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Abstract: Citrus huanglongbing (HLB) is a destructive disease caused by Candidatus Liberibacter
species and is a serious global concern for the citrus industry. To date, there is no established
strategy for control of this disease. Previously, Bacillus amyloliquefaciens GJ1 was screened as the
biocontrol agent against HLB. In this study, two-year-old citrus infected by Ca. L. asiaticus were
treated with B. amyloliquefaciens GJ1 solution via root irrigation. In these plants, after seven irrigation
treatments, the results indicated that the photosynthetic parameters, chlorophyll content, resistance-
associated enzyme content and the expression of defense-related genes were significantly higher
than for the plants treated with the same volume water. The content of starch and soluble sugar were
significantly lower, compared to the control treatment. The parallel reaction monitoring (PRM) results
revealed that treatment with B. amyloliquefaciens GJ1 solution, the expression levels of 3 proteins with
photosynthetic function were upregulated in citrus leaves. The accumulation of reactive oxygen
species (ROS) in citrus leaves treated with B. amyloliquefaciens GJ1 flag22 was significantly higher
than untreated plants and induced the defense-related gene expression in citrus. Finally, surfactin
was identified from the fermentation broth of B. amyloliquefaciens GJ1 by high-performance liquid
chromatography. These results indicate that B. amyloliquefaciens GJ1 may improve the immunity of
citrus by increasing the photosynthesis and enhancing the expression of the resistance-related genes.

Keywords: huanglongbing; Bacillus amyloliquefaciens GJ1; biocontrol; induced systemic resistance

1. Introduction

Huanglongbing (HLB, also known as citrus greening) is the most devastating disease
of citrus and has caused substantial crop losses. HLB is associated with three species of
Gram-negative, α-proteobacteria, Candidatus Liberibacter spp., namely, “Ca. L. asiaticus”,
“Ca. L. africanus”, and “Ca. L. americanus” [1]. The pathogen is transmitted by the citrus
psyllid and resides inside the phloem elements. Among them, “Ca. L. asiaticus” is the most
widespread [2]. Typical symptoms of HLB disease include yellow shoots; blotchy mottling
leaves; upright, hardened, and small leaves; leaves showing zinc deficiency and corky
vein; twig dieback; stunted growth; and tree decline [3]. All varieties of cultivated citrus
species are susceptible to HLB [4–6]. HLB is rapidly spreading and is having a devastating
impact on citrus production worldwide. The effects of HLB have been confirmed in 51 of
the 140 citrus producing countries [7]. Infected citrus trees have a dramatically shortened
profitable life and their yield is significantly reduced [8]. The disease has caused the loss of
approximately 100,000 acres of citrus since HLB was first discovered in Florida in 2005 [9].

Various control measures have been applied to slow the progress of HLB and help
maintain the yield under field conditions. A primary approach for HLB management is the
control of the psyllid vectors. Controlling the vectors slows down the spread of disease
and lessening the severity of HLB [10]. Enhanced foliar nutritional programs and foliar
application of inorganic phosphorus solution improved fruit production [11]. Application
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of antibiotics including penicillin G, oxytetracycline, and streptomycin decreases the pop-
ulation density of the pathogen [12–14]. Thermotherapy suppresses phytopathogen titer
and reduces the impact of HLB. However, the effectiveness of these treatments is often
inconsistent or controversial under field conditions [15,16]. Thus, efficient and sustainable
approaches to control HLB are urgently needed.

Biological control efforts, using microorganisms as agents for combatting plant pathogens.
Plant growth-promoting rhizobacteria (PGPR) are a group of bacteria that generally col-
onize in the rhizospheric zone of the plant tissue [17]. Use of PGPR offers an ecological
method to manage pathogens in agriculture [18]. PGPR facilitate enhancing plant growth
through various activities, such as mobilization of soil nutrients [19], synthesis of phytohor-
mones [20], and secretion of plant growth regulators [21]. PGPR also produce antimicrobial
compounds, such as bacteriocin, which can target pathogens and reduce plant diseases [22].
PGPR can trigger systemic resistance as a result of colonization of plant roots. Induc-
tion of resistance is achieved by the direct activation of defenses, and also achieved by
priming [23]. The combination of direct induction and priming results in enhanced plant
defense capacity.

Our laboratory isolated B. amyloliquefaciens GJ1 from the leaves of citrus that were
fighting against huanglongbing [24]. In this study, Ca. L. asiaticus-infected citrus were used
for treatment with B. amyloliquefaciens GJ1 and had three objectives. The first objective was
to find the effect of B. amyloliquefaciens GJ1 treatment on photosynthesis, because phloem
blockage is a major reason for HLB disease symptom development [25]. The second was
to determine the changes of defense-related genes in the transcript levels after treatment
with B. amyloliquefaciens GJ1. The final objective was to determine whether treatment with
B. amyloliquefaciens GJ1 flag22 causes changes in the transcript levels of defense-related
genes, specifically those of WRKY22 and GST1.

2. Results
2.1. B. amyloliquefaciens GJ1 Increased Photosynthesis

After B. amyloliquefaciens GJ1 solution was applied seven times, some indices (photo-
synthesis activity, starch, and soluble sugar content) of plant leaves were significantly
affected. The photosynthesis activity and the total chlorophyll content increased by
13.75% and 22.27%, respectively, compared with those of the control treatment with water
(Figure 1a,b). After seven treatments with B. amyloliquefaciens GJ1 solution, the starch and
soluble sugar contents of the mature leaves were decreased significantly (p < 0.05) compared
with those of the control. Starch showed 23.43% reduction (Figure 1c). Fructose, maltose,
and glucose showed 55.81%, 33.03%, and 59.05% reductions, respectively (Figure 1d–f).

2.2. Parallel Reaction Monitoring Quantification of Three Candidate Proteins

In our previous work, the photosynthesis pathway of citrus was significantly up-
regulated after treatment with B. amyloliquefaciens GJ1. Cs2g07330, Cs5g34450, Cs5g31180,
Cs6g12390, Cs3g06180, Cs5g18620, and orange1.1t03504 were upregulated by 1.39-, 1.67-,
1.44-, 1.81-, 1.48-, 1.39-, and 1.88-fold, respectively [24]. In this study, the expression levels
of three candidate proteins with photosynthesis functions were chosen for quantification
by PRM to verify the transcriptome results. The PRM results showed in Table 1, and the
abundance of PsbQ, PsaE, and PsaD changed in a consistent way with the transcriptome
results (Figure 2).

2.3. B. amyloliquefaciens GJ1 Treatment Increases the Content and the Transcript Level of Malic
Enzyme and Transketolase

Malic enzymes are involved in many metabolic pathways. In plants, they can provide
carbon dioxide for photosynthesis [26]. Plant transketase is involved in the photosynthetic
carbon cycle, which plays an important role in carbon fixation [27]. Thus, the changes in
malic enzyme and transketolase were determined after the treatment with B. amylolique-
faciens GJ1. The malic enzyme content in mature leaves and fibrous roots increased from
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7.76 mIU/g and 7.86mIU/g to 11.08 mIU/g and 9.01 mIU/g, respectively (Figure 3a). The
content of transketolase in mature leaves and fibrous roots increased from 11.21 mIU/g
and 7.40 mIU/g to 28.63 mIU/g and 10.84 mIU/g, respectively (Figure 3b).
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The net photosynthetic rate, (b) chlorophyll content, (c) starch content, (d) fructose content, (e) 
maltose content, and (f) glucose content. Bars with different letters (a, b) indicate significant differ-
ences (p < 0.05) between different treatments. 
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Accession Name Description Transcriptome Result PRM Result 
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Cs5g34450 PsaE PS1 reaction center subunit III 1.67 2.01 
Cs5g31180 PsaD PSI reaction center subunit II 1.44 1.56 

  

Figure 1. Effect of Bacillus amyloliquefaciens GJ1 treatment on some indices of citrus leaves. After
seven treatments with B. amyloliquefaciens GJ1 solution, the leaves were harvested for analysis. (a) The
net photosynthetic rate, (b) chlorophyll content, (c) starch content, (d) fructose content, (e) maltose
content, and (f) glucose content. Bars with different letters (a, b) indicate significant differences
(p < 0.05) between different treatments.

Table 1. Quantification results of the three candidate proteins by parallel reaction monitoring (PRM).

Accession Name Description Transcriptome Result PRM Result

Cs2g07330 PsbQ electron transporter 1.39 1.84
Cs5g34450 PsaE PS1 reaction center subunit III 1.67 2.01
Cs5g31180 PsaD PSI reaction center subunit II 1.44 1.56
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Figure 3. Responses of malic enzyme and transketolase to B. amyloliquefaciens GJ1 treatment. Effect
of B. amyloliquefaciens GJ 1 treatment on the malic enzyme (a) and transketolase (b) content; effect of
B. amyloliquefaciens GJ 1 treatment on the transcript level of malic enzyme (c) and transketolase (d).
Bars with different letters (a, b) indicate significant differences (p < 0.05) between different treatments.

The mature leaves and fibrous roots of the control group and the group treated
with B. amyloliquefaciens GJ1 were collected, and the gene expression of malic enzyme
and transketolase was analyzed using RT-qPCR (QuantStudio 6, Waltham, USA). The
expression of malase enzyme in mature leaves and fibrous roots increased by 4.58 and
2.13 times, respectively (Figure 3c). The expression of transketolase in mature leaves and
fibrous roots increased by 4.88 and 3.59 times, respectively (Figure 3d).

2.4. B. amyloliquefaciens GJ1 Treatment Increases the Transcript Level of Defense-Related Genes

The transcript levels of selected defense-related genes were studied in infected citrus
leaves after seven irrigation treatments with B. amyloliquefaciens GJ1. WRKY22 and GST1,
the microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) marker
genes, have previously been shown to be responsive to MAMP treatment in citrus [28,29],
and some other genes (GST1, WRKY24, WRKY33, nho1, and HSP90), and were selected
for expression analysis. Quantitative RT-qPCR was performed to determine the transcript
abundance of these genes. The expression of these genes significantly increased at 6 h
after treatment with B. amyloliquefaciens GJ1. The transcript levels of WRKY24 were higher
(eight-fold) than those of the control treatment, and the transcript levels of GST1 and
WRKY22 were 4.5- and 7.5- fold, respectively (Figure 4).
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Figure 4. B. amyloliquefaciens GJ1 treatment induced an increase in the transcript level of defense-
related genes. After treatment, the leaves were harvested and used for RNA extraction and real-
time qPCR. Bars with different letters (a, b) indicate significant differences (p < 0.05) between
different treatments.

2.5. B. amyloliquefaciens GJ1-flag22 Triggers a ROS Burst

Flag22 from the highly conserved N-terminal domain of flagellin was the best char-
acterized MAMP. The production of reactive oxygen species (ROS) is a common immune
response in plants. Using the luminol assay and histochemical detection assay, we found
that B. amyloliquefaciens GJ1-flag22 treatment induced ROS production (Figure 5). To de-
termine whether P. syringae DC3000 flag22 and Ca. L. asiaticus flag22 could induce ROS
production, we then tested in the luminol assay. P. syringae DC3000 flag22 elicited high
levels of ROS production and Ca. L. asiaticus flag22 showed an about 10 min delayed and
weak ROS burst.
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Figure 5. B. amyloliquefaciens GJ1 flag22 treatment induced reactive oxygen species (ROS) production. Two-month-old
seedling grapefruit (Citrus paradisi) trees prepared for test. For the control treatment, the same volume of water was
applied. (a) The ROS production was measured using the luminol-based assay after treatments with flag22 polypeptide;
(b) accumulation of O2− and H2O2 as revealed by histochemical staining with NBT and DAB, respectively.

2.6. B. amyloliquefaciens GJ1-flag22 Increases the Content of GSHE, Callose, and the Transcript
Level of Defense-Related Genes

Plant immune response to biotrophic pathogens can be divided into microbe-associated
molecular pattern (MAMP)-triggered immunity (MTI) and effector-triggered immunity
(ETI), and the best characterized MAMP is flag22. MTI induces a suite of immune responses,
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including ROS production, callose deposition, and defense gene expression. Two-week-old
seedling grapefruit were treated with B. amyloliquefaciens GJ1-flag22 by trunk injection and
after 6 h, the leaves were harvested. The content of GSHE and callose were significantly
higher than those of the control treatment. The content of GSHE and callose increased from
67.68 ng/g and 648.6 ng/g to 77.78 ng/g and 1055 ng/g, respectively (Figure 6a,b). The
content of ROS was significantly higher in treatments with B. amyloliquefaciens GJ1-flag22
as compared with those of the control treatment (Figure 6c).
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Two-month-old seedling grapefruit were treated with B. amyloliquefaciens GJ1 flag22 and after 6 h,
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The transcript levels of the selected defense genes were studied in citrus plants after
treatment with B. amyloliquefaciens GJ1-flag22. The expression levels of these genes were
significantly (p < 0.05) increased compared with those of the control, although the fold
change was lower than B. amyloliquefaciens GJ1 treatment except HSP90 (Figure 7).
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2.7. Production of Antibacterial Peptides

Producing antimicrobial substances is the most important biocontrol mechanism for
Bacillus against pathogens. Bacillus velezensis FZB42 produce surfactin, fengycin, iturin
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A, macrolactin, difficidin, bacillaene, bacilysin, and bacillibactin, and we use the primers
designed from Bacillus amyloliquefaciens GA1 to amplify these genes in B. amyloliquefaciens
GJ1 [30]. PCR amplification was performed using the DNA of B. amyloliquefaciens GJ1 as
template. bacA, beaS, dfnM, dfnA, dhbA, fenA, fenE, ituF1, mlnA, mlnI, srfAA, srfAD, ywfG,
mrsK2, mrsK2R2, and mrsR2 were identified (Figure 8), and these genes had a high amino
acid identity with corresponding genes in B. amyloliquefaciens FZB42 (Table 2).
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Table 2. Homology analysis of lipopeptides synthetic genes from B. amyloliquefaciens GJ1.

Metabolite Gene Homology Comparison with B. amylolyticus FZB42 (%)

Bacilysin bacA 98.56
Bacillaene beaS 97.80
Difficidin dfnM 98.10

dfnA 97.73
Bacillibactin dhbA 96.89

Fengycin fenA 95.56
fenE 96.92

IturinA ItuF1 88.60
Macrolactin mlnA 96.22

mlnI 98.39
Surfactin srfAA 94.25

srfAD 98.70
Bacilycin ywfG 98.42

MrsK2 98.61
MrsK2R2 99.32

MrsR2 97.32

The supernatants of B. amyloliquefaciens GJ1 were collected after 36 h of growth and
analyzed using HPLC. Surfactin characteristic peaks appeared with the retention time of
11.549 min, 13.274 min, 13.741 min, and 15.511 min. Under the same elution condition,
the characteristic peaks of B. amyloliquefaciens GJ1 crude extract appeared at 11.501 min,
13.232 min 13.723 min, and 15.706 min, and the retention time was near the standard peak.
It is speculated that surfactin homologs may be present in the crude extract (Figure 9).
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3. Discussion

Citrus infected by “Candidatus Liberibacter asiaticus” causes phloem blockage, then
the starch and sugar in leaves accumulate. Excessive starch damages chloroplast function
and finally photosynthesis is repressed. A previous study found that B. amyloliquefaciens
GJ1 could reduce the infection rate of HLB [24]. In this study, Ca. L. asiaticus infected citrus
was used for treatment with B. amyloliquefaciens GJ1, and the contents of starch and soluble
sugar in leaves were significantly decreased compared with those of the control treatment.
Compared with the control treatment, the content of resistance-associated enzyme and the
expression of defense-related genes were significantly higher. These results demonstrate
that B. amyloliquefaciens GJ1 could improve the photosynthesis ability of citrus plants and
enhance the transport from source to reservoir.

3.1. Bacillus Species as Potential Biocontrol Agents against Citrus Huanglongbing

Citrus huanglongbing is a major threat to citrus production and chemical control is
an efficient method of controlling this disease. Meanwhile, chemical agents have been
widely used in the controlling agricultural diseases (Table 3), but application of antibiotics
has a negative impact on the environment and side effects in humans. Biological control
providing a safe and effective method of preventing plant diseases. Application of microbial
antagonists, especially bacillus spp. and yeast, is the method of controlling agricultural
diseases with the most promising potential [31–33]. Bacillus spp. are the most common
endophytic bacteria and have remarkable biological function against plant diseases [34].
Many studies have shown that members of Bacillus, such as B. subtilis, B. amyloliquefaciens,
B. pumilus, and B. cereus can be used as biological agents to control citrus diseases.

Table 3. Compounds that have been tested against huanglongbing (HLB).

Compound Application Method Impact on Reference

Streptomycin Greenhouse Reduction in population density in leaves [35]
Penicillin G Field Reduction of the titer in leaves [12]

Oxytetracycline Field The population density in leaves decreased [36]

Benzbromarone + tolfenamic acid Greenhouse Lower transcription of the CLas 16S rRNA
gene was observed [37]

B. subtilis, B. cereus, B. pumilus, and B. megaterium act against chloromycosis by inhibit-
ing the mycelial growth and spore germination of P. digitatum [38]. B. subtilis endospores
and their antifungal metabolites showed strong antagonistic activity [39,40]. B. subtilis
could control the fruit drop of citrus caused by C. acutatum [41]. B. subtilis AF 1 was used
as biological agent to control soft rot in lemons [42]. B. subtilis LE24, B. amyloliquefaciens
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LE109, and B. tequilensis PO80 isolated from citrus plants can control the occurrence of
citrus canker in lime [43].

B. amyloliquefaciens is usually isolated from the rhizosphere and soil on the surface of
plants and can be used as a biological control agent. This strategy has been reported many
times in citrus. In vitro and in vivo, B. amyloliquefaciens has obvious inhibitory effects on
citrus pathogens, such as P. digitatum, P. burosum, P. italicum, and G. citri-aurantii [44–46].
B. amyloliquefaciens can affect the conidia production and mycelial structure of the pathogen
of lemon leaf blight in citrus seedlings [47]. Bacillus w176 can control the production
of green mold in citrus fruits [48]. Bacillus thuringiensis can inhibit the growth of citrus
coccidia hyphae to control citrus black spot disease [49]. In recent years, the use of Bacillus
in the prevention and control of citrus diseases has attracted great attention. However,
no relevant reports exist on the biological control of HLB, which is a devastating citrus
disease. Based on the above background, this experiment found that B. amyloliquefaciens
GJ1 can effectively prevent and control HLB, which provides new ideas and methods for
HLB prevention and treatment.

3.2. Mechanism of B. amyloliquefaciens GJ1 in Preventing and Controlling HLB

Leaf mottled yellowing is a typical symptom of huanglongbing disease. HLB causes the
accumulation of leaf starch, which prevents the transport of photosynthetic products [50,51].
The host-source-reservoir metabolic imbalance caused by pathogens may be the main
cause of huanglongbing disease symptoms [52]. In sweet oranges, grapefruits, and lemons,
HLB-infected plants have down-regulated photosystem I and photosystem II genes at the
transcription and protein levels [53,54]. Citrus were treated with B. amyloliquefaciens GJ1
mainly affects four KEGG pathways, including the antenna protein and photosynthesis
pathway [24]. Light and related genes are up-regulated at the transcription and protein
levels. Finally, the light and ability of plants are enhanced and the balance in carbohydrate
metabolism is improved. Starch accumulation in the leaves will result in feedback inhibition
of photosynthesis, and too much starch will damage the thylakoids of the chloroplast.
This study found that after treatment with B. amyloliquefaciens GJ1, the photosynthesis
of the plant was enhanced, and the total chlorophyll content increased. Photosynthesis
increased, but the starch content in the leaves decreased, indicating that B. amyloliquefaciens
GJ1 treatment enhanced the transport of citrus seedlings from the source to the sink, and
phloem blockage was relieved. Induction of systemic resistance is a well-known mechanism
for inducing plant host defense responses. Plant growth-promoting bacteria induce the
expression of target genes to resist pathogen infection [55,56].

Bacillus ABS-S14 can stimulate the expression of defense-related genes to prevent and
treat citrus green mold [57]. Induction of systemic resistance is the main antagonistic mech-
anism of B. amyloliquefaciens to control tomato fusarium wilt [58]. Therefore, we determined
the changes in plant resistance gene expression after treatment with B. amyloliquefaciens
GJ1. WRKY22 and GST1 are the marker genes for microbes to stimulate immunity [28,29].
After treatment with B. amyloliquefaciens GJ1, the expression of WRKY22 and GST1 was
significantly up-regulated, indicating the occurrence of plant immunity.

Microbial-related molecular patterns are pattern recognition receptor-binding lig-
ands [59]. Flag22 is a highly conserved functional domain of flagellin. The flag22 of
Pseudomonas aeruginosa can bind to the pattern recognition receptor FLS2 of Arabidopsis
thaliana to trigger immunity [60–62]. Immune responses triggered by pathogen-related
molecular patterns include the production of ROS, stomata closure, corpus callosum
accumulation, expression of defense genes, and hormone biosynthesis [62,63]. In this
experiment, 1 µM flag22 of B. amyloliquefaciens GJ1 was injected into the stem in this experi-
ment, and the glutathionase and callose contents of the treated group were significantly
increased. The ROS of the treatment group was higher than that of the control group, and
the expression of resistance-related genes also increased significantly. There is an urgent
need to find new prevention methods for pest control, because the chemicals used have
a negative impact on the environment and human life, and because of the consumer’s
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demand for sustainable agriculture. Bacillus bacteria have remarkable potential to produce
highly active lipopeptides that inhibit insects, mites, nematodes, and plant pathogens. The
biological activity mainly exists in three Bacillus lipopeptide families: surfacin, iturin, and
fengycin [64]. These molecules are involved in the formation of biofilms and induce plant
systemic resistance [65]. We used HPLC to analyze the crude extract of B. amyloliquefaciens
GJ1, and found that B. amyloliquefaciens GJ1 can produce surfactin lipopeptide antibiotics.

4. Materials and Methods
4.1. Plant Materials and Bacterial Growth Condition

In our previous work, our laboratory isolated B. amyloliquefaciens GJ1 from healthy
leaves of Citrus sinensis (L.) Osbeck “Newhall” [24]. B. amyloliquefaciens GJ1 was grown in
nutrient broth medium at 28 ◦C, at 150 r/min. B. amyloliquefaciens GJ1 was maintained as a
glycerol stock at −80 ◦C. Citrus sinensis (L.) Osbeck was used as a scion and grafted onto
Citrus tangerine Tanaka grown in a greenhouse, and two-year-old plants were identified as
HLB-carrying plants by qPCR. Each plant was irrigated with 1.5 L of B. amyloliquefaciens GJ1
solution (1.26 × 109 CFU/mL) once every 7 days, and this experiment lasted for 7 weeks.
In the end, the mature leaves (fourth leaf from top to bottom) of 8 B. amyloliquefaciens
GJ1-treated and 8 untreated plants were collected for analysis. All these samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C.

4.2. Photosynthetic Parameters, Chlorophyll Content, Soluble Sugar, GSHE, and Callose Content
Measurements

The net photosynthetic rate (Pn, mmol CO2 m−2·s−1) was measured using an LI-6400
(LICOR, Lincoln, NE, USA) at steady state under light saturation (1200 mmol m−2·s−1)
and 400 ppm CO2. One measurement per plant was performed on the third or fourth leaf
from the shoot apex. Five plants were measured for each treatment.

The leaf chlorophyll and carotenoid content of the plants were measured based on
the method of Wei et al. [66]. Fresh leaf tissue (0.2 g) was homogenized in 10 mL of
80% acetone and kept for 15 min in the dark, and then centrifuged at 10,000 rpm for
15 min. The absorbance of the supernatant was measured at 663, 644, and 470 nm using
a spectrophotometer (Shimadzu UV-1800, Shimadzu corporation, Kyoto, Japan). Total
chlorophyll and carotenoid concentration were calculated in terms of fresh weight (FW).
Four replicates were used per treatment.

The total soluble sugar was measured by gas-liquid chromatography [67].
GSHE and callose were measured by an enzyme-linked immunosorbent assay (ELISA)

kit (Jiangsu Meimian Industry Co., Ltd., Wuxi, China) according to the manufacturer’s in-
structions.

4.3. Parallel Reaction Monitoring (PRM) Analysis

Three B. amyloliquefaciens GJ1-treated and three untreated plants were used for PRM
analysis. After treatment, the mature leaves were harvest and were ground into powder
in liquid nitrogen, mixed with 40 mL of TCA/acetone (1:9), and incubated at −20 ◦C
overnight. The mixture was centrifuged at 7000× g for 30 min, the supernatant was
discarded, and the precipitate was washed twice with acetone. After drying, the pellet was
added with 800 µL of lysis buffer (consisting of 4% SDS, 100 mM Tris-HCl, and 1 mM DTT).
The samples were sonicated and then centrifuged at 14,000× g for 25 min. The supernatant
was a protein extract. Protein concentration was determined with the BCA protein assay
reagent [68].

Exactly 40 µL of each protein extract was used for digestion. The final concentration
of DTT was 100 mM. The sample solutions were heated at 100 ◦C for 5 min. After the
samples were cooled to room temperature and mixed with 200 µL of UA buffer (8 M Urea,
150 mM Tris-HCl, pH 8.0). The samples were centrifuged at 14,000× g for 15 min using
an ultrafiltration filter and 200 µL of UA buffer was added before centrifuging again and
discarding the filtrate. Next, 100 µL of IAA (50 mM IAA in UA) was added to the samples,
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which were incubated for 30 min at room temperature in the dark, and subsequently
centrifuged at 14,000× g for 10 min. The filters were washed with 100 µL of UA buffer
and centrifuged twice at 14,000× g for 10 min. Dissolution buffer (100 µL of 50 mM
triethylammonium bicarbonate pH 8.5) was then added to the filter, and the samples were
centrifuged twice at 14,000× g for 10 min. Then, 40 µL of trypsin buffer (7 µg trypsin in
40 µL dissolution buffer) was added to the protein suspensions, and incubated at 37 ◦C for
18 h. The filter was transferred to a new tube and centrifuged at 14,000× g for 10 min. The
last collected filtrate was analyzed using UV light spectral intensity at OD280 [69].

4.4. Quantitative Real-Time PCR (qRT-PCR) Analysis

The mature leaves were harvested after seven irrigation treatments, flash-cooled
in liquid nitrogen, and stored at −80 ◦C for subsequent qRT-PCR analysis. Total RNA
from citrus leaves was extracted using TransZol Up ReaFgent (TransGen Biotech, Beijing,
China). The integrity of the extracted RNA was checked on agarose gel electrophoresis,
and its purity and concentration were assessed using an ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, USA). Complementary DNA (cDNA) was obtained
using a HiFiScript cDNA Synthesis kit (CoWin Biosciences, Beijing, China), following
the manufacturer’s instructions. The primers designed in Integrated DNA Technologies
are listed in Table 4. The actin gene was chosen as the constitutively expressed internal
control for normalization [70], and the relative gene expression was calculated using
2−∆∆CT method.

Table 4. Primers used for qRT-PCR.

Gene Accession Number Primer Sequence Amplification Length (bp)

GST1
LOC102614737 F: GCCCGTTTGTCTCAGTCCAA 59

R: TGCAAATCGACCAAGGTGAA

GAPC2
LOC102624117 F: TCTTGCCTGCTTTGAATGGA

80R: TGTGAGGTCAACCACTGCGACAT

nho 1
LOC102615775 F: GAACACAGGTGAGAGGTAGTT 91

R: AGCATAGTTATCGGTGCTTTAG

HSP90
LOC102578032 F: TACCCAATTTCCCTCTGGATTG 97

R: CCTCAACTTTACCCTCCTCATC

WRKY 22
LOC102622218 F: ACCACAAGTACCACCACAAG 95

R: CTGGTTTGTTCACGGCTAAATG

WRKY 24
LOC102621617 F: ACCATCACCACCCAACAAA 92

R: CGGTGCGGAAGATGTAAGAA

WRKY 33
LOC102608921 F: CCGGATTGTCCGATGAAGAAA 98

R: GATGTAGGCTTGGGATGATTGT

Cs4g15270 LOC102622357 F: CCATGATGGAACTTGAGGGAG 91
R: GAGTGTAAACGACTGGGGAAG

Orange1.1t00226 LOC102622121 F: GAAAGCCCTTCCGACATACA 118
R: GTCTGCACTACCACCAAGAA

Actin
LOC102577980 F: CCAAGCAGCATGAAGATCAA 101

R: ATCTGCTGGAAGGTGCTGAG

4.5. ROS Production Assays

The luminol assay was performed as previously described (Baker and Mock, 2004).
P. syringae DC3000 flg22 sequence is TRLSSGLKINSAKDDAAGLQIA, B. amyloliquefaciens
GJ1 flg22 sequence is EKLSSGLRINRAGDDAAGLAIS, and Ca. L. asiaticus flg22 sequence
is DRVSSGLRVSDAADNAAYWSIA. All peptides at >95% purity were synthesized com-
mercially (GenScript, Nanjing, China). All peptides were dissolved in water. In brief,
leaf disks (5 mm in diameter) were obtained from young leaves by coring, and the leaf
pieces were allowed to float on the water in the Petri dishes for incubation overnight.
The next day, one leaf piece was carefully added per well, and then 100 µM luminol,
10 µg/mL horseradish peroxidase, and flag22 (1 µM) were added to each well. Lumines-
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cence was measured using the victor nivo plate reader. The content of ROS was measured
using an ELISA kit (Jiangsu Meimian Industry Co., Ltd., Wuxi, China) according to the
manufacturer’s instructions.

4.6. Histochemical Staining of ROS

Histochemical staining with 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium
(NBT) was used to examine the accumulation of H2O2 and O2−, respectively. The leaves
from two months old seedling grapefruit were obtained, immersed in prepared 0.5 mg/mL
of NBT solutions, and incubated in the dark for 2 h with shaking. The cut leaves were
dipped immediately into the DAB solution (1 mg/mL), and then incubated at room
temperature for 8 h under room light. The leaves were cleared by boiling in 60% ethanol
for 10 min and stored in 75% ethanol until cleared.

5. Conclusions

In this study, Ca. L. asiaticus infected citrus were treated with B. amyloliquefaciens
GJ1 via root irrigation, the photosynthetic parameters, the abundance of three protein
in the photosynthesis pathway and the expression of defense-related genes were signifi-
cantly higher than the control group. B. amyloliquefaciens GJ1 flag22 triggered a ROS burst
and induced defense gene expression. These results indicated that B. amyloliquefaciens
GJ1 increasing the photosynthesis and enhancing the expression of the resistance-related
genes, then showed antagonistic activity against citrus huanglongbing. Our study also
suggested that B. amyloliquefaciens GJ1 flag22 is characterized as a potential inducer of
defense responses.
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