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5‑Methylcytosine profiles in mouse 
transcriptomes suggest the randomness of m5C 
formation catalyzed by RNA methyltransferase
Junfeng Liu1,2,3*   

Abstract 

Objective:  5-Methylcytosine (m5C) is a type of chemical modification on the nucleotides and is widespread in both 
DNA and RNA. Although the DNA m5C has been extensively studied over the past years, the distribution and biologi-
cal function of RNA m5C still remain to be elucidated. Here, I explored the profiles of RNA m5C in four mouse tissues 
by applying a RNA cytosine methylation data analysis tool to public mouse RNA m5C data.

Results:  I found that the methylation rates of cytosine were the same with the averages of methylation level at 
single-nucleotide level. Furthermore, I gave a mathematical formula to describe the observed relationship and ana-
lyzed it deeply. The sufficient necessary condition for the given formula suggests that the methylation levels at most 
m5C sites are the same in four mouse tissues. Therefore, I proposed a hypothesis that the m5C formation catalyzed by 
RNA methyltransferase is random and with the same probability at most m5C sites, which is the methylation rate of 
cytosine. My hypothesis can be used to explain the observed profiles of RNA m5C in four mouse tissues and will be 
benefit to future studies of the distribution and biological function of RNA m5C in mammals.
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Introduction
5-Methylcytosine (m5C) is a type of chemical modifica-
tion on the nucleotides and is widespread in both DNA 
and RNA. DNA m5C is a common epigenetic modifica-
tion which is crucial for diverse biological processes, 
including gene silencing, imprinting and X chromosome 
inactivation [1], and the aberrant m5C has been associ-
ated with multiple diseases, such as Alzheimer’s disease 
and cancer [2, 3]. Although the DNA m5C has been 
extensively studied over the past years, the distribution 
and biological function of RNA m5C still remain to be 
elucidated [4]. However, some current studies showed 
that RNA m5C and m5C RNA methyltransferases play 

important roles in the development and pathogenesis of 
cancer [5–7].

A combination of bisulfite treatment of RNA and fol-
lowed by PCR-based amplification of cDNA and DNA 
sequencing is an important approach to detect the 
m5C sites [8]. The high-throughput sequencing of RNA 
treated with bisulfite (RNA-BisSeq) can be used to pro-
file RNA m5C at single-nucleotide resolution. Currently, 
some tools have been developed to analyze RNA-BisSeq, 
such as meRanTK [9] and Episo [10]. By analyzing RNA-
BisSeq data of mouse embryonic stem cells and murine 
brain, Amort et al. [11] observe a pronounced accumula-
tion of m5C sites in the vicinity of the translational start 
codon, depletion in coding sequences, and mixed pat-
terns of enrichment in the 3’UTR. By analyzing human 
and mouse RNA-BisSeq data, Yang et al. [12] reveal that 
m5C modification is enriched in CG-rich regions and in 
regions immediately downstream of translation initiation 
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sites and Liu et  al. [10] find that the RNA m5C is not 
evenly distributed among the transcript isoforms at iso-
form level. However, only partial m5C sites were analyzed 
in the above studies. The methylation level of candidate 
cytosine positions should be no less than 0.2 [8] and 0.1 
[10, 12], respectively.

In this study, I mapped m5C globally in human HeLa 
cells and multiple mouse tissues using RNA-BisSeq 
data and deeply analyzed the relationship among global 
methylation rate, methylation level at single-nucleotide 
resolution and methylation level at gene resolution. Col-
lectively, the results suggest that the m5C formation cata-
lyzed by RNA methyltransferase is random.

Main text
Methods
Data sources
I downloaded RNA-BisSeq data of human and mouse 
from the BIG Data Center under accession number 
PRJCA000315 [13]. Furthermore, I downloaded reference 
genome and transcriptome of human (version GRCh37) 
and mouse (version GRCm38) from the Ensemble data-
base [14].

RNA‑BisSeq bioinformatics analysis
The alignment procedure was performed by using Episo 
[10], which maps RNA-BisSeq reads to the reference 
genome and reference transcriptome. Episo can convert 
the m5C sites in transcriptome and junction sequences 
to corresponding genome locus. I define the methylation 
rate and methylation level as follows. The methylation 
rate of cytosine is the proportion of unconverted cyto-
sine in all examined RNA-BisSeq data. The methylation 
rate of reads is the proportion of the reads with methyla-
tion in all examined RNA-BisSeq reads. The methylation 
level at single-nucleotide level is defined as i/(i + j), where 
i denotes the number of reads with methylation at the 
given m5C site, and j denotes the number of reads lack of 
methylation at the given m5C site. The methylation level 
at gene level is defined as Rm,g

/

Rg , where Rm,g denotes 
the number of reads that carry at least one methylated 
cytosine site from the given gene, and Rg denotes the 
number of reads that come from the given gene. I only 
analyzed the sites with coverage depth > 30.

Simulation
I simulated an RNA-Seq experiment using the FluxSimu-
lator with default parameters [15], which is a freely avail-
able software package that models whole-transcriptome 
sequencing experiments with the Illumina Genome 
Analyzer. The software works by first randomly assign-
ing expression values to the transcripts provided by user, 
constructing an amplified, size-selected library, and then 

sequencing it. Human transcripts assembled by Cuf-
flinks [16] according to the experimental data were sup-
plied to the FluxSimulator. FluxSimulator then randomly 
assigned expression levels to 40,205 transcripts and pro-
duced paired-end RNA-Seq reads that the length is 101-
bp and the numbers are 23 million. Then, I simulated the 
bisulfite treatment using the Bisulfitefq, which comes 
from the package Episo. The probability of methylation at 
each m5C site is 0.001.

Results
5‑Methylcytosine profiles in mouse transcriptomes
To explore the profiles of m5C in mouse transcriptomes, 
I applied Episo [10] to published RNA-BisSeq data in 
mouse (liver, kidney, heart and brain). According to the 
mapping results from Episo, I computed the methyla-
tion rate of cytosine and the methylation rate of reads in 
the published RNA-BisSeq data (Table 1). In four mouse 
tissues (liver, kidney, heart and brain), the methylation 
rates of cytosine were all 0.001 and the methylation rates 
of reads were 0.034, 0.029, 0.035 and 0.038 respectively. 
When computing the methylation level at single-nucle-
otide level, I analyzed the sites with coverage depth > 30. 
In four mouse tissues, the averages of methylation level 
at single-nucleotide level were all 0.001. The averages 
of methylation level at gene level in four mouse tissues 
(liver, kidney, heart and brain) were 0.034, 0.030, 0.030, 
and 0.039 respectively. Moreover, the methylation level 
at gene level in brain is significantly higher than that 
in the other three tissues (Additional file  2: Figure S1). 
This suggested that the RNA m5C at gene level tends to 
be tissue-specific. Liu et al. [10] also showed the similar 
conclusion that the RNA m5C at isoform level was tissue 
specific. Intriguingly, the methylation rates of cytosine in 
four mouse tissues were all the same and were the same 
with the averages of methylation level at single-nucle-
otide level. This indicated that the methylation rates of 
cytosine were conserved across four mouse tissues and 
there was some relationship between methylation rate of 

Table 1  5-Methylcytosine profiles in mouse transcriptomes

Methylation rate_A means the methylation rate of cytosine; methylation level_A 
means the average of methylation level at single-nucleotide level; methylation 
rate_B means the methylation rate of reads; methylation level_B means the 
average of methylation level at gene level. For computing the methylation level 
at single-nucleotide level, I analyzed the sites with coverage depth > 30

Tissue Methylation 
rate_A

Methylation 
level_A

Methylation 
rate_B

Methylation 
level_B

Liver 0.001 0.001 0.034 0.034

Kidney 0.001 0.001 0.029 0.030

Heart 0.001 0.001 0.035 0.030

Brain 0.001 0.001 0.038 0.039
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cytosine and the methylation level at single-nucleotide 
level. In addition, the methylation rates of reads were also 
close to the averages of methylation level at gene level in 
four mouse tissues. This showed that the same relation-
ship also existed between the methylation rate of read 
and the methylation level at gene level.

A hypothesis
The profiles of m5C in mouse transcriptomes showed that 
the methylation rates of cytosine were the same with the 
averages of methylation level at single-nucleotide level in 
four mouse tissues. It can be described as the following 
formula:

where n denotes the number of m5C sites; ai denotes the 
number of reads with methylation at the ith m5C site; bi 
denotes the number of reads at the ith m5C site. The left 
of formula (1) means the average of methylation level 
at single-nucleotide level and the right of formula (1) 
means the methylation rate of cytosine. In mathemat-
ics, the sufficient necessary condition for the formula 
(1) is a1b1 =

a2
b2

= · · · =
an
bn

 (Additional file  1). Because ai
bi

 
is the methylation level at the ith m5C site, the sufficient 
necessary condition for the formula (1) suggests that the 
methylation levels at most m5C sites are the same. How 
to explain the suggestion from the sufficient necessary 
condition for the formula (1)? If the m5C formation cata-
lyzed by RNA methyltransferase is random and with the 
same probability at most m5C sites, the methylation level 
at the ith m5C site is the probability of methylation at the 
ith m5C site according to law of large numbers when bi is 
sufficiently large, and the suggestion from the sufficient 
necessary condition for the formula (1) can be explained. 
Therefore, I proposed a hypothesis that the m5C forma-
tion catalyzed by RNA methyltransferase is random and 
with the same probability at most m5C sites, which is the 
methylation rate of cytosine. According to my hypothe-
sis, the average of methylation level at gene level should 
be close to the methylation rate of reads (Table 1). Fur-
thermore, I explored the profile of m5C in human HeLa 
cells. The methylation rate of cytosine was still the same 
with the average of methylation level at single-nucleotide 
level, and was equal to the methylation rates of cytosine 
in four mouse tissues.

Discussion
In my hypothesis, the probability at most m5C sites can 
be obtained by computing the methylation rate of cyto-
sine. In order to in silico examine the conclusion, I simu-
lated RNA-BisSeq data, in which the m5C formation was 

(1)
(

a1

b1
+

a2

b2
+ · · · +

an

bn

)

/n ≈
a1 + a2 + · · · + an

b1 + b2 + · · · + bn

random and the probability of methylation at each m5C 
site was 0.001. Then, I applied Episo to the simulated 
RNA-BisSeq data and computed the methylation rate of 
cytosine. The results showed that the methylation rate of 
cytosine is equal to the probability given by simulating 
(Additional file 2: Table S1). Furthermore, the average of 
methylation level at single-nucleotide level was also 0.001 
and the methylation rate of reads was close to the average 
of methylation level at gene level. The simulation results 
that are obeyed to the hypothesis are consistent with the 
observed results in four mouse tissues.

There are several tools for RNA-BisSeq data analy-
sis, such as meRanTK [9], BS-RNA [17], BisRNA [18], 
BisAMP [19], and Episo [10]. Although meRanTK is the 
first available tool for RNA-BisSeq data analysis [20, 21] 
and has been performed to present the picture of RNA 
m5C in the mouse embryonic stem cells and brain [11], 
I used Episo to analyze RNA-BisSeq data in this study. 
There are two reasons for selecting Episo. The first reason 
is the high accuracy of Episo. Liu et al. [10] assessed the 
performance of Episo with a set of in silico experiments 
and the results showed that Episo accurately estimated 
the methylation rates, as well as the average differences 
between the estimated and simulated methylation lev-
els were nearly zero. Moreover, Liu et al. [10] performed 
experimental assessment of Episo with MeRIP followed 
by qPCR and the results showed that the experimental 
observed methylation levels have the same trends with 
the estimates. The second reason is that Episo has the 
higher mapping rates compared to meRanTK. Under 
three methylation rates tested, the mapping rates of Episo 
and meRanTK were 86.6% and 80.72% respectively [10].

Current studies mainly focus on the distribution of 
m5C sites with high methylation level. However, the 
mechanism of distribution of m5C sites with high meth-
ylation level is not clear. My hypothesis may be helpful 
to explore the mechanism. According my hypothesis, the 
following three factors may cause the high methylation 
level at some m5C sites. The first factor is that the cover-
age depth is low. If the coverage depth at one m5C site is 
10, the methylation level is at least 0.1 when the site was 
catalyzed by RNA methyltransferase. This indicates that 
it may be negative correlation between the RNA m5C 
level at single-nucleotide level and the coverage depth. 
Liu et al. [10] found a weak negative correlation between 
the RNA m5C level at isoform level and the isoform 
expression in four mouse tissues (liver, kidney, heart and 
brain). The second factor is the CG-rich environments. 
Yang et al. [12] found that m5C sites with high methyla-
tion level were embedded in CG-rich environments. The 
third factor is the aberrant RNA methyltransferase that 
can cause the high probability of methylation. David 
et  al. [22] found that the overexpression of the RNA 
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m5C methyltransferase TRM4B specifically increased 
the methylation level. Therefore, the mechanism of dis-
tribution of m5C sites with high methylation rate should 
be related to the gene expression, CG-rich environments 
and the aberrant expression of or mutations in RNA 
methyltransferase.

In summary, I explored the profiles of m5C in mouse 
transcriptomes by computing the methylation rate and 
the methylation level. I found that the methylation rates 
of cytosine were the same with the averages of methyla-
tion level at single-nucleotide level in four mouse tissues. 
Furtherly, I explored the profile of m5C in human HeLa 
cells and observed the same relationship between the 
methylation rates of cytosine and the average of methyla-
tion level at single-nucleotide level. I gave a mathematic 
formula to describe the above relationship and analyzed 
it deeply. The sufficient necessary condition for the given 
formula suggests that the methylation levels at most 
m5C sites are the same in four mouse tissues and human 
HeLa cells. In order to explain the above observation, I 
proposed a hypothesis that the m5C formation catalyzed 
by RNA methyltransferase is random and with the same 
probability at most m5C sites, which is the methylation 
rate of cytosine. Finally, I simulated RNA-BisSeq data 
with the randomness of m5C formation catalyzed by RNA 
methyltransferase to test whether the probability at most 
m5C sites can be obtained by computing the methylation 
rate of cytosine. I hope my hypothesis will facilitate addi-
tional research required to understand the distribution 
and biological function of RNA m5C in mammals.

Limitations
Though the mathematical proof shows that the meth-
ylation levels at most m5C sites are the same, additional 
work is needed to prove that methylation levels at differ-
ent m5C sites are not significantly different as well as to 
consider the measure of uncertainties. The mechanism of 
distribution of m5C sites with high methylation level has 
not been elaborated.
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