.74) 1.13 0.196 −0.136

HC1 0.14 (−0.58, 0.96) 1.54 0.291 −0.041

U100 0.15 (−0.98, 1.35) 2.33 0.366 +0.064

BD 0.16 (−0.80, 1.19) 1.99 0.373 +0.049

J 0.15 (−0.68, 1.07) 1.75 0.326 0.000

𝜏 HN0 0.00 ( 0.00, 0.00) 0.00 0.000 −0.994

DM 0.16 ( 0.01, 1.05) 1.05 0.922 −0.324

HC1 0.33 ( 0.02, 1.55) 1.53 0.953 −0.132

U100 0.48 ( 0.02, 3.28) 3.26 0.961 −0.147

BD 0.52 ( 0.08, 2.24) 2.16 0.996 +0.118

J 0.39 ( 0.05, 1.98) 1.92 0.994 0.000

𝜃new HN0 0.10 (−0.24, 0.44) 0.68 0.000 −0.461

DM 0.12 (−0.78, 1.14) 1.92 0.300 −0.173

HC1 0.13 (−1.28, 1.67) 2.96 0.418 −0.050

U100 0.14 (−2.33, 2.71) 5.04 0.492 +0.072

BD 0.16 (−1.86, 2.24) 4.10 0.516 +0.063

J 0.14 (−1.56, 1.95) 3.51 0.461 0.000

Note: FE for 𝜇 denotes the fixed effects model, which corresponds to a point mass at 𝜏 = 0 as heterogeneity prior. Note that
posterior estimates of 𝜇 induced by FE and the highly anticonservative HN0 prior match very well.
Abbreviations: AA, auricular acupuncture; BD, Berger-Deely; DM, DuMouchel; post-RA, posterior reference analysis.

anticonservative side of the reference prior J. By contrast, poBD (H = 0.373) and poU100 (H = 0.366) are more distant
from poHN0 than poJ (H = 0.326). This means that BD and U100 are on the conservative side of the reference
prior J.

Figure 3 (left column) shows poact and poJ posterior medians and 95% CrIs for 𝜇 and demonstrates whether poact is
platykurtic or leptokurtic with respect to poJ. Recall that anticonservative heterogeneity priors put more mass on hetero-
geneity values that are smaller than those governed by J, so they are more informative for 𝜏 = 0 than J. We found that
these priors produce platykurtic poact with respect to poJ for 𝜇. On the other hand, conservative heterogeneity priors put
more mass on heterogeneity values that are larger than those governed by J and thus are more informative for 𝜏 = ∞ than
J. These produce leptokurtic poact with respect to poJ for 𝜇.

There is a strong link between the platykurtic and leptokurtic status of poact, the length of CrI, and the signed infor-
mativeness values for 𝜇 in Figure 4. As Figure 3 (left column) and Figure 4 show, the anticonservative DM and HC1 priors
(which have negative signed informativeness) lead to CrI(𝜇) that are shorter than CrI(𝜇) of the reference posterior. These
two priors induce platykurtic posteriors relative to the reference posterior, see Figure 1 (top left panel). By contrast, the
conservative BD and U100 (which have positive signed informativeness) lead to CrI(𝜇) that are longer than CrI(𝜇) of the
reference posterior. These two priors induce leptokurtic posteriors.

Note that the sign and the value of informativeness of the heterogeneity prior depends on the parameter under
consideration. For example, for 𝜏, BD is the least informative (H = 0.118 in the last column of Table 4) and the only con-
servative heterogeneity prior (more distant from poHN0 than poJ with H = 0.996> 0.994). By contrast, for 𝜃new, the order
of informativeness of DM, HC1, U100, and BD is the same as for 𝜇.
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F I G U R E 3 Auricular acupuncture (AA) data (k= 4, left column) and respiratory tract infections (RTI) data (k= 22, right column),
forest plots with posterior estimates for the parameters 𝜇, 𝜃new, and 𝜏: The posterior median (square) and equi-tailed 95% credible interval is
shown for each heterogeneity prior listed in the legend [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Post-RA for the RTI dataset

The results of the post-RA for the RTI dataset are summarized in Table 5. In general, the qualitative findings for the RTI
dataset with k= 22 are similar to the ones for the smaller AA dataset (k= 4) in the previous section. For all the parameters
𝜇, 𝜏 and 𝜃new, the post-RA ranking based on the distance H(poact, poJ) is the same, from smallest to largest: HC1, BD,
U100, DM. This is the same ranking as for the parameters 𝜇 and 𝜃new and the AA dataset.

The posterior densities for𝜇 and 𝜃new shown in Figure 2 and the CrIs in Figure 3 are very close to the reference posterior
for all four actual heterogeneity priors considered, making it difficult to detect platykurtic and leptokurtic posteriors based
on these figures. Comparing the length of the 95% CrIs for 𝜇 in Table 5 reveals that the DM and HC1 priors have shorter
CrIs than the reference posterior and are thus platykurtic with respect to the reference posterior. As for the AA dataset,
these two priors are anticonservative relative to the reference prior J.

By contrast, the U100 and BD priors induce posteriors for 𝜇 that have longer CrIs than the reference posterior and are
thus leptokurtic with respect to the reference posterior. The U100 and BD priors induce marginal posteriors for 𝜇 which
are farther away from the poHN0 benchmark than the reference posterior poJ (see the signed informativeness estimates in
the last column of Table 5) and are thus conservative relative to the reference prior J.

4.3 Comparison of the results for the AA data (k= 4) and the RTI data (k= 22)

For the RTI dataset, setting 𝜏 = 0 (FE model) is a very strong assumption. As illustrated in the top right panel in Figure 3,
this assumption leads to posterior inference that strongly differs from the inference based on the minimally informative
reference prior (J) and from that based on the DM, HC1, U100, and BD heterogeneity priors. The discrepancy between

http://wileyonlinelibrary.com
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F I G U R E 4 Auricular
acupuncture data (k= 4), estimates
from Table 4: The relation between
the signed informativeness of
heterogeneity priors
sign(H(poHN0, poact)−H(poHN0, poJ))
×H(poact, poJ) and the
corresponding length L(CrI) of the
95% credible interval for the
parameters 𝜇, 𝜏, and 𝜃new. The
horizontal blue lines indicate L(CrI)
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[Colour figure can be viewed at
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the posterior poHN0(𝜇) and other marginal posteriors for 𝜇 (except the FE benchmark) demonstrates how neglecting
heterogeneity (by assuming 𝜏 = 0) impacts posterior inference, which leads to an estimated overall log odds ratio closer to
0 for RTI. Note that for AA, setting 𝜏 = 0 leads to comparable results to those for the DM, HC1, U100, and BD heterogeneity
priors.

Comparison of the H(poact, poJ) estimates for the post-RA in Figure 5 (top, see also Tables 4 and 5) for the AA and
RTI data reveals that these Hellinger distances between the marginal posteriors for 𝜇, 𝜃new and 𝜏 are much smaller for
RTI (k= 22) than for AA (k= 4). Consequently, the DM, HC1, U100, and BD priors are more informative for the small
AA dataset with k= 4 studies than for the larger RTI dataset with k= 22 studies. This appears to be a consequence of the
smaller sample size, that is, the number of studies included in the meta-analysis, in the AA dataset.

Figure 5 (bottom) applies the normal calibration of the Hellinger distance introduced in Section 3.5. This calibration
demonstrates that the area of overlap of poact and the reference posterior poJ is larger for RTI than for AA. According to
Equations (3) and (4) (see also Table 3), the informativeness estimate H= 0.136 for 𝜇 induced by the most informative

http://wileyonlinelibrary.com
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T A B L E 5 RTI data (k= 22), post-RA: For each parameter 𝜓 ∈ {𝜇, 𝜏, 𝜃new} and each actual heterogeneity prior
priact specified in the second column, the following estimates for the marginal posterior poact(𝜓) are given: The
posterior median, the equi-tailed 95% CrI, the length L(CrI) of that CrI, the Hellinger distance to the poHN0

benchmark and the signed informativeness (Sign. Inf.) sign(H(poHN0, poact)−H(poHN0, poJ))H(poact, poJ)

Par. priact Median (95% CrI) L(CrI) H(poHN0, poact) Sign. Inf.

𝜇 FE −0.94 (−1.12, −0.76) 0.36 0.000 −0.729

HN0 −0.94 (−1.12, −0.76) 0.36 0.000 −0.729

DM −1.27 (−1.72, −0.90) 0.82 0.714 −0.032

HC1 −1.28 (−1.74, −0.91) 0.84 0.726 −0.008

U100 −1.29 (−1.77, −0.91) 0.87 0.735 +0.017

BD −1.29 (−1.76, −0.91) 0.85 0.734 +0.011

J −1.29 (−1.75, −0.91) 0.85 0.729 0.000

𝜏 HN0 0.00 ( 0.00, 0.00) 0.00 0.000 −1.000

DM 0.65 ( 0.33, 1.11) 0.77 0.997 −0.083

HC1 0.68 ( 0.37, 1.14) 0.78 0.999 −0.023

U100 0.72 ( 0.39, 1.22) 0.83 0.999 −0.046

BD 0.71 ( 0.39, 1.19) 0.80 1.000 +0.030

J 0.69 ( 0.37, 1.17) 0.80 1.000 0.000

𝜃new HN0 −0.94 (−1.12, −0.76) 0.36 0.000 −0.719

DM −1.26 (−2.80, 0.13) 2.93 0.707 −0.028

HC1 −1.27 (−2.87, 0.18) 3.06 0.716 −0.008

U100 −1.28 (−2.97, 0.25) 3.23 0.724 +0.016

BD −1.28 (−2.94, 0.23) 3.17 0.723 +0.009

J −1.28 (−2.91, 0.21) 3.11 0.719 0.000

Note: FE for 𝜇 denotes the fixed effects model, which corresponds to a point mass at 𝜏 = 0 as heterogeneity prior. Note that
posterior estimates of 𝜇 induced by FE and the highly anticonservative HN0 prior match very well.
Abbreviations: BD, Berger-Deely; DM, DuMouchel, RTI, respiratory tract infections.

DM heterogeneity prior applied to AA corresponds to a shift of 0.387 between two unit variance normal distributions and
an associated area of overlap of 0.847. The informativeness estimate H= 0.041 of the least informative HC1 applied to
AA corresponds to a shift of 0.115 between two unit variance normal distributions, which have an area of overlap equal
to 0.954. By contrast, the corresponding numbers for DM and HC1 applied to RTI indicate that the posteriors of actual
heterogeneity priors better match the reference posterior. Indeed, H= 0.032 for DM corresponds to a shift of 0.090 and
an associated area of overlap of 0.964 and H= 0.008 for HC1 corresponds to a shift of 0.024 between two unit variance
normal distributions and an associated area of overlap of 0.991.

In conclusion, we found that the informativeness depends on the number of studies, the heterogeneity prior, and the
parameter under consideration. Although U100 is conservative for 𝜇 and 𝜃new for both AA and RTI, it is anticonservative
for 𝜏. U100 assigns probability mass to values of 𝜏 only in the interval [0, 100]. This truncation may cause the switch in
conservativeness between parameters.

5 DISCUSSION

The post-RA is a diagnostic tool that creates a partial ordering of the informativeness of heterogeneity priors with respect
to the minimally informative reference prior. We applied the post-RA to three proper (DM, HC1, U100) and one improper
BD heterogeneity priors of interest across two medical case studies (AA, RTI) and demonstrated that post-RA is applicable
to any heterogeneity prior, provided that the resulting posterior is proper.
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F I G U R E 5 Auricular acupuncture (AA) data (k= 4, left column) and respiratory tract infections (RTI) data (k= 22, right column),
absolute values of signed informativeness estimates from the post-RA: Top row: For the parameter 𝜓 ∈ {𝜇, 𝜃new, 𝜏} indicated on the x-axis,
the dots show the Hellinger distances H(poact(𝜓), poJ(𝜓)) between the marginal Jeffreys reference posterior and the marginal posterior
induced by the actual heterogeneity prior priact, act∈ {DM, HC1, U100, BD}. The bottom row displays the areas of overlap corresponding to
the Hellinger distances shown in the top row [Colour figure can be viewed at wileyonlinelibrary.com]

The distances between the posteriors of interest and the reference posterior quantify the heterogeneity prior
informativeness with respect to the reference prior J benchmark. However, we found that two posteriors induced
by an anticonservative and a conservative heterogeneity prior can have equal distances to the reference posterior.
To resolve this ambiguity, we considered one additional highly anticonservative benchmark HN0, which concen-
trated the majority probability mass on heterogeneity values close to 0. HN0 produced posteriors for the overall
mean parameter that matched well with the posterior of the FE model, which assumes 𝜏 = 0. Moreover, HN0 indi-
cated whether heterogeneity priors of interest were anticonservative or conservative with respect to the reference
benchmark J.

Based on the information gained from these (HN0, J) benchmarks, we were able to determine that anticonserva-
tive heterogeneity priors for the overall mean lead to platykurtic posteriors, shorter 95% CrI, and optimistic inference.
The shortest 95% CrI was attained by DM, which was the most informative anticonservative heterogeneity prior. By con-
trast, conservative heterogeneity priors for the overall mean lead to leptokurtic posteriors, longer 95% CrI, and cautious
inference. The longest 95% CrI was attained by U100, which was the most informative conservative heterogeneity prior
considered. Thus, U100 was conservative and more informative than BD for the overall mean of both AA and RTI. These
results complemented the analysis provided by Bodnar et al.15
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Note that the Supplementary Material describes alternative benchmark distributions. In fact, there we use proper
distributions that generalize the improper BD prior and cover the conventional prior as a special case.24 Similar distri-
butions have already been used to define anticonservative heterogeneity priors for Bayesian hierarchical models.8 In the
Supplementary Material, three benchmark distributions are considered in order to discriminate between strongly anti-
conservative, reference affine, and strongly conservative heterogeneity priors. For AA and RTI, these three benchmarks
showed that although U100 is conservative for the overall mean, it is still reference affine as compared with the highly
conservative benchmark. Moreover, we proposed a prior reference analysis (pri-RA) based on a reverse Bayes approach
and demonstrated that the post-RA was more successful than the pri-RA in ranking the informativeness of heterogeneity
priors.

The comparison of the results provided by post-RA based on the two benchmarks in the main text (HN0, J) and on
the three benchmarks of the Supplementary Material showed that findings remain stable when a different distribution is
assigned to the highly anticonservative benchmark. This indicates that the specific choice of the benchmark distribution
is not critical to establishing the order of informativeness. We only need a reasonable suggestion for benchmarks to let an
ordering emerge,33 and if necessary, alternative benchmark distributions can be easily incorporated into our principled
approach. Thus, we chose to focus on the two HN0 and J benchmarks, because these benchmarks are easy to understand
and provide answers to most of the questions asked in applications.

In this article, we used bayesmeta to estimate Bayesian NNHMs. This approach relies on using an accurate Bayesian
numerical approximation of the full Bayesian NNHM.20,34 This numerical approximation facilitates fast estimation of
Bayesian NNHMs and dispenses with convergence diagnostics, which are necessary for MCMC sampling approaches.
Moreover, bayesmeta provides a wide range of priors and is, therefore, a convenient software to use for post-RA.

For Bayesian NNHMs, we observed excellent agreement between the results obtained from bayesmeta and the
corresponding results from JAGS, Stan, and R-INLA. Consequently, our findings provided by post-RA are not specific to
bayesmeta, but valid more generally. In the future, however, we plan to make the post-RA methodology for the Bayesian
NNHM accessible to the R-INLA environment and to general-purpose MCMC engines for Bayesian estimation such as
JAGS, Stan, OpenBUGS, and BayesX.

Currently, our principled post-RA methodology has been implemented as an add-on functionality for thebayesmeta
environment and the R code is freely accessible in the R package ra4bayesmeta on CRAN (https://cran.r-project.org/
package=ra4bayesmeta). Thus, post-RA can be used directly by practitioners familiar with the bayesmeta environment
in a number of different fields, and in particular in medical applications.

Overall, the importance of assessing the informativeness of heterogeneity priors depends on the data. We found
that in data-dominated cases, when the posterior is dominated by a peaked likelihood function (RTI, k= 22), results
are similar regardless of which actual heterogeneity prior is used.10 However, in situations where the impact of data
is small (AA, k= 4) and the Bayesian meta-analysis may lead to posteriors that are dominated by prior assumptions,
it is important to carefully assess the informativeness of heterogeneity priors. Post-RA determines how informative
a heterogeneity prior is for the actual data as compared with the minimally informative reference prior. Hence, it
can help in practice by providing a principled assessment of “vagueness” and “weak informativeness,” thus support-
ing a better understanding of the validity of posterior inference in evidence-based medicine and many other research
fields.
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