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Modification by the ubiquitin-like protein SUMO affects
hundreds of cellular substrate proteins and regulates a wide
variety of physiological processes. While the SUMO system
appears to predominantly target nuclear proteins and, to a lesser
extent, cytosolic proteins, hardly anything is known about the
SUMOylation of proteins targeted to membrane-enclosed organ-
elles. Here, we identify a large set of structurally and functionally
unrelated mitochondrial proteins as substrates of the SUMO
pathway in yeast. We show that SUMO modification of mito-
chondrial proteins does not rely on mitochondrial targeting
and, in fact, is strongly enhanced upon import failure, consistent
with the modification occurring in the cytosol. Moreover,
SUMOylated forms of mitochondrial proteins particularly accu-
mulate in HSP70- and proteasome-deficient cells, suggesting
that SUMOylation participates in cellular protein quality con-
trol. We therefore propose that SUMO serves as a mark for non-
functional mitochondrial proteins, which only sporadically
arise in unstressed cells but strongly accumulate upon defective
mitochondrial import and impaired proteostasis. Overall, our
findings provide support for a role of SUMO in the cytosolic
response to aberrant proteins.

Posttranslational modification by the small ubiquitin-like
modifier (SUMO)4 is of fundamental importance for the regu-
lation of a wide variety of physiological processes. Consistent
with the large number of cellular SUMO substrates and its cru-
cial roles in cell homeostasis, SUMOylation is essential for via-

bility in most eukaryotes. Moreover, SUMO has been widely
implicated in cellular responses to stress, including hypoxic,
osmotic, genotoxic, and nutrient stress (1). In particular,
SUMOylation is strongly induced under conditions of proteo-
toxic stress and targets a diverse array of substrate proteins
upon protein misfolding caused by heat shock (2–4) or protea-
some inhibition (5–7).

Most SUMO substrates identified to date are nuclear pro-
teins (8) and also most SUMO conjugating and deconjugating
enzymes show a primarily nuclear localization (9 –12). How-
ever, SUMOylation is not restricted to the nucleus and several
cytosolic SUMO targets have been identified as well (13). Well-
studied examples of SUMO substrates outside the nucleus are
the septins in budding yeast, which become SUMOylated by the
cytosolic pool of the SUMO E3 ligase Siz1 during mitosis (14 –
19) and deSUMOylated by the SUMO-specific isopeptidase
Ulp1 during cytokinesis (14, 15, 20).

Interestingly, SUMO substrates in the cytosol also include
proteins that are located at the interfaces of the plasma mem-
brane and cellular organelles such as the nucleus, the endoplas-
mic reticulum, and mitochondria (13). This group of substrates
includes the GTPase DRP1 in mammals, which currently is the
only well-characterized SUMO substrate that localizes to mito-
chondria. DRP1 associates with the cytosolic side of the outer
mitochondrial membrane. SUMOylation of DRP1 was found to
be mediated by the mitochondrial anchored SUMO E3 ligase
MAPL (21) and to promote mitochondrial fission under normal
growth conditions (22) as well as during apoptosis (23).

Ubiquitin has also been identified as regulator of mitochon-
drial homeostasis and has been linked to mitochondrial protein
quality control (24, 25). Notably, the ubiquitin-proteasome sys-
tem was shown to mediate the degradation of nonimported
mitochondrial proteins under physiological conditions (26)
and acutely upon import failure (26 –30). In this scenario, ubiq-
uitin is conjugated to proteins that normally localize to and
function within the inner mitochondrial subcompartments (26,
27). By contrast, SUMO modification of proteins from inner
mitochondrial subcompartments has not been analyzed to
date, even though previous large-scale “SUMOylome” studies
have suggested a small number of putative SUMO substrates
from these compartments (31–36).

Starting from a mass spectrometry (MS) approach, we pro-
vide here evidence that a substantial fraction of the mitochon-
drial proteome is targeted by the SUMO modification system.
We corroborate our MS data by individually confirming the
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SUMO modification of several mitochondrial matrix proteins
in vivo. In agreement with the presence of SUMO enzymes in
the cytosol but not in the mitochondrial matrix, we find that the
SUMOylation of mitochondrial proteins does not rely on mito-
chondrial import. By contrast, our data rather indicate that
SUMOylation of mitochondrial proteins is strongly enhanced
upon import failure. Moreover, whereas SUMO modification
of these substrates occurs only sporadically in unstressed cells,
it is particularly induced when canonical components of the
proteostasis network, such as the HSP70 system or the protea-
some, are defective. Finally, we propose a model in which the
SUMO modification pathway targets nonfunctional mitochon-
drial proteins as an element of cellular protein quality control.

Results

Mitochondrial proteins are modified by SUMO in vivo

Following our long-standing interest in the SUMO system,
we screened for novel SUMO substrates using a strategy that
involves the purification of His-tagged SUMO (HisSUMO) con-
jugates from yeast cells and analysis of the enriched proteins
using quantitative mass spectrometry (37, 38). Previous large-
scale studies in budding yeast had suggested a small number of
mitochondrial proteins as potential SUMO substrates (31–36).
Notably, we consistently identified peptides of several different
mitochondrial proteins in our HisSUMO purifications. By com-
piling the results of multiple MS experiments, our approach
revealed a set of 89 inner mitochondrial proteins as potential
SUMO substrates (Table S1). For 61 of these proteins we also
identified a total of 81 SUMOylation sites, further suggesting
that these proteins are modified in vivo (Table S1).

Among the 89 potential mitochondrial SUMO substrates, we
found components of all inner mitochondrial subcompart-
ments (intermembrane space, inner membrane, and matrix)
(Fig. 1A). A comparison with the localization of known mito-
chondrial proteins listed in the Yeast Deletion and Proteomics
of Mitochondria (YDPM) database (39) suggested that the
number of SUMO substrates from each subcompartment
largely scaled with the overall number of proteins in each sub-
compartment. Seemingly, therefore, submitochondrial local-
ization is not a determinant for SUMO modification. Impor-
tantly, only a small fraction of substrates (six proteins) were
annotated as having a dual localization (mitochondrial and
cytosolic). We therefore conclude that a large number of pro-
teins that function in mitochondria are modified by SUMO in
vivo.

To ascertain the MS results, we analyzed the SUMOylation
of several structurally and functionally unrelated mitochon-
drial proteins individually. Using denaturing Ni-NTA pull-
downs and subsequent Western blot analysis we were able to
confirm that these mitochondrial matrix proteins are indeed
modified by SUMO. These confirmed SUMO substrates
include Ilv6 (Fig. 1B), a protein involved in branched-chain
amino acid biosynthesis (40, 41), Adh3 (Fig. 1C), a mitochon-
drial alcohol dehydrogenase isoform (42, 43), and Mrpl23 (Fig.
1D), a mitochondrial ribosomal protein (44).

We next aimed to identify the SUMO acceptor sites on mito-
chondrial SUMO substrates. To this end, we systematically
replaced individual lysine residues on Ilv6, Adh3, and Mrpl23 to
arginine. For Ilv6, this identified lysine 260 as major SUMO
acceptor site (Fig. S1, A and B), but additional removal of three

Figure 1. Mitochondrial proteins are modified by SUMO in vivo. A, submitochondrial distribution of 89 potential SUMO substrates, which were identified
by a mass spectrometry– based approach. Putative SUMO substrates identified with SUMO acceptor site(s) are indicated in dark gray. dual loc., dual localization;
IMS, intermembrane space; and IM, inner membrane. B–D, mitochondrial matrix proteins Ilv6, Adh3, and Mrpl23 are SUMO substrates. Shown are HisSUMO
Ni-NTA pulldowns from wild-type cells and cells expressing epitope-tagged proteins as indicated. His-tagged SUMO (HisSUMO) was expressed from the ADH1
promoter and C-terminally 3HA-tagged Ilv6 (B), 3HA-tagged Adh3 (C), or 3HA-tagged Mrpl23 (D) from the endogenous promoter (B and C) or ADH1 promoter
(D). Proteins were detected by Western blotting using HA epitope- and Pgk1-specific antibodies. Pgk1 SUMOylation was analyzed to control for pulldown
efficiency, and unmodified Pgk1 served as control.
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adjacent lysine residues (Lys-218, Lys-284, and Lys-296) in a
stepwise manner further reduced SUMOylation and a mutant
variant lacking all four lysine residues (Ilv63HA-K218R, K260R,
K284R, K296R termed Ilv63HA-4KR) did not show any detect-
able SUMOylation (Fig. S1, A and B). For Adh3, we found lysine
305 as major SUMO acceptor site (Fig. S1, C and D) and for
Mrpl23, replacement of the two most C-terminal lysine resi-
dues by arginine reduced the levels of SUMO conjugates to less
than 50% (Fig. S1, E and F).

SUMOylation of mitochondrial proteins requires the SUMO E3
ligases Siz1 and Siz2

We next asked whether SUMOylation of mitochondrial pro-
teins requires specific SUMO E3 ligases. Analysis of Ilv6
SUMOylation in cells lacking the known SUMO E3 ligases Siz1
(siz1�) or Siz2 (siz2�) indicated that the SUMO modification of
Ilv6 is catalyzed by Siz1 and to a minor extent by Siz2 (Fig. 2A).
Accordingly, Ilv6 SUMOylation was undetectable by Western
blotting in samples from cells lacking both Siz1 and Siz2 (siz1�
siz2�) (Fig. 2A). Moreover, we found strikingly similar roles for
Siz1 and Siz2 in the SUMO modification of Adh3 (Fig. 2B) and
Mrpl23 (Fig. 2C). Thus, all tested SUMO substrates require the
same SUMO E3 ligases of the conserved Siz/PIAS (protein
inhibitor of activated STAT) family for modification.

SUMOylation of mitochondrial proteins is enhanced upon
import failure

The vast majority of mitochondrial proteins are synthesized
on cytosolic ribosomes and subsequently imported into mito-

chondria (45, 46). We therefore asked whether SUMOylation of
mitochondrial proteins is linked to the import process or
requires the presence of a mitochondrial targeting signal. Clas-
sical mitochondrial targeting signals are N-terminal prese-
quences, which in most cases are proteolytically removed from
mitochondrial precursor proteins during import. Presequences
frequently target proteins into the mitochondrial matrix and
therefore are also referred to as matrix-targeting sequences
(MTS) (45). Accordingly, we generated an Ilv6 mutant variant
(MTS�-Ilv63HA), which lacks the N-terminal MTS (amino
acids 1–24) required for mitochondrial import (Fig. 3A).
Microscopic analysis of corresponding GFP fusion proteins
demonstrated that removal of the 24 N-terminal amino acids of
Ilv6 is indeed sufficient to prevent mitochondrial import,
thereby causing a presumably cytosolic localization of the
mutant protein variant (Fig. S2, A and B). Importantly, this
mutant was efficiently SUMOylated (Fig. 3B) and the modifica-
tion was again dependent on the SUMO E3 ligases Siz1 and Siz2
(Fig. S2C) and occurred at a similar set of SUMO acceptor sites
as for wild-type Ilv6 (Fig. S2D). Therefore, SUMO modification
of Ilv6 does not rely on mitochondrial import and does not
require the presence of an MTS. In fact, MTS deletion even
strongly enhanced the SUMOylation of Ilv6 (Fig. 3B), indicat-
ing that SUMO modification is induced by import failure.

We also analyzed an import-incompetent variant of Adh3
(MTS�-Adh33HA) (Fig. 3C). Again, SUMO modification of the
import-incompetent variant was enhanced compared with the
wild-type protein (Fig. 3D). Furthermore, SUMOylation of

Figure 2. SUMO modification of mitochondrial proteins requires SUMO E3 ligases Siz1 and Siz2. A–C, SUMOylation of Ilv6, Adh3, and Mrpl23 depends on
Siz1 and to a lesser extent on Siz2. Denaturing HisSUMO Ni-NTA pulldowns from wild-type (WT) cells and cells lacking Siz1 (siz1�), Siz2 (siz2�), or both (siz1�
siz2�). Strains express C-terminally 3HA-tagged Ilv6 (A), 3HA-tagged Adh3 (B), or 3HA-tagged Mrpl23 (C).
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import-incompetent Adh3 also required the SUMO E3 ligases
Siz1 and Siz2 (Fig. S2E) and the predominantly targeted lysine
305 (Fig. S2F), similar to wild-type Adh3. We therefore con-
clude that import-incompetent mutant variants of mitochon-
drial proteins are SUMOylated with requirements as wild-type
substrates, but that deletion of targeting sequences strongly

enhances the modification. This may suggest that SUMOyla-
tion of wild-type proteins specifically occurs upon sporadic
mistargeting in unstressed cells and under conditions where
mitochondrial protein import is impaired. Indeed, we observed
an accumulation of SUMOylated Ilv6 precursors (p) in strains
defective in mitochondrial import (Fig. 3E), which harbor a

Figure 3. SUMO modification of mitochondrial proteins is enhanced upon import failure. A–D, SUMOylation of Ilv6 and Adh3 is enhanced in the absence
of a mitochondrial targeting signal. A and C, schematic representation of Ilv63HA (A) or Adh33HA (C) and corresponding mutant variants lacking the matrix-
targeting sequence (MTS). ACT domain, named after aspartate kinase, chorismate mutase, TyrA; ALS_ss_C domain, acetolactate synthase, small subunit,
C-terminal domain; zinc-binding DH domain, zinc-binding dehydrogenase domain. B and D, denaturing HisSUMO Ni-NTA pulldowns from cells harboring
plasmids that express wild-type Ilv6 (B) or Adh3 (D) and corresponding import-incompetent mutant variants as indicated from the GAL1 promoter. Data
information: The ratios of SUMOylated/unmodified proteins (B and D) were determined by Western blot quantification using ImageJ and normalized to the
wild-type proteins. E, a SUMOylated Ilv6 precursor accumulates upon inactivation of mitochondrial HSP70 (Ssc1). Denaturing HisSUMO Ni-NTA pulldowns from
wild-type (WT) and temperature-sensitive ssc1-3 cells expressing C-terminally 3HA-tagged Ilv6 from the endogenous promoter. Cells were grown at 25 °C and
shifted to 37 °C for 1 h. Bands corresponding to the unmodified or monoSUMOylated precursor protein (p) or mature form (m) are labeled.
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temperature-sensitive mutant variant of mitochondrial HSP70
(ssc1-3) (47). Furthermore, we specifically observed the accu-
mulation of SUMOylated Ilv6 precursors in the ssc1-3 mutant,
whereas in wild-type cells Ilv6-SUMO conjugates appeared to
be proteolytically processed (Fig. 3E; note the shift of the pre-
cursor (p) compared with the mature form (m)). This indicates
that the major pool of Ilv6-SUMO conjugates in unstressed
wild-type cells possesses a proteolytically processed N termi-
nus. It is therefore conceivable that these protein species have
at some point initiated mitochondrial import, but that they
become modified by SUMO in the cytosol.

SUMOylation of mitochondrial proteins is regulated by the
SSA family of HSP70 chaperones

Based on our observation that the SUMOylation of mito-
chondrial proteins can occur in the cytosol, we speculated that
the modification might be affected by factors which bind non-
imported mitochondrial precursor proteins. Several factors are
involved in posttranslational protein import into mitochondria
(48 –50), of which the SSA family HSP70 proteins (Ssa1– 4) are
of particular importance in budding yeast (51, 52). We there-
fore used cells in which HSP70 function was diminished by
deletion of three out of four SSA genes (ssa2� ssa3� ssa4�) and
additional expression of either wild-type SSA1 or the hypomor-
phic mutant variant ssa1-45 (53). HSP70 chaperones have been
shown to bind to mitochondrial precursor proteins, to maintain
them in an import-competent state, and to prevent their aggre-
gation (52, 54, 55). Consistently, we observed an increased
aggregation propensity of the Ilv6 precursor (p) compared with
the processed mitochondrial form (m) of the protein (Fig. S3A).
Moreover, the levels of the Ilv6 precursor were mildly increased
when HSP70 activity was compromised (Fig. S3A). This indi-
cates that SSA family chaperones are indeed involved in the
mitochondrial import of Ilv6. Strikingly, we also detected a
strong accumulation of SUMOylated Ilv6 precursors in SSA
mutants, particularly in ssa1-45 cells (Fig. 4A), which was sup-
pressed by ectopic expression of Ssa1 from the strong constitu-
tive ADH1 promoter (Fig. S3, B and C). Notably, in addition to
monoSUMOylated Ilv6, we detected further bands with a
slower migration behavior in ssa1-45 cells, suggesting the pres-
ence of Ilv6 species modified with multiple SUMO moieties
(Fig. 4A). Likewise, the levels of SUMOylated Adh3 were ele-
vated in the ssa1-45 background (Fig. 4B), indicating that a
functionally compromised SSA chaperone system generally
causes enhanced SUMO modification of mitochondrial pro-
teins. Interestingly, when we further characterized Ilv6 and
Adh3 SUMOylation in SSA mutants, we additionally noticed
the modification of lysine residues, which were not detectable
by Western blotting in wild-type cells (Fig. 4, C and D and Fig.
S3D).

To test if the enhanced SUMOylation of mitochondrial pro-
teins in SSA mutant cells would simply result from an import
defect, we introduced the import-incompetent variant of Adh3
(MTS�-Adh33HA) in SSA1 and ssa1-45 cells (Fig. 4E). Strik-
ingly, however, we observed a further enhancement of Adh3
SUMOylation, suggesting that import failure and SSA defi-
ciency exert an additive effect on the SUMOylation of mito-
chondrial proteins. We thus conclude that defective mitochon-

drial import and functional impairment of the SSA HSP70
system are additive triggers for SUMOylation of mitochondrial
proteins.

Enhanced SUMOylation of mitochondrial proteins in
proteasome mutants

Molecular chaperones are central hubs of cellular protein
quality control. In addition to their function in protein folding,
they also act as decision makers and target terminally misfolded
proteins for degradation by the ubiquitin-proteasome system
(56, 57). We therefore asked whether the SUMO modification
of mitochondrial proteins would be influenced by the cells’ abil-
ity to degrade proteins via the proteasome. To abrogate protea-
some function, we took advantage of the cim3-1 temperature-
sensitive mutant, which induces a defect in the 19S regulatory
proteasome subunit Rpt6 (58), or used the proteasome inhibi-
tor MG132.

Strikingly, when we analyzed SUMO conjugates in cim3-1
cells, we found an accumulation of multiple SUMOylated spe-
cies of Ilv6 (Fig. 5A), Adh3 (Fig. 5B), and Mrpl23 (Fig. 5C),
indicating that proteasomal degradation strongly impacts the
SUMOylation of mitochondrial proteins. Moreover, as judged
from the SUMOylation patterns of Adh3 and Ilv6 in cim3-1
cells, which were similar to those observed in SSA mutants,
proteasome inhibition also led to an accumulation of SUMOy-
lated precursor proteins. This idea was further confirmed by
analysis of Ilv6 SUMOylation in cells treated with the protea-
some inhibitor MG132 (Fig. S4A). Notably, we consistently
detected a slight accumulation of precursor proteins of Ilv6 and
Adh3 in cim3-1 and MG132-treated cells (Fig. 5, A and B and
Fig. S4A), which is in line with previous studies that have impli-
cated the ubiquitin-proteasome system in the clearance of non-
imported mitochondrial proteins from the cytosol (26 –30).
Taken together, these observations suggest that SUMOylation
targets nonimported mitochondrial precursor proteins, which
fail to be degraded in response to proteasome inhibition.

In addition to our observation of increased mitochondrial
protein SUMOylation upon proteasome inhibition, we also
tested whether the SUMO conjugates themselves would be
substrates of the proteasome and therefore stabilized in protea-
some mutant cells. Therefore, we combined a translation shut-
off experiment (cycloheximide shut-off) with denaturing Ni-
NTA pulldowns to monitor SUMOylated Ilv6 over time. First,
we observed that the unmodified Ilv6 precursor is rapidly
degraded in wild-type cells, but strongly stabilized in the cim3-1
mutant (Fig. 5D; see inputs). This indicates that Ilv6 precursors,
which fail to be imported into mitochondria, are degraded in a
proteasome-dependent manner. Second, we observed that
SUMOylated Ilv6 is rapidly turned over in wild-type cells and
almost completely stabilized in cim3-1 cells (Fig. 5D; see Ni-
NTA pulldowns). Overall, SUMOylated forms of Ilv6 are turned
over by the proteasome in remarkably similar fashion as the Ilv6
precursor.

Consistent with the proteasomal clearance of nonimported
Ilv6 species, we found that the import-incompetent Ilv6 mutant
variant, which lacks its MTS (MTS�-Ilv63HA), is degraded in a
proteasome-dependent manner (Fig. S4B). However, removal
of the four major SUMOylation sites or even completely abol-
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ishing SUMO modification by deletion of the SUMO E3 ligases
Siz1 and Siz2 did not noticeably delay the degradation of
import-incompetent Ilv6 (Fig. S4, C and D). Therefore,
although we cannot exclude that a minor pool of nonimported
Ilv6 is targeted for degradation in a SUMO-dependent manner,
this indicates that SUMOylation is not used as a widespread

signal for proteasomal clearance of the majority of nonim-
ported mitochondrial proteins. We conclude that SUMO
rather serves as a mark for nonimported mitochondrial pro-
teins, particularly in the absence of proteasomal degradation.

Given our observation that SUMOylation of mitochondrial
proteins is also enhanced upon import failure, we predicted

Figure 4. SUMO modification of mitochondrial proteins is enhanced in SSA family HSP70 mutant cells. A and B, inactivation of Ssa1– 4 causes accumu-
lation of Ilv6 (A) and Adh3 (B) SUMO conjugates and of the corresponding precursors. Denaturing HisSUMO Ni-NTA pulldowns from wild-type (WT), SSA1 (SSA1
ssa2� ssa3� ssa4�) and ssa1-45 (ssa1-45 ssa2� ssa3� ssa4�) cells expressing 3HA-tagged Ilv6 (A) or 3HA-tagged Adh3 (B) from the endogenous promoter.
Bands corresponding to the unmodified or monoSUMOylated precursor proteins (p) or mature forms (m) are labeled. C and D, SUMO modification after SSA
impairment occurs via specific and additionally accessible modification sites. Denaturing HisSUMO Ni-NTA pulldowns from SSA1 and ssa1-45 cells expressing
3HA-tagged wild-type (WT) Ilv6 (C) or 3HA-tagged wild-type Adh3 (D) and the indicated lysine to arginine mutants from the ADH1 (C) or TDH3 (D) promoter. E,
SSA impairment and deletion of the Adh3 MTS cause an additive enhancement in Adh3 SUMOylation. Denaturing HisSUMO Ni-NTA pulldowns from SSA1 and
ssa1-45 cells harboring plasmids that express wild-type (WT) or MTS-lacking (MTS�) 3HA-tagged Adh3 from the TDH3 promoter. Bands corresponding to the
Adh3 precursor (p) or mature form (m) are labeled.

SUMOylation of mitochondrial proteins

604 J. Biol. Chem. (2018) 293(2) 599 –609

http://www.jbc.org/cgi/content/full/M117.817833/DC1


that SUMOylation should be strongly augmented upon expres-
sion of an MTS-lacking mutant protein in cim3-1 cells. Indeed,
multiple SUMOylated species of the import-incompetent
Adh3 mutant variant (MTS�-Adh33HA) strongly accumulated
in proteasome mutants (Fig. S4, E and F) and MTS deletion
enhanced the SUMOylation of Adh3 in both wild-type and
cim3-1 cells (Fig. 5E). We thus conclude that the SUMOylation
of mitochondrial proteins is additively triggered upon import
failure and inhibition of the proteasomal degradation system.

Discussion

Our study identifies SUMO modification as an element of
cellular protein quality control that acts on mitochondrial pro-
teins. This adds to the growing list of experimental evidence
that suggests functions of SUMO in cellular stress responses
(1). In particular, we find that SUMOylation of mitochondrial
proteins is induced upon failed mitochondrial import and when

HSP70- or proteasome-dependent surveillance systems are
defective. We therefore propose that SUMO serves as a mark
for nonfunctional and nonimported, perhaps even import-in-
competent, mitochondrial proteins.

Interestingly, SUMOylation is detectable on small pools of
processed mitochondrial proteins even under normal growth
conditions. As judged from the apparent cleavage of their
N-terminal MTS, these proteins seem to initiate or to have
initiated import. Currently it is unclear whether SUMO modi-
fication occurs before, concomitant with, or after the attempted
import event. It can even be speculated, given that mitochondrial
proteins are typically imported in an unfolded and extended con-
formation (59), that the attachment of a folded SUMO moiety to a
precursor protein may stall the translocation.

In agreement with a function of SUMO in the quality control
of cytosolic proteins, we also provide evidence that SUMOyla-

Figure 5. Accumulation of SUMO-modified mitochondrial proteins in proteasome mutants. A–C, SUMO-modified forms of mitochondrial proteins
accumulate under conditions of proteasome impairment. Denaturing HisSUMO Ni-NTA pulldowns from wild-type (WT) and cim3-1 cells. The strains express
3HA-tagged Ilv6 (A) or 3HA-tagged Adh3 (B) from their endogenous promoters or harbor plasmids that express 3HA-tagged Mrpl23 (C) from the ADH1
promoter. Bands corresponding to the unmodified or monoSUMOylated precursor proteins (p) or mature forms (m) are labeled. D, Ilv6 precursors and
SUMOylated Ilv6 species are stabilized in the cim3-1 mutant. Expression shut-off assay of Ilv6-SUMO conjugates. Yeast cells were treated with 0.5 mg/ml
cycloheximide (CHX) and samples were harvested at the indicated time points. Denaturing Ni-NTA pulldowns were performed to isolate HisSUMO conjugates
from cells expressing 3HA-tagged Ilv6 from the endogenous promoter. Bands corresponding to the unmodified or monoSUMOylated precursor protein (p) or
mature form (m) are labeled. E, proteasome impairment and deletion of the Adh3 MTS cause an additive enhancement in Adh3 SUMOylation. Denaturing
HisSUMO Ni-NTA pulldowns from wild-type (WT) and cim3-1 cells harboring plasmids that express Adh3 variants as indicated from the ADH1 promoter.
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tion of mitochondrial proteins does not rely on mitochondrial
import. Thus, SUMOylation appears to occur outside their
native environment, where mislocalized proteins are potential
sources of cellular stress. Indeed, recent reports have high-
lighted that accumulation of nonimported mitochondrial pre-
cursor proteins (termed mitochondrial precursor overaccumu-
lation stress (mPOS)) is a challenge to cellular proteostasis (60,
61). These studies furthermore show that cells react to mito-
chondrial precursor overaccumulation stress with specific
compensatory mechanisms such as a reduction of cytosolic
translation and an increase in proteasome activity. We specu-
late that SUMOylation of mitochondrial proteins might be a
further protective mechanism involved in the cytosolic proteo-
static responses to mitochondrial stress (62).

Protein modification by SUMO has also been implicated in
the quality control of other proteins including transcriptional
regulators (63) and aggregation-prone proteins involved in
neurodegenerative diseases (64, 65). It has been proposed that
SUMO may act as a “solubility enhancer” (65), which reduces
protein aggregation (66 –71) and enables clearance of aggre-
gates by the ubiquitin-proteasome system via recruitment of
specific SUMO-binding factors (72). Notably, fostering physi-
cal interactions between SUMOylated proteins and binding
partners that harbor so-called SUMO-interacting motifs
(SIMs) is apparently one of the most prominent functions of
SUMO (13, 73). It can therefore be speculated that SUMO
modification will determine the fate of nonimported mitochon-
drial proteins by the recruitment of specific SUMO-interacting
motif– containing interaction partners, which in turn could
affect the targeting competence and solubility of a modified
protein. Moreover, although SUMOylation is apparently not an
essential requirement for the proteasomal degradation of non-
imported mitochondrial proteins (Fig. S4, C and D), such fac-
tors might contribute to the clearance of specific protein pools
and could target species that have failed to be degraded by the
common ubiquitin-proteasome– dependent mechanism. At
any rate, our data provide the first evidence for SUMO acting
on aberrant and nonimported mitochondrial proteins.

Finally, we emphasize that SUMO modification, as we
describe it here for mitochondrial substrates, will most likely
not discriminate between mislocalized proteins based on their
original destination. We therefore reason that the modification
is unlikely to be specific for mitochondrial proteins and that
nonimported proteins of other organelles could become mod-
ified in a similar fashion. Accordingly, it can be envisioned that
such substrates will arise in particular upon organelle dysfunc-
tion, mistargeting, or stress-induced protein damage. Consist-
ent with this idea, SUMOylation is strongly induced in the
nucleus upon proteotoxic stress (3).

Studying the functions of SUMO in proteostasis is chal-
lenged by the multiple other ways through which SUMO regu-
lates protein function. For proteins within their native environ-
ment it is therefore difficult to dissect quality control and other
functions of SUMO. By contrast, SUMO modification of mito-
chondrial substrates appears to occur outside of their func-
tional compartment. Thus, our study not only brings renewed
attention to the multifaceted roles of SUMO as a component of
the cellular proteostasis network but also opens up a new

opportunity for revealing the functions of SUMO in protein
quality control.

Experimental procedures

Yeast strains and plasmids

All yeast (Saccharomyces cerevisiae) strains and plasmids
used in this study are listed in Tables S2 and S3, respectively.

Identification of SUMO substrates by SILAC mass spectrometry

Enrichment of SUMO conjugates from yeast cells expressing
HisSUMO followed by SILAC-based mass spectrometric analy-
sis has been described previously (37, 38). In brief, yeast cells
deficient in the biosynthesis of lysine and arginine (lys1�
arg4�) were grown in synthetic complete (SC) media contain-
ing either unlabeled or heavy isotope–labeled lysine and argi-
nine (Lys8, Arg10). HisSUMO conjugates were isolated using
denaturing Ni-NTA pulldowns and separated on NuPAGE Bis-
Tris Gels (4 –12%) (Thermo Fisher Scientific). Gels were
stained with Coomassie Blue and single lanes were excised in
form of 10 separate gel slices. Subsequently, proteins were
digested with trypsin or thermolysin and analyzed by LTQ
Orbitrap mass spectrometry (74) and MaxQuant software (75).

SUMO-modified proteins were identified based on two cri-
teria. The first was the enrichment in samples of yeast cells
expressing HisSUMO compared with untagged SUMO (SILAC
ratios above 2). The second was the detection of SUMO attach-
ment sites as described previously (38).

We would like to note that the list of potential SUMO sub-
strates presented here (Table S1) represents a compiled dataset
from multiple mass spectrometry experiments.

Yeast techniques and molecular cloning

Yeast deletion mutants and chromosomally tagged strains
were generated by common PCR-based strategies, genetic
crosses, and standard techniques (76, 77). Yeast strains were
inoculated from fresh overnight cultures and grown using stan-
dard growth conditions (78). Typically, cells were cultured at
30 °C in yeast extract peptone dextrose (YPD) or SC media con-
taining glucose (2%) as carbon source. For the expression of
genes under the GAL1 promoter, yeast cells (W303 back-
ground) were grown in medium containing 2% raffinose, and
2% galactose was added to induce protein expression. Strains
harboring a temperature-sensitive SSC1 allele (ssc1-3) were
grown at 25 °C and shifted to 37 °C as indicated. The hypomor-
phic SSA1 and CIM3 mutants used in this study (ssa1-45 and
cim3-1) display phenotypes already at the permissive tempera-
ture. These strains including the corresponding wild-type controls
were grown at 25 °C. For the qualitative analysis of growth pheno-
types, exponentially growing yeast cultures were adjusted to an
A600 of 1, and six 5-fold serial dilutions were spotted on SC agar
plates. The plates were scanned after 2–3 days’ incubation at 25 °C
and 37 °C, respectively.

Plasmid constructs for the expression of HisSUMO under
control of the ADH1 promoter have been described previously
(79, 80). Standard cloning techniques were used to generate
constructs for the expression of HA-tagged proteins and N-ter-
minally truncated mutant variants. Point mutations were intro-
duced using PCR-based site-directed mutagenesis.

SUMOylation of mitochondrial proteins

606 J. Biol. Chem. (2018) 293(2) 599 –609

http://www.jbc.org/cgi/content/full/M117.817833/DC1
http://www.jbc.org/cgi/content/full/M117.817833/DC1
http://www.jbc.org/cgi/content/full/M117.817833/DC1


Protein techniques, cellular fractionation, and Western
blotting

Total cell extracts were prepared by TCA precipitation (76)
and Ni-NTA pulldowns of HisSUMO conjugates under dena-
turing conditions were performed as described previously (37).
SUMOylation of mitochondrial proteins in different yeast
strains was initially analyzed with C-terminally 3HA-tagged
proteins expressed from their endogenous promoters (Ilv63HA

and Adh33HA). To more quantitatively assess SUMOylation,
expression systems under control of the ADH1, GAL1, or TDH3
promoters were additionally used.

For HisSUMO Ni-NTA pulldowns combined with expression
shut-off assays, cells were grown in YPD medium, shifted to
37 °C for 60 min, and treated with 0.5 mg/ml cycloheximide
(CHX) dissolved in YPD medium prior to the experiment. Cells
were harvested at the time points indicated in the respective
experiment and denaturing Ni-NTA pulldowns were per-
formed to isolate HisSUMO conjugates.

Cellular fractionations were performed as described previ-
ously (81) with minor modifications. Cells were lysed by bead-
beating in lysis buffer (100 mM HEPES pH 7.5, 1% Triton X-100,
300 mM NaCl, EDTA-free protease inhibitor mixture (Roche), 1
mg/ml Pefabloc SC (Roche)) using zirconia/silica beads (Bio
Spec Products, Inc., Bartlesville, OK) and a multi-tube bead-
beater (MM301, Retsch Technology, Haan, Germany). Cellular
lysates were cleared by centrifugation (2000 � g, 10 min, 4 °C)
and the resulting total cell extracts (T fraction) were fraction-
ated by centrifugation (16,000 � g, 10 min, 4 °C) to yield soluble
(S fraction) and insoluble pellet (P fraction) fractions.

Proteins from cell extracts, cell fractions, or isolated by Ni-
NTA pulldowns were separated on NuPAGE Bis-Tris gels (12%
or 4 –12%) (Thermo Fisher Scientific) and analyzed using stan-
dard Western blotting techniques.

Cycloheximide shut-off assays

To monitor the degradation of import-incompetent Ilv6
(MTS�-Ilv63HA) expressed from the GAL1 promoter, cells
were grown at 30 °C in SC medium containing 2% raffinose as
carbon source. Protein expression was induced by addition of
2% galactose for 1 h and cells were shifted to 37 °C. Optionally,
cells (pdr5�) were treated with 50 �M MG132 dissolved in
DMSO. After 1 h at 37 °C cells were resuspended in YPD
medium containing 0.5 mg/ml cycloheximide and samples of 1
A600 were taken at different time points. Cell extracts were pre-
pared by TCA precipitation and analyzed by Western blotting.

Fluorescence microscopy

Yeast cells (W303 background) were grown at 30 °C in SC
medium containing 2% raffinose as carbon source. Cells were
complemented with plasmids expressing full-length Ilv6GFP

from the endogenous promoter or import-incompetent Ilv6
(MTS�-Ilv6GFP) from the GAL1 promoter. Protein expression
was induced by addition of 2% galactose for 1 h. Cells were then
transferred into a CellCarrier-96 black polystyrene microplate
(PerkinElmer Life Sciences) and stained using Calcofluor
White (Sigma-Aldrich). Images were captured at room temper-
ature using an Opera Phenix HCS confocal microscope

(PerkinElmer Life Sciences) equipped with an Olympus 63�
water NA 1.15 objective.

Antibodies

Polyclonal Smt3-specific antibodies were raised in rabbits
and have been described previously (79). Monoclonal (F-7) and
polyclonal (Y-11) antibodies directed against the HA epitope
were purchased from Santa Cruz Biotechnology (Dallas, TX).
The monoclonal Pgk1 (22C5D8) and Dpm1 (5C5) antibodies
were from Thermo Fisher Scientific and the monoclonal HSP70
(BB70) antibody was from Enzo Life Sciences (Farmingdale,
NY).

Software

GraphPad Prism (GraphPad Software, La Jolla, CA) was used
for data presentation (Fig. 1A) and ImageJ was used for Western
blot quantification (Fig. 3, B and D). Microscopic imaging data
were acquired and evaluated using Harmony 4.5 high-content
imaging and analysis software (PerkinElmer Life Sciences).
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