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Inhibition of the MDM2/X-p53 interaction is recognized as a potential anti-cancer strategy,
including the treatment of glioblastoma (GB). In response to cellular stressors, such as
DNA damage, the tumor suppression protein p53 is activated and responds by mediating
cellular damage through DNA repair, cell cycle arrest and apoptosis. Hence, p53
activation plays a central role in cell survival and the effectiveness of cancer therapies.
Alterations and reduced activity of p53 occur in 25-30% of primary GB tumors, but this
number increases drastically to 60-70% in secondary GB. As a result, reactivating p53 is
suggested as a treatment strategy, either by using targeted molecules to convert the
mutant p53 back to its wild type form or by using MDM2 and MDMX (also known as
MDM4) inhibitors. MDM2 down regulates p53 activity via ubiquitin-dependent
degradation and is amplified or overexpressed in 14% of GB cases. Thus, suppression
of MDM2 offers an opportunity for urgently needed new therapeutic interventions for GB.
Numerous small molecule MDM2 inhibitors are currently undergoing clinical evaluation,
either as monotherapy or in combination with chemotherapy and/or other targeted
agents. In addition, considering the major role of both p53 and MDM2 in the
downstream signaling response to radiation-induced DNA damage, the combination of
MDM2 inhibitors with radiation may offer a valuable therapeutic radiosensitizing approach
for GB therapy. This review covers the role of MDM2/X in cancer and more specifically in
GB, followed by the rationale for the potential radiosensitizing effect of MDM2 inhibition.
Finally, the current status of MDM2/X inhibition and p53 activation for the treatment of GB
is given.
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INTRODUCTION

The classification of gliomas is traditionally based on histologic type and malignancy grade. It varies
from low grade glioma, classified as benign with a high curative chance, to high grade glioma which
is typically associated with rapid proliferation linked to disease evolution (grade I - IV). Since 2016,
the World Health Organization (WHO) classification no longer relies solely on histological criteria
but incorporated additional molecular biomarkers to improve diagnosis and prognosis of glioma
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patients. Especially the use of molecular techniques, such as
arrays and next generation sequencing, play an integral role in
the identification of mutations in gliomas (1, 2). Glioblastoma
multiforme (GB) is classified as a grade IV, the highest grade in
the WHO classification of brain tumors, and is the most
common malignant central nervous system (CNS) tumor with
a global incidence of 0.59–3.69 per 100 000 (3–5).

Despite numerous attempts over the past decade to find more
effective treatments, the standard care for GB has remained
essentially unchanged. This involves maximal safe surgical
resection, external beam radiation therapy (EBRT) plus
concomitant and adjuvant chemotherapy using the alkylating
agent temozolomide (TMZ) - this is known as the Stupp protocol
(6). Various avenues have been explored to improve GB therapy,
such as targeting the immune system through gene therapy, viral
vectors and targeted drug therapy to name a few (7, 8). Sadly,
despite multiple clinical trials, median survival from diagnosis is
still only 15-17 months (1, 6, 9–12). Treatment challenges often
derive from the molecular and cellular heterogeneity inherent to
these tumors. They include innate and acquired resistance with
subpopulations of tumor cells harboring stem-like properties
rendering them more resistant to therapy (13–15). Another
major challenge in GB patients is tumor recurrence, which is
unfortunately inevitable and results in a more aggressive and
radioresistant secondary tumor. The standard of care for patients
with recurrent GB is not well defined (1).

There has been an increased interest in the molecular
pathogenesis of malignant tumors and this led to the
development of monoclonal antibodies (mAbs) and small
molecule (SM) inhibitors blocking critical pathways involved
in tumor resistance and progression. These include the targeting
of DNA repair pathways, cell cycle control enzymes/genes and
their downstream pathways, as well as growth factor receptors
(16, 17). Secondly, these targeted drugs can often function as
radiosensitizers to enhance the cytotoxicity of subsequently
administered radiation therapy (RT) while minimizing
deleterious side effects towards surrounding normal tissues
(18, 19).

In this review, the rationale for influencing the p53 and mouse
double minute 2 (MDM2) pathway as a radiosensitizing and
therapeutic strategy for GB will be covered. 84% of GB patients
show a deregulation of the p53-MDM2 pathway (4, 20). MDM2
plays an imperative role in down regulating p53 activity via
ubiquitin-dependent degradation and is amplified or
overexpressed in 14% of GB cases. Hence, suppression of
MDM2 through different approaches, offers an opportunity for
urgently needed new therapeutic interventions for GB. In
addition, the combination of MDM2 inhibitors with ionizing
radiation (IR) may offer a valuable therapeutic radiosensitizing
strategy by influencing the DNA damage response (21). Since the
release of the structure of the MDM2–p53 interaction 25 years
ago (22), numerous SM MDM2 inhibitors have been discovered
and investigated, including SAR405838, HDM-201, NVP-
CGM097, MK-8242, RG7112, RG7388, ALRN-6924 and
AMG232 (23–31). Many of these inhibitors are currently being
investigated in clinical trials as novel cancer treatments. The
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growing interest is reflected by the amount of reviews published
in the last years (30–41). However, to date, only a limited number
of MDM2 inhibitors have been tested for the treatment of GB or
in combination with RT.
RADIOTHERAPY AND
RADIORESISTANCE OF GB

Radioresistance of GB
GB tumors have been identified as therapy resistant due to
multiple molecular mechanisms including inadequate drug
blood-brain barrier (BBB) passage, intra- and intertumoral
heterogeneity, redundant signaling pathways resulting in rescue
mechanisms, adaptive radioresistance and an immunosuppressive
tumor micro-environment (TME) promoted by a chronic state of
hypoxia (15, 42–44). Hypoxic niches limiting the formation of
reactive oxygen species (ROS) and a hyperactivation of the DNA
damage response machinery induced by glioma stem cells (GSC)
contribute to glioma radioresistance (44, 45). In addition, a cross-
talk between TME populations via shared pathways, such as
STAT3, Wnt and Notch play a role (15, 46).

New Developments in GB
Radiation Therapy
Alternative RT technologies to improve therapy effectiveness in
GB, including dose escalation, a stereotactic radiosurgery boost,
brachytherapy and boron neutron capture therapy, have failed to
become incorporated in the routine management of newly
diagnosed malignant glioma (47, 48). However, several
technological advances can contribute to a reduction of RT
induced acute and late normal tissue toxicity. Three major
examples are intensity-modulated radiotherapy (IMRT),
proton therapy (PT) and ultra-high dose rate (FLASH) RT,
which are promising to reduce cognitive impairments that
could negatively impact the quality of life of GB survivors (49,
50). Compared to photon-based therapies, dosimetric PT studies
in gliomas have shown a dose reduction to nearby organs at risk
(OARs) and a lower risk of developing RT-induced tumors,
which could even further improve with advanced intensity
modulated proton therapy (IMPT) (14, 51–53). However, this
is of less importance in GB compared to low-grade gliomas, due
to the low median survival of GB patients. A phase II trial which
compares PT with IMRT in their ability to preserve brain
function in patients with IDH mutant grade II/III glioma is
currently running (NCT03180502) (54). In conjunction with
that, the outcome of PT dose-escalation and randomized clinical
trials of PT versus IMRT are also currently under investigation
(NCT01854554, NCT04752280, NCT02179086, NCT03180502)
(54, 55).

Compared to PT, the unique physical and biological
properties of high linear energy transfer (LET) radiation, such
as carbon ion radiotherapy (CIRT), are expected to overcome
microenvironmental limitations present in GB, such as
hypoxia, and confer an improved glioma and GSC killing
July 2021 | Volume 11 | Article 703442
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ability (56–58). In GSC models, CIRT showed to overcome
glioma radioresistance by eradicating stem cells, inducing anti-
angiogenic effects and influencing the immune system (42, 59,
60). For the treatment of brain tumors, multiple clinical studies
have suggested that CIRT is effective with a favorable toxicity
profile, mainly through the delivery of a carbon ion boost
following conventional RT or PT (61, 62). This led to the
prospective CLEOPATRA Trial at Heidelberg Ion Therapy
Center (HIT) and a Phase I/III clinical by the Shanghai Proton
and Heavy Ion Center (NCT04536649) (42, 48, 61, 63). First
results applying particle RT at a dose ≥60 gray-equivalents
showed to be safe and potentially effective with an 18-month
overall survival (OS) rate of 72.8% and progression free survival
(PFS) rate of 59.8% (48). CIRT is also being investigated in
recurrent GB, with results of the randomized phase I/II
CINDERELLA trial pending (64). For recurrent high-grade
glioma, the recent study of Eberle et al. deemed carbon ion
reirradiation as safe and feasible (65).

In FLASH RT, the dose is delivered at ≥ 40 Gy/sec compared
to dose rates of approximately 1-4 Gy/min in conventional EBRT
(66). This technique provided encouraging results in an in vivo
study using a murine GB model, but is currently still limited to
superficial tumors using electron beams (67). New developments
in FLASH proton and heavy ion beam therapy look promising
and could pave the way to treat deeper seated tumors in a clinical
context, such as GB (68, 69). The combination of FLASH with
mini-beams, could even further increase the protection of
healthy tissue and preserve anti-tumoral immunological
reactions (70).
ROLE OF THE MDM2X-p53 PATHWAY IN
CANCER AND GB

The MDM2/X-p53 Pathway
TP53 is markedly the most studied tumor-suppressor gene. It
encodes the tumor suppressor protein p53 which, in light of its
nature and action, has been defined as the “guardian of the
genome”. It is a multifunctional transcription factor that can be
activated through cellular stresses, such as hypoxia, DNA
damage, or oncogene activation. Upon activation, p53 acts as a
tumor suppressor and responds to cellular damage by mediating
cell proliferation, arrest, DNA repair, metabolism, angiogenesis,
senescence and apoptosis, as depicted in Figure 1 (20). The most
critical downstream targets of p53 are the apoptotic proteins, as
they are responsible for the activation of various cell death
pathways (35). The activation of the latter plays a role in
prohibiting the replication of damage-causing genetic lesions,
as these could result in unconstrained cell growth and
oncogenesis (71).

In normal conditions and in the absence of cellular stress,
cellular homeostasis is set to preserve low p53 levels. This level is
regulated by MDM2, a E3 protein ligase which is responsible for
p53 degradation through a ubiquitin-dependent pathway. When
the amino-terminal domain of MDM2 binds to p53, the
transcriptional activity of p53 is inhibited and the p53 protein
Frontiers in Oncology | www.frontiersin.org 3
complex is exported from the nucleus to the cytoplasm for
degradation by cytoplasmic proteasomes. In this way, both the
p53-mediated cell cycle arrest and the apoptosis functions of p53
are affected (Figure 2A) (72, 73). Hence, targeting the interaction
between p53 and the E3 ligase MDM2 represents an attractive
anti-cancer approach with the condition that the tumor is wild-
type (wt) TP53 or functional TP53 is present (40). The p53-
MDM2 pathway is also referred to as the p53-ARF-MDM2
pathway, since ARF (alternative reading frame), is a tumor
suppressor that interacts with MDM2. This interaction
prevents MDM2 shuttling between the nucleus and cytoplasm
and thereby circumvents p53 degradation (76).

Secondly, upon sensing DNA damage, ataxia telangiectasia
mutated (ATM) becomes activated and induces phosphorylation
of p53 and MDM2 directly or indirectly via checkpoint kinases,
such as hCHK1 and hCHK2. The latter prevents their interaction
and guarantees the stabilization of p53, see Figure 2B (72, 77).
DNA damage has also shown to induce MDM2 auto-
degradation (78). However, high levels of p53 in their turn
activate transcription of downstream targets, including MDM2.
Hence, the above mechanisms form a autoregulatory loop to
control the amount of p53 and MDM2 proteins (74, 79, 80).

The MDM2 homologue protein MDMX (also known as
MDM4) shares some similarity with MDM2 in the p53
binding domains, but they are not identical and MDMX
exhibits no E3 ligase activity. MDMX is able to inactivate p53
in two ways: by binding to the N-terminus of p53 directly or by
heterodimerization with MDM2 stimulating its ubiquitination
function. This is called the p53-MDM2/MDMX loop, in which
both MDM2 and MDMX act as inhibitors of p53’s tumor
suppressor function (81, 82). At variance to MDM2, MDMX
appears not to be transcriptionally regulated by p53, as explained
by Marine et al. (83).

The Role of the MDM2/X-p53
Pathway in GB
Alterations of the p53 pathway are common in multiple cancer
types, including GB. It is clear that the most common cause for
TP53 deregulation is due to MDM2 and MDMX amplification as
well as missense mutations in the TP53 gene, which results in the
demise of its role as a tumor suppressor. This area has been
extensively reviewed by Zhang et al. (20). The complicated
genetic profile of GB was confirmed by genomic profiling and
the Cancer Genome Atlas project, which revealed a set of three
core signaling pathways that are commonly altered in GB: the
p53 pathway, the receptor tyrosine kinase/Ras/phosphoinositide
3-kinase (PI3K) signaling pathway, and the retinoblastoma (Rb)
pathway (74, 77, 84, 85). Alterations of the p53 pathway play a
key role in GB development, cell invasion, migration,
proliferation, apoptosis, cancer cell stemness and resistance to
TMZ treatment (86–88). Interestingly, genomic characterization
of human GB genes and its core pathways showed that p53
signaling was altered in 87% of GB cases (84). More specifically,
84% of GB patients and 94% of GB cell lines showed a
deregulation of the p53-ARF-MDM2 pathway (4, 20). In
primary GBs, TP53 is relatively infrequently mutated (25-
July 2021 | Volume 11 | Article 703442
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30%), while in secondary GB, alterations of p53 are observed in
60-70% of cases (89). The prevalence of TP53 mutations also
depends on the GB molecular subtype: proneural (54%),
mesenchymal (32%), neural (21%) and classical (0%)
respectively (20, 90). However, even in p53 wt GB, p53
availability is frequently reduced because of interactions with
overexpressed MDM2 proteins (86–88). An amplification and
overexpression of MDM2 gene is observed in 14% of GB cases
(84). Concerning MDMX, a 5- to 25-fold amplification in 2.4%
of 208 glioma cases was assessed by Riemenschneider et al. and
interestingly, all had a retained p53 wt status. Of these, none
showed MDM2 amplification (91). Another study performed
qPCR on 86 GB samples and found an amplification of the
MDMX gene in 27% of these samples. They also observed a
28.6% MDMX amplification of low-grade astrocytic tumors and
deduced that this could signify an early event in carcinogenesis
(92, 93). Hence, reactivating p53 activity through inhibition of
MDM2/X offers a tenable opportunity for therapeutic
intervention in GB.
MDM2 INHIBITORS AS AN
ANTI-CANCER STRATEGY

As previously mentioned, TP53 function can also be suppressed
in p53 wt tumors via MDM2 overexpression, limiting the p53
protein to perform its tumor suppressor role and thereby
Frontiers in Oncology | www.frontiersin.org 4
promoting cancer progression (94, 95). As such, the re-
activation of the p53 pathway is regarded as a plausible anti-
cancer strategy and has the potential to increase the
radiosensitivity of cancer cells. The main p53-based targeted
therapies involve either the use of targeted molecules to convert
the mutant (mut) p53 back to its wt form or MDM2 inhibitors
which allow tumors with a p53 wt form but with MDM2
amplification to consequently restore p53 functioning (35,
71, 96).

One of the first attempts at understanding the mechanisms
behind p53 reactivation entailed the phosphorylation and
acetylation of its complex. Studies revealed that although the
latter plays a role in weakening the p53-MDM2 interaction, it is
not critical for p53 stabilization upon DNA damage (72).
Consequently, the MDM2 protein itself became the principal
target. Since the structure of the MDM2-p53 interaction has been
revealed, multiple SM MDM2 inhibitors have been developed
against the p53-binding pockets of MDM2 (95). These include
nutlins, spiro-oxindole derivatives and piperidinone-containing
compounds, such as MI-77301/SAR405838, APG-115, MK-
8242, RG7112, RG7388, DS-3032b, and AMG232. An overview
of different categories of MDM2 inhibitors, their design and the
current status in the clinic has been reviewed elsewhere (31, 32,
34, 41, 74). Peptides have also been studied as potent inhibitors
of the p53-MDM2 interaction and a number of these induced
p53 mediated cell cycle arrest and apoptosis in solid cancers and
hematological malignancies (88, 97–100). However, it is
important to note that tumors harboring p53 mutations are
FIGURE 1 | The various cellular processes regulated by p53 in response to cellular stressors.
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not responsive in contrast to p53 wt tumors. Furthermore,
sensitivity to MDM2 targeted therapy increases when p53 wt
tumors also show MDM2 amplification (29, 98, 99). Clinical
trials on MDM2 inhibitors are ongoing in acute myeloid
leukemia (AML) (NCT02319369, NCT03634228), soft tissue
sarcoma (NCT03217266), malignant salivary gland carcinoma
(NCT03781986), pediatric cancers (NCT03654716) and small
cell lung cancer (NCT04022876) (51, 52).

Additionally, MDMX antagonists have shown to inhibit the
MDMX-p53 interaction. As an example, Pellegrino et al.
identified a peptide that mimics the MDMX C-terminus, and
binds MDM2, thereby blocking the MDMX/MDM2 complex
(101). Importantly, the amount of MDMX influences the
sensitivity to MDM2 inhibitors and the susceptibility to
Frontiers in Oncology | www.frontiersin.org 5
MDMX targeting appears to be dependent on the levels of p53
and especially of MDM2 (102, 103). Hence, studies have shown
that combination therapy using MDM2/MDMX inhibitors result
in a more effective anti-tumor reaction by more actively inducing
apoptosis and cancer cell cycle arrest (81, 101, 104). For more
extensive reviews on targeting MDM2 and MDMX in cancer
therapy, see (30, 37, 74, 102, 105–107).

Two tumor characteristics enable a selection of patients who
could benefit from MDM2- and MDMX-based therapies aimed
at reactivating p53 function: a p53 wt status and overexpression
of MDM2, MDMX or both. In addition, through the
understanding of the dysregulation and functioning of MDM2
and MDMX in GB cancers, diagnostic and prognostic methods
could be improved for a more personalized approach (29).
A

B

FIGURE 2 | (A) The p53-MDM2 autoregulatory feedback loop. p53 stimulates MDM2 expression while MDM2, in turn, inhibits p53 activity by stimulating its
degradation in the nucleus and the cytoplasm (1, 2), promoting its nuclear export (2) and blocking its transcriptional activity (3) (72, 73). (B) Upon DNA damage, both
MDM2 auto-degradation and phosphorylation of p53 is activated. This in turn disrupts the MDM2 binding, increasing transcription activation and stability of the p53
protein. In addition, ATM phosphorylation of MDM2 is critical for MDM2 destabilization, leading to less p53 ubiquitination (74, 75).
July 2021 | Volume 11 | Article 703442
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MDM2 INHIBITORS AS
RADIOSENSITIZERS

Rationale for the Radiosensitizing Effect of
MDM2 Inhibition
The concept behind radiosensitizers is based on their ability to
enhance the radiosensitivity of cancer cells, resulting in increased
radiation-induced cell killing. This can be achieved by targeting
specific radiation response mechanisms, such as DNA repair
mechanisms, and in the case of MDM2/X inhibitors, the p53
transcription factor pathway (18, 82). The actions of p53 are
critical in determining the effectiveness of IR and/or
chemotherapeutic agents (79). The cellular effects induced by
IR are mediated by the DNA damage response (DDR) pathway,
which facilitates MDM2-p53 signaling via activated kinases, such
as ATM (see Figure 2). In cancer cells with p53 wt genes, the
level of both MDM2 and p53 expression is directly correlated to
the amount of IR induced DNA damage. Radiosensitive tissues
have shown prolonged p53 signaling after IR, while more
resistant tissues show transient p53 activation (108). Within
the two major pathways in DNA double-strand break (DSB)
repair, p53 interacts with both non-homologous end-joining
(NHEJ) proteins as well as with protein RAD51 which plays a
major role in homologous recombination (HR), influencing their
expression (82, 109).

The effectiveness of IR to treat cancer is hampered by
MDM2 mediated p53 inhibition, causing a decrease in DNA
damage cell cycle arrest and apoptosis (110). As a result, MDM2
overexpression has been correlated with a decreased therapeutic
response and failure of p53 to induce p21BAX expression has been
linked to radioresistance in GB cells (79, 111). Blocking of the
negative regulators MDM2 and MDMX could be a promising
strategy to improve RT outcomes of wt TP53 GB - see
Figures 2A, B. Sustaining p53 using MDM2/X inhibitors has
shown radiosensitizing effects pre-clinically in lung cancer,
prostate cancer, adenocarcinoma and colon cancer (21, 82,
108, 110, 112, 113). Remarkably, glioma cells lacking p53 wt
function seem to be susceptible to IR-induced apoptosis due to
an increased caspase-8 activity, which may be triggered by
ceramide (114, 115).

Some critical factors will have to be considered when MDM2/
X inhibition is combined with IR. Firstly, the effects on non-
cancerous (brain) tissue have been poorly researched. Different
cells/tissues can show different levels of apoptotic response to IR
and the restoration of p53 in non-cancerous tissues levels after
non-lethal DNA damage should take place rapidly to avoid
unnecessary cell death. MDM2 inhibitors could however
promote cell cycle arrest in non-cancerous cells and tissues
that surround the tumor, without affecting tumor cells in case
the tumor is p53 mut. However, the toxicity to healthy tissues
might be limited since MDM2 inhibitors, such as nutlins (MI-
219), have shown to activate p53 in normal tissues with limited
p53 accumulation in contrast to a robust accumulation of p53 in
normal tissues induced by chemo/radiotherapy (94, 116). An
optimal approach would be to influence the dynamics of p53
differently between tumor and normal tissues following
Frontiers in Oncology | www.frontiersin.org 6
genotoxic therapies (108). Secondly, MDM2 has been reported
to have p53-independent functions, also influencing the cell
cycle, and DNA repair, amongst others (117). Particularly the
interaction between MDM2 and the DNA repair complex
(Mre11/Rad50/NBS1 or MRN) at DNA damaged sites is
important concerning the response to IR. Nbs1 has been
identified as a p53-independent MDM2 binding protein. This
interaction in turn reduces DNA damage signaling levels and
causes significant delays in DNA break repair, which might be an
important side effect to take into consideration in the normal
tissue response (118, 119).

For the aforementioned reasons, the synergy between MDM2
inhibitors combined with IR exposure may offer a more effective
cancer treatment strategy, but more research is needed to reveal
the exact mechanism of action and possible normal tissue
toxicities (72). Two aspects must be considered: 1) MDM2
inhibitors may not be effective in GB tumors with inactivation
of p53, 2) MDM2 inhibition combined with IR may lead to the
radiosensitization of normal tissues (74, 116). Therefore, the
targeted delivery of MDM2 inhibitors is crucial to induce
targeted apoptosis of cancer cells and limit toxicity in
normal tissues.

Activating the p53 Pathway in
Combination With Different
Radiation Qualities
Different apoptotic signaling mechanisms and p53 dependency
have been suggested between different radiation qualities (120–
124). For increasing LET a tendency towards an increased
apoptotic response has been observed (121, 125, 126). In
normal human fibroblasts, the induction of TP53 and
CDKN1A was dependent on the dose and LET (123). Also,
p53 was slightly induced by both proton and X-ray irradiation,
while a significant increase in protein expression of a
downstream regulator of p53, CDKN1A, was seen after low-
energy proton irradiation (127). A greater TP53 protein
accumulation was observed after carbon ion exposure,
compared to that of iso-doses of X-rays (123). In GB cell lines,
X-rays, CIRT or alpha-particle IR all induced p53-dependent p21
accumulation (128).

Compared with photon radiation, PT has shown to induce
more robust DNA damage and reduced cell cycle recovery from
G2 arrest, leading to apoptosis and cytotoxicity (127, 129, 130).
In addition, the mechanism of cell death induced by high LET
CIRT is significantly different when compared to low LET
radiation. This includes a greater ability of inducing the
ceramide pathway and more complex DNA DSB damage
resulting in increased levels of autophagy and apoptosis (131–
133). High LET radiation phosphorylated p53 at serine 37, which
is involved in cell death, more extensively compared to low
LET irradiation (134). Different amounts of ROS induced by
different radiation qualities will also impact the activation of p53,
which can in turn activate cell survival and/or cell death
processes (135).

Importantly, the presence of p53 seems to be crucial for the
induction of apoptosis by PT, while the induction of apoptosis by
July 2021 | Volume 11 | Article 703442
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high LET (in the order of 70 keV/μm) radiation, such as iron
ions, was seen regardless of TP53 gene status in cancer cells (122,
124). Instead, in case of high LET radiation, caspase-9 activation
plays a role in apoptosis enhancement in mutated p53 cancer
cells and suppression of AKT (serine/threonine protein kinase
B)-related signaling inhibits cell growth (122, 136). The response
of GB cells to photon and CIRT irradiation also included an p53
independent G2/M phase arrest and subsequent appearance of
mitotic catastrophe, while a ceramide-dependent-apoptotic cell
death was observed (131). However, studies on p53 targeted
drugs, such as MDM2 inhibitors, and the potential differences in
radiosensitizing effects for different radiation qualities
remain limited.

MDM2/X Inhibition Combined With
Irradiation for GB Therapy
In non-GB cancer types, preclinical evidence has been provided
of a RT sensitization effect induced by MDM2 inhibitors,
including nutlins, serdemetan/JNJ-26854165, APG-115, PM2
and MI-219 (21, 112, 113, 116, 137–141). Interestingly, data
showed that Nutlin-3 acted as a radiosensitizer under hypoxic
conditions and as a radiosensitizer of tumor vasculature (140,
141). One of the main conclusions of this literature review is the
fact that the combined strategy of MDM2/X inhibitors with RT is
underexplored for GB. In p53 wt glioma cell lines, an enhanced
radiosensitivity was observed when Nutlin-3 was combined with
X-rays (142). RG7388 and RT also showed synergism, however,
long-term treatment induces resistance (29). The RG7388/RT
combination is also included in a phase I/IIa trial in patients with
newly diagnosed GB without O(6)-methylguanine-DNA
methyltransferase (MGMT) promotor methylation (N²M²
(NOA-20), NCT03158389). Nutraceutical resveratrol, which
has been reported to induce p53 and its downstream targets,
acted as a radiosensitizing anticancer agent for highly
radioresistant human SU-2 GSC both in vitro and in vivo
(143, 144).
CURRENT STATUS OF MDM2/X
INHIBITION AND P53 ACTIVATION FOR
THE TREATMENT OF GB

Despite the limited studies performed on the combination of IR
andMDM2/X inhibitors for the treatment of GB, this section will
give an extensive overview of all GB studies investigating
MDM2/X inhibitors and other approaches to activate
p53 (Table 1).

Targeting the MDM2-p53 Interaction
Nutlins
Nutlin-3 is the first potent MDM2 SM inhibitor that was identified
(181). Its analogue Nutlin-3a was effective at inhibiting GB cell
growth, inducing varying levels of apoptosis and senescence,
decreasing TMZ resistance and acting as a radiosensitizer (88,
142). The first modified MDM2 inhibitor that reached clinical
Frontiers in Oncology | www.frontiersin.org 7
trials was a more potent Nutlin analogue RG7112 (182). RG7112
showed a potential cell killing effect in GB both in vitro and in vivo,
with up to a 44 times higher efficacy in MDM2-amplified and p53
wt GB cell lines (147, 183). In several Phase I trials in solid and
hematological malignancies, RG7112 was successful in activating
p53 and subsequently increasing the expression of downstream
pro-apoptotic proteins. However, the higher dose that was
required to attain satisfactory p53 activation caused significant
toxicities (184–187). A second-generation nutlin analogue,
RG7388 (idasanutlin), showed an increased potency, selectivity,
and had a better pharmacokinetic profile. This SM inhibitor has
been studied in both solid and hematological malignancies (188–
190). RG7388 is included in the N²M² (NOA-20) trial in
conjunction with RT with the aim to increase OS of patients
with GB with an unmethylated MGMT promoter status
(NCT03158389) (54).

Piperidinones
After nutlins, piperidinone-based compounds were identified as
potent MDM2-p53 interaction inhibitors. Their discovery and
development for targeted cancer therapy has been reviewed
elsewhere (34). AMG232 consists of a piperidinone scaffold
which is similar to that of nutlins. AMG232, as a single
therapy or in a combined treatment strategy, is under clinical
evaluation for the treatment of advanced solid tumors, metastatic
melanoma, multiple myeloma, soft tissue sarcoma and AML. At
the moment, one clinical phase I trial is running in primary and
recurrent GB (NCT03107780) (30, 54). In a phase I trial in p53
wt solid tumors which included GB, AML and multiple myeloma
patients, AMG232 showed an acceptable patient tolerability and
safety and favorable dose-proportional pharmacokinetics (191).
AMG232 has also shown to increase the radiation response in
several in vitro and in vivo experiments across a variety of p53 wt
tumor types, but this was not studied in GB (21). However, it has
been observed that AMG232 inhibition is more specific and
highly regulated compared to RG7112 and its effect on GSCs was
more potent (26, 148).

Spirooxindole Derivatives
ISA27 has a spirooxoindolepyrrolidine core structure that has
the ability to reactivate the antitumor capacities of p53 in GB
cells by dissociating the MDM2-p53 complex. It has been shown
to be non-toxic and it inhibited the growth of GB U87MG cells,
with the implication that a lowering of the dose of TMZ as part of
a combination therapy was suggested (88). The modified
compound spiropyrazoline oxindole 1a was tested on the
glioma cell line GL-261, alone and in combination with TMZ.
These studies revealed an effective reduction in stemness through
the reduction of the SOX2 protein levels, thereby promoting
chemotherapy sensitization (149). Other spirooxindoles entered
clinical trials and have been or are being studied in patients with
advanced solid tumors and AML (MI77301(SAR405838), DS-
3032b/milademetan, APG-115) (27, 54). In patient-derived
xenograft (PDX) models of GB, the effectiveness of MI77301
(SAR405838) was dependent on MDM2 expression but limited
by poor distribution across the BBB (28). In a phase I study in
July 2021 | Volume 11 | Article 703442
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TABLE 1 | Overview of single or combined GB treatment strategies with MDM2/X inhibitors.

Treatment Type C/
PC

GB in vitro / in vivo model Results Reference

MDM2/X inhibition combined with irradiation
MDM2 - RT Nutlin-3 + X-

rays (0, 2, 4, 6,
8 Gy)

SM PC U87MG wt, T98G mut Varying levels of apoptosis and senescence and an enhanced
radiosensitivity among the different p53 wt GB cell lines. GB
cell lines with mutated or knockdown p53 were completely
unresponsive to the drug

(142)

Resveratrol +
X-rays (2, 4, 6
Gy)

Na PC SU-2 GSCs Radiosentizing effect on GSCs. The combination has
synergistic antitumor properties like blockade of proliferation,
triggering of autophagy, facilitation of apoptosis as well as
preclusion of DNA repair

(145)

RG7388£ SM C GB patients with an
unmethylated MGMT
promoter

Included in active N²M² (NOA-20) trial in in conjunction with RT NCT03158389
(54)

PC U87MG wt Combination with RT showed inhibited clonogenicity. Induced
cell cycle arrest and apoptosis. However, long-term treatment
induces resistance to treatment (2Gy and 4Gy)

(29)

Targeting the MDM2-p53 interaction
Nutlins Nutlin-3a SM PC NOD.Cg-Prkdcscid

IL2rgtm1Wjl/Sz (NSG) mice
Three cycles of TMZ/nutlin3a resulted in a significant survival
increase of the GB10 intracranial in vivo model compared with
single therapy

(146)

RG7112 SM PC SJ-GBM2, GBM2, BT-39,
D645, D456, CB17SC
scid -/- female mice

Reduced tumor growth in GB PPTP& models in vitro and in
vivo

(23)

PC U373MG mut, LN18 mut,
U251MG mut, A120wtT,
DBTRG-05MGwt, U87MG
wt.

A greater sensitivity of wt cell lines were observed, while the
mutant p53 cell lines showed resistance

(26)

PC U251MG mut, U87MG wt
LN229 mut

Restored p53 activity inducing strong p21 expression and
apoptosis. PK profiling demonstrated crossing of the BBB.
Cytotoxicity was observed, but treatment reduced tumor
growth and increased survival.

(147)

RG7388 SM C,
PC

See£ NCT03158389
(29)

Piperidinones AMG232 (KRT-
232)

SM C Recurrent or newly diagnosed
GB

Included in active N²M² (NOA-20) trial in conjunction with RT
and a phase I trial

NCT03158389
(54)

PC U373 mut, LN18 mut, U251
mut, A1207wt, DBTRG-
05MGwt, U87MG wt

9.5-fold more effective than RG7112 in p53 wt GB cells NCT03107780
(54)

10 patient-derived GSCs MDM2-amplified stem cells (464T) were 35-fold more sensitive
to AMG232

(148)

100 patient derived GB cell
cultures, with computational
modelling

Potentiated the effect of bortezomib in multiple GB cell lines by
increasing apoptotic effects

(26)

Spirooxindole
Derivatives

ISA27 SM PC U87MG wt Synergy with TMZ: effective in inhibiting cell growth, to such an
extent to possibly lower the dose of TMZ

(88)

Spiropyrazoline
oxindole 1a

SM PC GL-261 Treatment showed a decrease in SOX2 protein levels, thereby
reducing stemness. In addition, chemotherapy sensitization in
combination with TMZ was observed

(149)

MI77301
(SAR405838)

SM PC PDX models of GB A sensitivity was observed in MDM2-amplified PDX lines with
high MDM2 expression in comparison to MDM2 control lines
in both in vitro and heterotopic models. Contradictory results
for orthotopic tumors: inefficiency

(28)

Other MK-8242
(formerly SCH
900242)

SM PC PPTP& cell line panel
including GB cell lines SJ-
GBM2, GBM2, BT-39, D645,
D456

Cell lines with wt TP53 showed a sensitivity, while a resistance
for cell lines with mut TP53 was observed. Results showed a
reduction in tumor growth for most of the PPTP& panel as well
as the xenograft models

(25)

Other approaches to enhance p53 activity in GB
Blocking
MDM2
expression

SP-141 SM PC U87MG, SNB19, U251,
LN229, T98G, GBM10,
SF188, UW18 and UW28 cell
lines

Effectively induced cell cycle arrest and apoptosis. Effective
antitumor activity against U87MG intracranial xenografts and
combination treatment with TMZ resulted in more effective cell
killing and suggested to aid in TMZ resistance

(146)

miR-129 miRNA PC U251 mut and U87MG wt rtPCR done on cell lines significantly reduced the expression
of MDM2, resulting in cell cycle arrest

(150)

(Continued)
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TABLE 1 | Continued

Treatment Type C/
PC

GB in vitro / in vivo model Results Reference

miR-17 miRNA PC U87MG wt Repressed MDM2, resulting in decreased cell proliferation and
drug resistance

(151)

miR-4486 miRNA PC Glioma cells - U87MG, U251,
SHG-44, SW-38

Down-regulation of MDM2 by miR-4486 increased the
abundance of p53 in glioma cells

(152)

Restoration
p53
expression or
active
conformation

CP-31398 SM PC LN-18, U138MG, U87MG,
LN-428, D247MG, T98G, LN-
319, LN-229, A172,
U251MG, U373MG, LN-308

p53 reporter gene activity in all of tested glioma cell lines
harboring either wt or mut p53 was induced. All cell lines
underwent a caspase-independent and bcl-xL-insensitive cell
death after prolonged incubation

(153)

PRIMA-1 SM PC Multiple p53 mut GB cell lines Despite showing selective single agent activity in p53 mut
cells, it did not increase bortezomib activity

(154)

GB mouse models Restores p53 wt conformation by altering p53 mut protein
folding - inhibition of cell growth and stemness as well as
apoptosis induction

(19)

NSC319726 SM PC GB patient derived cells Induces copper-dependent cell cycle arrest at picomolar
concentrations

(155)

RITA SM PC U251 mut and U87MG wt Inhibited proliferation of p53 mut U251 more effectively than
p53 wt U87MG GB cell lines

(156)

P53R3 SM PC T98G, U251, U373MG,
U138MG, LNT-229

Restored p53 expression and induced antiproliferative effects,
resulting in a higher apoptotic induction rate

(157)

p53p-Ant P PC Human: U138, U87MG, Rat:
9L, D74, F98, NL

A 3-fold increase in extracellular membrane Fas expression,
resulting in activation of p53 function and consequently
induction of apoptosis in both p53 mut and wt cell lines

(158)

SGT-53 gene
therapy

Nanocomplex
that delivers

p53 wt

PC GL261 Enhanced anti-tumor effects and reduced tumor cell
proliferation

(159)

Retroviral-
mediated gene
transfer

GT PC U87MG wt Retroviral-mediated gene transfer of the p53 (175H) mut
promotes apoptosis in association with adenoviral-mediated
p53 wt gene transfer

(160)

CRAd#

AdDelta24-
p53 + RT

GT
(adenovirus)

PC glioma cells in vitro and
in vivo

Combination of RT and AdDelta24-p53 caused an increase in
apoptosis. In vivo, combination therapy increased tumor
regression and long-term survival

(161)

p53-NLS-Ln-
11R%

P PC glioma cells – YKG1 mut,
T98G mut, U87MG wt

This protein-transduction method inhibited the proliferation of
human glioma cells, whether the p53 gene had mutated or not

(162)

Influencing
MDM2-
proteasome
interaction

JNJ-26854165
(Serdematan)

SM PC SJ-GBM2 Shows activity against both p53 wt and p53 mut cell lines and
xenografts, including GB

(163)

Inhibition of
the E3
ubiquitin
ligase activity
of MDM2

USP2a Ubiquitin-
specific

protease 2a

PC U87MG wt Results suggest that USP2a binds to and stabilizes MDMX,
with subsequent higher mitochondrial localization of p53 and
apoptosis

(164)

Natural
compounds

Curcumin Na PC SH-SY5Y neuroblastoma Inhibits cell growth, arrests cells at S phase and induces
apoptosis by decreasing the MDM2 protein level

(165)

U87MG wt xenograft Increased cell death, reduced cell growth and inhibited
migration and invasiveness

(166)

U251 Inhibited cell growth and induced G2/M and S-phase arrest in
a dose dependent manner

(167)

Flavopiridol Na PC A172, CCF-STTG1, T98G,
U87MG, U118MG, U251MG,
and U373MG

Inhibited cell growth, arrested cells at G2/M phase and
induced apoptosis by decreasing the MDM2 expression at
mRNA level

(168)

Chalcone Na PC U87MG wt cells and
xenograft

Inhibits cell growth, arrested cells at G1 phase and induces
apoptosis by decreasing the MDM2 protein level. Inhibited
tumor growth in U87MG xenograft mouse model

(165)

Resveratrol Na PC U87MG wt cells Activates transcription of downstream p53 targeted genes,
which leads to a decreased affinity for MDM2, causing an
increase in p53 stability and thereby cell cycle arrest and
apoptosis

(144)

(Continued)
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TABLE 1 | Continued

Treatment Type C/
PC

GB in vitro / in vivo model Results Reference

Dual MDM2/MDMX inhibitors
Peptide
based
MDM2/
MDMX
inhibitors

D-PMI-beta P PC U251 mut and U87MG wt Works in a p53-dependent manner as U251 mutated cells
were resistant to treatment and successful growth inhibition
was observed in U87MG wt cell lines

(97)

liposome-PMI1-
4

P PC U87MG wt and U251 PMI failed to inhibit cell growth through MDM2/MDMX
targeting. Peptide-loaded liposomes were designed to improve
cellular uptake of the drug. Liposome-PMI-1 was the most
effective in inducing apoptosis of U87MG cells, but not U251,
indicating a p53 dependent interaction

(169)

PM2 P PC 4-10 GB cell lines Potentiated the effect of the protease inhibitor bortezomib in
multiple GB cell lines by effectively inducing cell death after
treatment

(154)

RGD-M/sPM€ RGD-peptide
micelle

PC U251 mut and U87MG wt RGD-liposomal pDP treatment increased the median survival
time of intracranial U87MG GB nude mice. Western blot assay
validated the reactivation of p53 through MDM2 inhibition in
both cell lines

(170)

Other NSC623731 SM PC U87MG wt Demonstrated to possess anti-proliferative activity (171)
MDM2/X inhibition and other combined treatment strategies
MDM2-
chemotherapy

Nutlin-3a +
Doxorubicin

SM PC U87MG wt Treatment resulted in the reactivation of the p53 pathway,
leading to an increase in p53 activity and consequently
sensitization of the GB cells

(172)

Spiropyrazoline
oxindole 1a +
TMZ

SM PC GL-261 Chemotherapy sensitization in combination with TMZ (149)

RITA + TMZ SM PC U251 mut and U87MG wt Inhibited proliferation of p53 mut U251 more effectively than
p53 wt U87MG GB cell lines. In both instances, apoptosis
was induced more effectively in combination with TMZ

(156)

RGD-M/sPM€

+ TMZ
RGD-peptide

micelle
PC U87MG wt Anti-glioma effect through activation of the p53 pathway in

vitro and in vivo. Synergistic with TMZ
(170)

Resveratrol +
TMZ

Na PC Human GB-initiating cells Enhanced the sensitivity to TMZ via activation of the DSB/
ATM/ATR/p53 pathway, leading to the activation of apoptosis

(173)

RG7112 siRNA SM siRNA PC U87MG wt cells and in vivo
DK-MG (p53 wt), LN308 (p53
null), and U251 (p53 mut)

Enhanced the sensitivity to TMZ, reversing the YB-1 protein
mediated TMZ drug resistance

(174)

MDM2-
integrins

Compound 9 Pe PC U87MG wt cells Effective in inducing long term cell cycle and proliferation arrest
of GB cells by targeting MDM2/X as well as a5b1/avb3
integrins

(175)

MDM2-Akt/
mTOR

FC85 +ISA27 SM PC U87MG wt cells Synergic effect on the inhibition of cell viability and on the
reactivation of p53 pathway. Also blocked proliferation and
promoted the differentiation of GSCs

(176)

MDM2-CDK4 Ent-4g* S PC T98G mut, U251 mut,
U87MG wt

Induced apoptosis and cell cycle arrest. Cells treated showed
up-regulation of proteins involved in P53 and cell cycle
pathways. Anti-tumor efficacy against GB xenografts in mice

(177)

MDM2-MEK RG7388 +
Trametinib

SM PC U87MG, A172, T98G,
LN428, LN308 and LN229;
Xenograft mouse model

Clonogenicity synergistically inhibited through the combination,
resulting in a restored sensitivity towards RG7388 in U87MG
and A172 cell lines. In vivo, results demonstrated a reduction
of tumor growth

(29)

MDM2/X-
CXCRX

RS3594 +
AMD3100

SM PC Human GB cells and GB
stem-like cells (neurospheres)
U87MG, T98G, U343MG

Reduced GB cell invasiveness and migration in single agent
treatment but this increased in the combined treatment
regimen with synergic effects on cancer stem components.

(178)

MDM2/V-
ATPase

Nutlin-3a + V-
ATPase
inhibitor
(archazolid)

SM PC U87MG wt Synergistic for inducing cell death in different p53 wt tumor cell
lines and highly activated pro‐apoptotic pathways.
Combination is more efficient in reducing tumor growth
compared to single treatment in vivo

(179)

Other p19Arf gene
transfer and
nutlin-3

SM PC C6 wt GB cell line C6 cells were quite susceptible to both, yet p53 was further
activated by the combination. Results showed a marked
increase in cell cycle alterations and an increase in p53 activity,
thereby resulting in cell death

(180)
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patients with advanced solid tumors, MI77301 had an acceptable
safety profile but had limited single agent activity (54, 192). Pre-
clinically, other spirooxindoles are currently being evaluated,
such as MI-219, MI-63, MI-319, MI-43, MI-88, MI-137, but
none of them include GB results (32).

Others
Novartis (Basel, Switzerland) designed a new category of MDM2
antagonists based on the dihydroisoquinolinone core which are
being tested in clinical trials. These include CGM097 and HDM-
201 (siremadlin) (38, 193, 194). A phase I study of CGM097 and
HDM-201 in adult patients with selected advanced solid tumors
was recently completed (NCT01760525, NCT02143635) (54,
195). Another SM inhibitor of the MDM2-p53 interaction,
MK-8242 (SCH-900242), has been investigated in a phase I
trial in patients with advanced p53 wt solid tumors and AML.
An acceptable safety and tolerability was shown after MK-8242
treatment, with a successful activation of the p53 pathway (196).
In GB, data is limited, but the compound was included in the in
vitro pediatric preclinical testing program (PPTP) that included
GB and proved to be effective in reducing tumor growth by
inhibiting MDM2 expression (25).
Other Approaches to Enhance p53
Activity in GB
Next to blocking the interaction between MDM2 and p53, other
strategies have been studied in GB to enhance p53 activity:
blocking MDM2 expression, restoring p53 expression or its
active conformation, influencing the MDM2-proteasome
interaction and inhibiting MDM2 ubiquitin ligase activity (197).

Blocking MDM2 Expression
In vitro effects of the novel brain-penetrating SM MDM2
degrader SP-141 was assessed on numerous GB cell lines.
Binding of SP-141 to MDM2, induces MDM2 auto-
ubiquitination and proteasomal degradation and inhibits its
expression (146). Because SP-141 crosses the BBB adequately
and due to its ability to eliminate MDM2 irrespective of the p53
gene status, this compound gained interest as a GB therapy agent
(146, 198). Treatment in vitro resulted in a marked decrease of
MDM2 and increase in p53 as well as G2/M cell cycle arrest and
apoptosis. The inhibition of brain tumor growth by SP-141
therapy was confirmed in vivo and the combination with TMZ
showed a synergistic cell death ratio (146).

Small interfering RNA (siRNA) and microRNA (miRNA) are
other possibilities to influence MDM2 expression (150, 174). The
miRNA precursor miR-129 significantly reduced MDM2
expression in glioma cell lines, resulting in cell cycle arrest
(150). miR-126 expression is abnormally low in glioma cells
and miR-126 inhibits the course of glioma through targeted
regulation of phosphatase and tensin homolog (PTEN)/PI3K/
AKT and MDM2-p53 pathways, which, therefore, can be used as
a new potential biomarker (199). miR-4486 has also shown to
target MDM2 expression and increased the abundance of p53 in
glioma cells (152). miR-17 transfected GB cells also showed a
Frontiers in Oncology | www.frontiersin.org 11
down-regulation of MDM2 expression, which resulted in an
effective decrease in drug resistance and cell proliferation (151).

Restoration of p53 Expression or
Active Conformation
The current approaches for (re)activating p53’s tumor
suppressor role using SMs were recently reviewed by Silva
et al. (200). In GB, stabilizing the active conformation of p53
by altering mutant p53 protein folding, has been explored with
the SMs CP-31398, PRIMA-1, P53R3, NSC319726 and RITA
(Reactivation of p53 and Induction of Tumor cell Apoptosis).
CP-31398 induced p53 reporter gene activity in all of the tested
p53 wt and mutated glioma cell lines. High concentrations of
CP-31398 resulted in the reduction of MDM2 mRNA expression
(153). In GB cells, PRIMA-1 induces an inhibition of cell
growth and stemness as well as apoptosis induction (20, 154).
Its methylated analog PRIMA-1Met (APR-246) is currently
being studied in a phase I/II study in combination with
pembrolizumab in subjects with solid malignancies
(NCT04383938) (54). However, compound P53R3 blocks
glioma proliferation in a p53-dependent manner with a higher
specificity and over a broader concentration range than PRIMA-
1 (157). In vivo in GB, RITA showed synergistic effects when
combined with TMZ and an inhibition of cell growth and
stemness, as well as apoptosis induction. Interestingly, RITA
acted independently of the p53 status (156). Protein expression
studies showed that RITA suppressed cell proliferation by
targeting the p53 associated protein ASK1 (156). Johansson et
al. tested its efficacy in combination with the proteasome
inhibitor bortezomib and despite showing specific single-agent
activity in p53 mut cells, it did not strengthen bortezomib
activity (154).

Since the p53 protein binds to DNA through a zinc-stabilized
structurally complex domain, zinc plays a critical role in function
of p53. It was shown that zinc aids in the transition of p53 mut
into a functional conformation. In GB cells expressing the
R273H mutation, this recovered their chemosensitivity (201).
Also, NSC319726 was able to restore the p53(R175) mutant to a
functional p53 wt structure by acting as a zinc ionophore. This
compound arrests GB-patient-derived cells, mediated by its
binding to copper (155). Restoration of p53 function was also
shown in glioma cells in vitro and in vivo upon exposure to a
peptide called p53p-Ant (COOH-terminal peptide of p53 linked
to the truncated homeobox domain of Antennapedia). The Fas
extrinsic apoptotic pathway seemed to play a role in cell death
induced by this protein (158).

Another possible approach to induce p53 reactivation is
targeted gene therapy. This strategy enhanced radiosensitivity
of p53 wt human glioma cells (202). The introduction of p53mut
into p53 wt human glioma cells promotes adenoviral-mediated
p53 wt (175H) gene transfer induced apoptosis (160). SGT-53 is
a liposomal nanocomplex that delivers the p53 wt gene to tumor
cells and has shown chemo-sensitization effects of GB in vitro
and in vivo (28). However, the phase II trial of SGT-53 combined
with TMZ in recurrent GB was terminated (NCT02340156) (54).
The intratumoral administration of the adenovirus p53 gene was
July 2021 | Volume 11 | Article 703442
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further explored in a phase I trial in patients with malignant
primary glioma. However, a beneficial anti-tumor effect but
widespread distribution of this agent remains a significant goal
(159, 203). Nutlin-3 drug treatment combined with p19Arf gene
transduction further activated p53 compared to single therapy in
C6 GB cells. This vector is able to introduce p19Arf into p53 wt
glioma cells, inducing viral expression of p19Arf with a
subsequent activation of p53 (180). The adenovirus
AdDelta24-p53, which encodes the p53 protein and only
replicates in Rb mutant cells, achieved potent anti-glioma
effects in vitro when combined with RT (161). As an
alternative for gene therapy, trans-membrane peptide therapy
showed promising results in glioma cells. This technique uses a
peptide derived from the MDM2 binding site of p53 (162).

Influencing the MDM2-Proteasome Interaction
Next to a direct MDM2-p53 interaction regulating the stability
and ubiquitylation of p53, MDM2 also links with multiple
subunits of the 26S proteasome increasing proteasomal
turnover of p53. This lead to an increased interest in targeting
the MDM2-26S proteasomal subunit interactions (106). This is
achieved by SM JNJ-26854165 (Serdemetan), which binds the
RING domain of MDM2. Results showed activity against both
p53 wt and p53 mut GB cell lines and xenografts. However, a
phase I clinical trial in advanced or refractory tumors did not
proceed to phase II (204).

Inhibition of the E3 Ubiquitin Ligase
Activity of MDM2
Multiple inhibitors of ubiquitin E3 ligases and deubiquitinating
enzymes (DUBs) have been found to have potential anti-cancer
properties. As reviewed by Antao et al., ‘thus far, USP2a, USP4,
USP5, USP7, USP9X, USP10, USP11, USP15, USP24, USP29,
and USP49 have been linked with p53 regulation’ (205). In vitro
in glioma, the binding of USP2a to MDMX increased the
mitochondrial location of p53 and stimulated apoptosis (164).

Natural Compounds
A handful of natural compounds/nutraceuticals have been
studied for their MDM2 inhibitory or p53 activating effects in
GB, as reviewed by Qin et al. (165). The BBB permeable
nutraceutical curcumin has shown to exert anti-proliferative
effects on glioma cells by modulating TP53/MDM2/MDMX/
p14ARF signaling. In particular, curcumin upregulates p53
expression in GB in vitro and induces cell cycle arrest in a
p53-dependent manner (167, 206). Pre-clinically in GB, chalcone
derivatives and flavopiridol have shown to decrease MDM2
protein level or inhibit MDM2 expression at mRNA level,
respectively (168, 207). Resveratrol showed inhibitory effects
on the growth and metastatic capacity of both GB and GSCs,
by partially acting through AKT inhibition and p53 activation,
and suppressed GB growth in vivo (144).

MDM2/MDMX Dual Inhibitors
For optimal efficacy, concomitant targeting of both MDM2 and
MDMX may be necessary, since overexpression of MDMX can
act as a MDM2 substitute, causing drug resistance (41, 208, 209).
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MDM2/X dual inhibitors have been reviewed elsewhere (37,
103). In a study by Chen et al., NSC623731 was identified as the
most potent dual specificity inhibitor via virtual screening and
computational models and demonstrated anti-proliferative
activity on the U87MG p53 wt GB cell line (171). In combined
treatment strategies dual MDM2/X inhibitor RS3594 and
CXCRX inhibition presented synergic effects against GB pre-
clinically (178). Other MDMX/2 inhibitors which have, to the
best of our knowledge, not been studied for GB include SJ-
172550, XI-006, XI-011, RO-2443, RO-5963, WK23 and WK298
(36, 37, 210, 211). RO-2443 and its chemically optimized analog
RO-5963 are indolyl hydantoins which appeared to be MDM2/X
antagonists with promising preclinical results (36, 210). In adult
patients with advanced or metastatic solid tumors and in
pediatric cancer, a phase I trial evaluating the MDM2/X
inhibitor ALRN-6924 is currently active (NCT03725436,
NCT03654716) (54).

Peptides and peptidomimetics in the p53/MDM2/MDMX
circuitry are also emerging as interesting anti-cancer
compounds given their increased selectivity linked to less
toxicity and a lower propensity in developing cancer resistance,
when compared to SMs (103). Liu et al. tested the D-peptide
inhibitors of the p53-MDM2 interaction DPMI-a and DPMI-
#xD835;#xDEFD; on U87MG and U251 GB cell lines and results
confirmed p53 targeting. Interestingly, this group showed that
D-peptide antagonists of MDM2 exert anti-GB effects in vivo,
when encapsulated in liposomes linked to an integrin-targeting
cyclic-RGD (Arg-Gly-Asp) peptide (212). Subsequently, a series
of d-amino acid mutational PMI analogues, PMI-1-4, were
reported to have a higher proteolytic resistance and showed
increased anti-tumor effects in vitro. Liposome-PMI-1 showed a
stronger inhibitory activity against the U87MG p53 wt cell lines
than Nutlin-3, without an effect on the U251 p53 mut GB cell
line (169). PM2 potentiated the effect of protease inhibitor
bortezomib in multiple GB cell lines by effectively inducing cell
death after treatment. Interestingly, PM2 also radiosensitized
p53 wt tumors but this needs to be confirmed in GB (137).
ATSP-704, a progenitor of the first stapled a-helical peptide
entering clinical trials, binds both MDM2 and MDMX with high
affinities and effectively activates the p53 pathway in tumors in
vitro and in vivo but was not studied in GB. However, in vivo,
[3H]-ATSP-7041 did not distribute to the brain and CNS tissues
(213). Chen et al. tried to circumvent the BBB penetration issue
by developing a cyclic RGD peptide-conjugated poly (ethylene
glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that
carried a stapled peptide antagonist of both MDM2 and
MDMX (sPMI). RGD-M/sPMI inhibited GB growth both in
vitro and in vivo (214).
MDM2/X INHIBITION AND OTHER
COMBINED TREATMENT STRATEGIES

Although MDM2 inhibition has shown promising anti-cancer
effects, not all p53 wt cell lines are sensitive to this treatment
strategy and induction of apoptosis in p53 wt cell lines is
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sometimes limited (27, 189). In addition, therapeutic effects have
been documented to be short-term due to acquired resistance or
acquisition of p53 mutations (38, 107, 215). Hence, a combined
treatment strategy might be necessary to reach optimal
therapeutic effectiveness. Kocik et al., recently reviewed the
current status of drug combinations to support MDM2
antagonists. These include targeted therapy, DNA damaging
agents (chemical or IR) and apoptosis inducers. Targeted
therapy strategies included tyrosine kinase inhibitors, Ras/Raf/
MEK/MAPK inhibitors, cyclin-dependent kinase (CDK)
inhibitors and PI3K/AKT/mTOR inhibitors. Dual inhibitors
that have been reported to co-inhibit MDM2 include
proteasome, histone deacetylases (HDAC), ATPase, XIAP,
zinc, antibiotics, NF-kB pathway, translocator protein (TSPO),
heat shock protein (HSP) inhibitors, integrin and mitotic
inhibitors. Apoptotic inducers included BCL-2 inhibitors and
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) agonists (38, 175, 176, 216–218).

Saiki et al. screened an 1169-compound library for potential
compounds that synergize with MDM2 inhibition in inducing
tumor cell death with the goal to circumvent resistance. They
observed a robust synergy in inducing apoptosis with MEK
or PI3K inhibitors, BH3 mimetics, BCR-ABL antagonists,
and HDAC inhibitors (219). A phase II study combining
MDM2 inhibitors in combination with immunotherapy, such
as pembrolizumab (targeting programmed cell death protein
1) are currently undertaken in patients with advanced solid
tumors, where p53 mutation status is an inclusion criteria
(NCT03611868) (54, 220). PromisingMDM2 inhibitor combination
strategies for the treatment of GB will be briefly summarized in
this section.

MDM2-Chemotherapy
The synergism of combining MDM2 inhibition with
chemotherapeutics has shown to be effective in AML and
multiple trials are running in diverse tumor types
(NCT04190550, NCT03725436, NCT03031730, NCT04113616,
NCT04275518) (54). In GB, multiple pre-clinical studies
have already proven that MDM2 inhibition induces
chemosensitization, including Nutlin-3a, RG7112, spiropyrazoline
oxindole 1a, RITA, SP-141 and SGT-53 therapy (146, 149, 159, 160,
174, 217, 221). Nutlin-3a enhanced antitumor activity of TMZ in a
humanized intracranial patient-derived xenograft model of GB
(222). Nutlin-3a-loaded targeted micelles in combination with
doxorubicin or the RGD MDM2/X targeting peptide-conjugated
micelle (RGD-M/sPMI) in combination with TMZ showed
effective synergism against GB in vitro and in vivo (170, 172).
Resveratrol also enhanced the sensitivity of TMZ resistant GB-
initiating cells via the activation of the DSB/ATM/ataxia
telangiectasia and Rad-3 related (ATR)/p53 pathway. However,
blocking NF-kB-MGMT pathway thereby averting TMZ-
resistance also plays a role (223). Genetic inhibition of MDM2
expression of glioma cells in vitro and in vivo by siRNA
technologies or chemical inhibition by RG7112 also increased
TMZ sensitivity of glioma cells, reversing the YB-1 protein
mediated TMZ drug resistance (174).
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MDM2-Integrins
Merlino et al. investigated the effectiveness of peptidomimetic
compounds targeting MDM2/X as well as a5b1/avb3 integrins.
Studies were conducted on p53 wt glioma cells and showed that
compound 9 was the most effective in inducing long term cell
cycle and proliferation arrest of cancer cells. Results also revealed
a consequent reduction in cell invasion and migration, thereby
confirming its potential as a novel class of integrin/MDM
inhibitors (175).

MDM2-AKT/mTOR
The interplay between the p53-MDM2 pathway and the PI3K/
AKT pathway plays an important role in the determination of
cell death and/or survival since this network involves two tumor
suppressor genes (TP53 and PTEN) and two oncogenes (MDM2
and AKT) (224–226). AKT has shown to enhance MDM2
mediated p53 degradation (227). Data obtained from The
Cancer Genome Atlas revealed that ∼88% of GB have
activated PI3K pathways, which is linked with a poor
prognosis (169, 228).

Among the different GB subtypes, the mesenchymal type
shows the highest drug resistance, most frequent PTEN
mutations (37%) and hyperactivation of PI3K/AKT (90).
Daniele et al. explored the outcome of targeting both pathways
by treating U87MG cells with the AKT/mTOR inhibitor FC85 in
combination with the established MDM2 inhibitor ISA27 in an
attempt to effectively treat GB by targeting their stem cells. Results
showed a synergic effect on the inhibition of cell viability and on
the reactivation of the p53 pathway leading to increased cell
killing. Co-therapy also resulted in promoting differentiation,
blocking proliferation and consequently apoptosis of GSCs
(176). Synergy between MDM2 and PI3K/AKT/mTOR
antagonists was also shown in liposarcoma and AML (226, 229).
Interestingly, Saiki et al. noted that PI3K pathway mutations are
not a prerequisite for this synergistic effect (219).

MDM2-CDK4
Dual inhibitor ent-4g was developed to target both MDM2 and
CDK4. Gene expression studies were performed on U251 GB cell
lines and a noteworthy alteration in the cell cycle and p53
signaling pathways were observed. Flow cytometric results
showed apoptotic induction and cell cycle arrest. This was
confirmed in GB xenografts (230).

MDM2-MEK
Pre-clinically, the MDM2 inhibitor RG7388 has shown
promising results for the treatment of GB and synergism with
irradiation but acquired resistance limits its potential. Combined
treatment with the MEK inhibitor trametinib resulted in a
restored sensitivity towards RG7388 therapy and a decrease in
tumor growth in vivo (29).

MDM2-CXCR4
Daniele et al. investigated the potential synergy between CXCR4
antagonists and MDM2/X inhibitors for GB therapy. The dual
MDM2/X inhibitor RS3594 and the CXCR4 antagonist
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AMD3100 presented synergic effects on cancer stem components
and appears to be a valuable strategy to inhibit GB proliferation
and reduce invasiveness (178).

MDM2-V-ATPase
Inhibition of the proton pump V‐ATPase (vacuolar-type
ATPase) by archazolid has shown to induce p53 protein levels
in cancer cells. Subsequently, evidence was found that archazolid
and nutlin‐3a combined therapy increased cell death in multiple
p53 wt tumor cell lines and robustly activated IGFBP3 and Bax
pro‐apoptotic pathways inducing caspase‐9 and PARP
inactivation. Interestingly, the combination was more efficient
in reducing U87MG GB growth in vivo compared to single dose
treatment (179).
CONCLUSION AND FUTURE
PERSPECTIVE

There is an urgency to develop novel agents directed at relevant
pathways to increase effectiveness of GB therapy (231). Since
84% of GB patients show a deregulation of the p53-ARF-MDM2
pathway, the avenue of upregulating p53 and downregulating
MDM2 has been explored extensively (4, 20). However, current
data on single MDM2/X therapy in GB (see Table 1) is mostly
preclinical and only a few clinical trials with MDM2 inhibitors
are running in GB patients (NCT03107780, NCT03158389)
(54, 154).

In addition, despite the acknowledged rationale, limited data
is available on the use of MDM2/X inhibitors as radiosensitizers
for the treatment of GB. p53 activation using MDM2/X
inhibitors has shown radiosensitizing effects pre-clinically in
lung cancer, prostate cancer, adenocarcinoma and colon cancer
(21, 82, 108, 110, 112, 113). The first in vitro results on p53 wtGB
cells show a potential synergy, but acquired resistance could be
an issue (29, 142). This is further explored in GB patients under
the active N²M² (NOA-20) trial, which investigates RT and
molecularly matched targeted therapies, including RG7388
(idasanutlin) (NCT03158389) (NCT03158389) (54).

Importantly, dual inhibition of MDMX/MDM2 could
help achieve full activation of p53, increasing therapeutic
efficacy. In particular, inhibition of the p53-MDMX interaction
presents an excellent opportunity for overcoming MDM2
inhibitor resistance when cancer cells overexpress MDMX (36).
However, dual inhibitory drug development is proving to be
challenging mainly due to the difference in the size of the Leu26
subpocket in MDM2 and MDMX (31). In addition, specific
potent MDMX inhibitors are rare. There has been a recent trend
in the emergence of peptides and peptidomimetics as attractive
molecules due to their advantages compared to SMs, including
their selectivity and tolerability, however, major drawbacks
remain their intrinsic instability and their delivery to the
target, including BBB crossing. Accordingly, only a few are
currently in clinical trials compared to numerous SMs (103).
The transfer of drug molecules to the tumor site could be
improved using a wide range of carriers: liposomes, solid lipids
Frontiers in Oncology | www.frontiersin.org 14
nanoparticles, dendrimers, polymers, silicon or carbon materials
and magnetic nanoparticles (232). As an example, DPMI-a16, a
D-peptide inhibitor of the p53–MDM2 interaction, encapsulated
in liposomes decorated via a poly(ethylene glycol) spacer with a
cyclic RGD peptide was effective in GB models (97, 103).
Convection-enhanced delivery is also an option to improve
delivery of targeted drugs to GB, applying local drug delivery
that bypasses the BBB, while limiting associated systemic
toxicities (233).

In light of recent RT developments and the promising role of
particle therapy in GB treatment, more research is also needed to
discover variations between different radiation qualities in
inducing apoptosis signaling mechanisms, dependency of the
p53 and MDM2 status and ROS production (120, 121). It is still
not clear what determinants render cells susceptible towards cell
death in response to MDM2 inhibitors, aside from functional
p53 (39). More research will also help to clarify the
determination of cell fate by the MDM2-p53 axis after DNA
damage and other pathways in which the MDM2 protein and its
diverse isoforms are involved. In cancer drug design, the p53
independent function of MDM2 in NBS1 regulation should be
considered (39, 74, 234). For more open questions on the
function of MDM2, see the recent publication of Dobbelstein
et al. (39). In this regard, p53 targeted drugs including MDM2
inhibitors could elucidate new information.

Challenges such as acquired resistance and toxicity upon
MDM2/X inhibition are not overcome yet, including effects on
healthy tissues (29). New ways to interfere with MDM2 function
are currently being developed, including proteolysis targeting
chimera (PROTAC) degraders. However, it remains unclear
whether these will improve efficacy without substantially
increasing toxicity in human cancer patients (31, 39). Acquired
resistance could be overcome by targeting multiple pathways
concomitantly due to pathway redundancy, known to be present
in GB. The first multi-targeted therapy strategies are only
starting for GB and the ideal combination of inhibitors is
unknown. Others drugs that might be worth to explore include
MDM2 inhibitors with potent DNA damage repair pathway
inhibitors targeting e.g. PARP, ATM, ATR, Checkpoint kinases
CHK1, CHK2, WEE1, DNA-dependent protein kinase (DNA-
PK) or other cell cycle pathway inhibitors targeting e.g Aurora
kinase A and B, Polo-like kinase 1, RAD51 (4, 235, 236).

The main factor to select patients that are likely to benefit from
MDM2/X treatment is the p53 status of the tumor and the level of
MDM2 expression, although a combination of gene signatures
might be necessary (27). For example, the CDKN2A gene
encoding for tumor suppressor ARF that blocks MDM2 (76).
MDM2 overexpression with or without gene amplification(s) is
observed mainly in GB without p53 gene mutations (237). Up
until now, the prognostic significance of MDM2 expression in GB
is not confirmed (238). However, recent phase 1 clinical trials with
SM MDM2 antagonists have indicated significant association
between pre-treatment MDM2 expression levels and therapeutic
response in patients with AML (25). Hence, there is a need for
non-invasive predictive biomarkers for MDM2 targeted therapies.
Fluorescence in situ hybridization and immunohistochemistry, the
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most commonly used methods for assessing MDM2 gene
amplification and MDM2 protein overexpression in tumors,
respectively, are invasive and do not permit monitoring the
treatment response in vivo (239).

To address these needs, positron emission tomography (PET)
and single-photon emission computed tomography (SPECT)
radiotracers are promising to foresee a non-invasive way of
imaging not only MDM2 but also other DNA damage repair
proteins. This would lead to a more personalized approach,
including treatment follow-up after MDM2/X therapy. PET/
SPECT imaging agents for the oncoprotein MDM2 and p53
are limited at the moment. MDM2 antisense oligonucleotides
were radiolabeled with [99mTc], MDM2 inhibitor SP-141 was
radiolabeled with [18F] and the peptide PM2 was radiolabeled
with [125I], all in a pre-clinical stage (137, 240). Next to
diagnostic information that radiolabeled MDM2/X inhibitors
can reveal, they could also be useful for targeted radionuclide
therapy when labelled with therapeutic radionuclides. In this
way it would be possible to combine MDM2/X targeted
treatment with targeted IR, taking advantage of the possible
radiosensitizing effect of the combined treatment (241).
Frontiers in Oncology | www.frontiersin.org 15
However, this is a field that needs further investigation and
more preclinical research.
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