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Abstract: Ecklonia cava (E. cava) can alleviate vascular dysfunction in diseases associated
with poor circulation. E. cava contains various polyphenols with different functions, but few
studies have compared the effects of these polyphenols. Here, we comparatively investigated
four major compounds present in an ethanoic extract of E. cava. These four major compounds
were isolated and their effects were examined on monocyte-associated vascular inflammation
and dysfunctions. Pyrogallol-phloroglucinol-6,6-bieckol (PPB) significantly inhibited monocyte
migration in vitro by reducing levels of inflammatory macrophage differentiation and of its related
molecular factors. In addition, PPB protected against monocyte-associated endothelial cell death
by increasing the phosphorylations of PI3K-AKT and AMPK, decreasing caspase levels, and reducing
monocyte-associated vascular smooth muscle cell proliferation and migration by decreasing the
phosphorylations of ERK and AKT. The results of this study show that four compounds were effective
for reduction of monocyte-associated vascular inflammation and dysfunctions, but PPB might be more
useful for the treatment of vascular dysfunction in diseases associated with poor circulation.

Keywords: poor blood circulation; Ecklonia cava; phlorotannins; pyrogallol-phloroglucinol-6,6-
bieckol; functional ingredients; endothelial cell death; vascular smooth muscle cell proliferation
and migration; inflammation

1. Introduction

Weight gain has been intimately associated with diseases associated with poor circulation, such as
stroke, atherosclerosis and high blood pressure [1,2]. Most obese individuals have elevated blood
levels of glucose, low-density lipoprotein (LDL) or free fatty acids (FFA), and these changes can alter
blood functions and blood vessel construction.

In blood vessel walls, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) influence
vessel tone. ECs form vessel barriers, regulating blood flow and inflammatory response, whereas
VSMCs have proliferative, contractile and biosynthetic roles in vessel walls. Alterations in the
differentiated states of these cells play critical roles in the pathogeneses disease associated with poor
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circulation. Saturated free fatty acids (FFA), elevated glucose or LDL lead to EC and VSMC dysfunction.
Furthermore, these abnormal changes induce bioavailable nitric oxide (NO) deficiency, reduce vascular
relaxation, induce the overproductions of growth factors, increase adhesion and inflammatory molecule
expressions, induce the generation of reactive oxygen species (ROS) in ECs [3–5], adversely influence
glucose metabolism, and promote the abnormal proliferation and migration of VSMCs [6,7].

High glucose, LDL and FFA can also indirectly affect ECs and VSMCs via the inflammation
induction of monocytes. Obesity affects the activations of circulating monocytes. In particular,
high glucose levels increase monocyte adhesion and trans-endothelial migration by activating the
AKT-GSK axis [8], which leads to the inductions of inflammatory factors, such as tumor necrosis
factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-beta (IL-1β) and
Toll-like receptors (TLRs) via oxidant stress [9–11].

Edible marine plants have emerged as a potential source of bioactive compounds for the
developments of cosmeceutical ingredients [12]. Ecklonia cava (E. cava) is an edible marine brown
alga, and it is one of nature’s richest sources of phlorotannins, and phlorotannin derivatives which
do not exist in land-originating plants. The phlorotannins are a sub-classification of polyphenolic
compounds that are confirmed by dibenzo-1,4-dioxin backbone which is this backbone linkage can
make the structure tight and strongly interact with various biological molecules [13,14]. E. cava extracts
have been shown to suppress the production of inflammatory cytokines and the activation of NF-κB in
lipopolysaccharide (LPS) challenged human ECs and to reduce vascular inflammation by preventing
oxidation [13,15].

Some studies have shown these compounds have different beneficial effects of various
E. cava phlorotannins, but the efficacies of these compounds have not been previously compared.
In a previous study [16], we successfully isolated four phlorotannins from an ethanoic extract
of E. cava, that is, dieckol, 2,7-phloroglucinol-6,6-bieckol (PHB), phlorofucofuroeckol-A (PFFA),
and pyrogallol-phloroglucinol-6,6-bieckol (PPB), by centrifugal partition chromatography. In the
present study, we sought to determine which compound most effectively inhibits monocyte migration
and differentiation to inflammatory macrophages and monocyte-associated vascular cell dysfunction
in vitro.

2. Results and Discussion

2.1. Structures of the Four Compounds Isolated from E. cava

The four compounds were isolated and purified using centrifugal partition chromatography
in one step [16]. The peaks a-d on the high-performance liquid chromatography (HPLC) shown in
Figure S1 were assigned to DK, PHB, PFFA and PPB, respectively by mass spectrometry analysis
(Figure S2). They show a single peak in the HPLC chromatogram and had a purity of 90% or
more. Our previous study shown the 4 compounds identified using 1H NMR and 13C NMR and
HPLC–DAD–ESI/MS (negative ion mode) analyses [16] and each chemical structure shown in
Figure 1. Previous studies on various biological properties of phlorotannins including anti-oxidant [17],
anti-inflammation [18], anti-neurodegeneration [19], anti-cancer [20,21], and anti-cardiovascular
diseases [22] of E. cava extract have shown. Among numerous properties, anti-oxidant activities
of E. cava phlorotannins extract on reactive oxygen species (ROS) have shown it exhibits radical
scavenging activity against oxidized low-density lipoprotein (ox-LDL), 1,1-diphenyl-2-picrylhydrazyl
(DPPH) radicals, and peroxynitrite [14,16,17] and these anti-oxidant activities closely related with
other beneficial effects of E. cava.

Interestingly, the difference in anti-oxidant effect between various E. cava phlorotannins is related
to the number of hydroxyl groups present. According to a study by Li and colleagues, dieckol and
6,6′-bieckol (more than 10 OH groups) had higher anti-oxidant efficacy than phloroglucinol and eckol
(less than 10 OH groups) [14]. The PPB used in this study is also expected to have anti-inflammatory
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effects, including monocyte migration and macrophage polarization, because of the presence of 15
OH groups.
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inhibitory effects of these four compounds on palmitic acid conjugated bovine serum albumin (PA-
BSA) induced monocyte trans-migration and macrophage polarization (Figure 2A). Experiments 
were performed on two monocyte cell lines (P388D1 and Raw 264.7). Numbers of trans-migrating 
monocytes were greatest for PA-BSA-treated monocytes, and all four compounds significantly 
reduced numbers of migrating cells (Figure 2B) and the results were similar in Raw 264.7 (Figure 
S3A). Trans-migrating monocytes differentiated to macrophages of the pro-inflammatory (M1 type 
macrophages) or anti-inflammatory (M2 type macrophages) types (Figure 2C–F). Furthermore, PA-
BSA-treated monocytes contained elevated levels of inflammatory factors, including inducible nitric 
oxide synthase (iNOS), CD80, TNF-α and interleukin-1β (IL-1β) (Figure 2C,D) and low levels of anti-
inflammatory like arginase-1 (Arg-1), CD206, transforming growth factor beta 1 (TGF-β) and 
interleukin-10 (IL-10) (Figure 2E,F) and the results were similar in Raw 264.7 (Figure S3B–E). 
Interestingly, when monocytes were treated with four compounds with PA-BSA and these inductions 
were reduced, PPB had the greatest effect. As well as its anti-oxidant effects, E. cava extract has anti-
inflammatory effects. For example, an ethanoic extract of E. cava was found to contain large amounts 
of phlorotannins and to inhibit the productions of prostaglandin-E2 (PGE2) and nitric oxide (NO) 
and suppress cyclooxygenase-2 (COX-2) and iNOS expressions in LPS-stimulated Raw 264.7 cells 
[24]. In inflammatory lung diseases, E. cava extract was found to significantly reduce inflammatory 
reactions, such as eosinophil migration to lungs, inflammatory cell and cytokine increases, and to 
reduce airway epithelial hyperplasia, lung fibrosis and smooth muscle cell thickness [14,15,17,25]. 

Figure 1. The chemical structures of the four major compounds isolated from E. cava. (A–D) Chemical
structures of dieckol (DK), 2,7-phloroglucinol-6,6-bieckol (PHB), phlorofucofuroeckol-A (PFFA),
and pyrogallol-phloroglucinol-6,6-bieckol (PPB).

2.2. Analysis of the Effects of 4 Compounds on Monocyte Migration and Macrophage Polarization

In diseases associated with inadequacy of blood flow in organs [23], monocyte migration
is important and closely related to vascular inflammation. Figure 2A provides a schematic
of the inhibitory effects of these four compounds on palmitic acid conjugated bovine serum
albumin (PA-BSA) induced monocyte trans-migration and macrophage polarization (Figure 2A).
Experiments were performed on two monocyte cell lines (P388D1 and Raw 264.7). Numbers of
trans-migrating monocytes were greatest for PA-BSA-treated monocytes, and all four compounds
significantly reduced numbers of migrating cells (Figure 2B) and the results were similar in Raw
264.7 (Figure S3A). Trans-migrating monocytes differentiated to macrophages of the pro-inflammatory
(M1 type macrophages) or anti-inflammatory (M2 type macrophages) types (Figure 2C–F). Furthermore,
PA-BSA-treated monocytes contained elevated levels of inflammatory factors, including inducible
nitric oxide synthase (iNOS), CD80, TNF-α and interleukin-1β (IL-1β) (Figure 2C,D) and low levels
of anti-inflammatory like arginase-1 (Arg-1), CD206, transforming growth factor beta 1 (TGF-β)
and interleukin-10 (IL-10) (Figure 2E,F) and the results were similar in Raw 264.7 (Figure S3B–E).
Interestingly, when monocytes were treated with four compounds with PA-BSA and these inductions
were reduced, PPB had the greatest effect. As well as its anti-oxidant effects, E. cava extract has
anti-inflammatory effects. For example, an ethanoic extract of E. cava was found to contain large
amounts of phlorotannins and to inhibit the productions of prostaglandin-E2 (PGE2) and nitric oxide
(NO) and suppress cyclooxygenase-2 (COX-2) and iNOS expressions in LPS-stimulated Raw 264.7
cells [24]. In inflammatory lung diseases, E. cava extract was found to significantly reduce inflammatory
reactions, such as eosinophil migration to lungs, inflammatory cell and cytokine increases, and to
reduce airway epithelial hyperplasia, lung fibrosis and smooth muscle cell thickness [14,15,17,25].
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1 (Arg-1) and Cd206) as determined by quantitative real-time polymerase chain reaction (qRT-PCR). 
(E,F) mRNA expression levels of M1 related cytokines (tumor necrosis factor-alpha (TNF-α) and 
interleukin-beta (IL-1β)) and M2 related cytokines (transforming growth factor beta 1 (TGF-β) and 
interleukin-10 (IL-10)) by qRT-PCR. Kruskal–Wallis tests were used to determine differences between 
groups and post-hoc comparisons were made with the Mann–Whitney U test **, p < 0.01, ***, p < 0.001, 
vs. PBS; $, p < 0.05, $$, p < 0.01, vs. PA-BSA; #, p < 0.05, ##, p < 0.01, vs. PA-BSA with PPB, DK; dieckol, 
PHB; 2,7-phloroglucinol-6,6-bieckol, PFFA; phlorofucofuroeckol-A, PPB; pyrogallol-phloroglucinol-
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molecule expressions (E-selectin, intercellular adhesion molecule 1; ICAM-1, vascular cell adhesion 
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were treated with PA-BSA CM than BSA CM, but the expression was significantly lowest when ECs 
were treated with PPB CM (Figure 3B). The various adhesion molecules are related to vascular 
inflammation, and these molecules are regulated by mast cells, macrophages, and neutrophils, which 
also secrete pro-inflammatory cytokines, such as TNF-α, interferon gamma (IFN-γ), and IL-6. These 
pro-inflammatory cytokines induce the expressions of adhesion molecules in ECs and recruit 
leukocytes, which are important components of the pathogenesis of vascular inflammation [26,27]. 

Figure 2. Inhibitory effects of PPB on monocyte polarization and related cytokines and EC dysfunction.
(A) Illustration showing the palmitic acid conjugated bovine serum albumin (PA-BSA)-treated
monocyte trans-migration model. (B) Migrating monocytes levels in 4 compounds with PA-BSA
as determined by the trans-well migration assay. (C,D) mRNA expression levels of M1 type
macrophages (inducible nitric oxide synthase (iNOS) and Cd80) and M2 type macrophages (arginase-1
(Arg-1) and Cd206) as determined by quantitative real-time polymerase chain reaction (qRT-PCR).
(E,F) mRNA expression levels of M1 related cytokines (tumor necrosis factor-alpha (TNF-α) and
interleukin-beta (IL-1β)) and M2 related cytokines (transforming growth factor beta 1 (TGF-β)
and interleukin-10 (IL-10)) by qRT-PCR. Kruskal–Wallis tests were used to determine differences
between groups and post-hoc comparisons were made with the Mann–Whitney U test **, p < 0.01,
***, p < 0.001, vs. PBS; $, p < 0.05, $$, p < 0.01, vs. PA-BSA; #, p < 0.05, ##, p < 0.01, vs. PA-BSA
with PPB, DK; dieckol, PHB; 2,7-phloroglucinol-6,6-bieckol, PFFA; phlorofucofuroeckol-A, PPB;
pyrogallol-phloroglucinol-6,6-bieckol.

2.3. Effects of Four Compounds on Monocyte-Induced Endothelial Cell Death

The inhibiting effects of four compounds on PA-BSA treated ECs and VSMCs dysfunctions
induced by monocytes are summarized in Figure 3 and Figure 4. Monocytes were treated four
compounds with PA-BSA respectively, and then each conditioned medium (CM) from the four
compounds treated monocytes was incubated with ECs or VSMCs for 24 h (Figure 3A and Figure 4B).
Adhesion molecule expressions (E-selectin, intercellular adhesion molecule 1; ICAM-1, vascular cell
adhesion molecule 1; VCAM-1 and von Willebrand factor; vWF) in ECs were significantly higher
when they were treated with PA-BSA CM than BSA CM, but the expression was significantly lowest
when ECs were treated with PPB CM (Figure 3B). The various adhesion molecules are related to
vascular inflammation, and these molecules are regulated by mast cells, macrophages, and neutrophils,
which also secrete pro-inflammatory cytokines, such as TNF-α, interferon gamma (IFN-γ), and IL-6.
These pro-inflammatory cytokines induce the expressions of adhesion molecules in ECs and recruit
leukocytes, which are important components of the pathogenesis of vascular inflammation [26,27].
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Adhesion molecules are also related to EC survival [21]. In addition to the abovementioned adhesion
molecule changes, all four compounds improved the survival ratios of PA-BSA CM treated ECs,
and PPB CM treated cells had the lowest levels of caspases 3 and 8 and it was related with
the phosphorylated PI3K-AKT-eNOS and AMPK signaling pathways (Figure 3C,E and Figure S4).
In addition, although the AKT inhibitor A6730 was treated, the expression of pAKT was increased in the
single compounds treated group (Figure 3D). In ECs, the PI3K-AKT pathway is essential for mediating
cell survival, migration, proliferation, and angiogenesis [28,29]. In particular, high glucose-induced
EC apoptosis depends on Akt de-phosphorylation and activation of the PI3K/AKT/eNOS signaling
pathway protects ECs from apoptosis [30].
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Figure 3. Prevention of monocyte-induced endothelial cell death by DK, PHB, PFFA or PPB. (A)
Endothelial cells (ECs) were treated with conditioned medium (CM) collected from PA-BSA induced
transmigrating monocytes. (B) mRNA expression levels of adhesion molecules (E-selectin, ICAM-1,
VCAM-1 and vWF) in CM treated ECs were measured by qRT-PCR. (C) Protein levels of cell-death
related molecules, that is, AMPK, pAMPK, AKT, pAKT, PI3K eNOS, peNOS, Caspase 3, and Caspase 8
in CM treated endothelial cells were determined by western blotting. (D) The AKT inhibitor (A6370)
was treated to monocyte and collected CM was treated EC. The ECs determined by western blotting.
(E) Survival levels of CM treated ECs were measured using a cell survival assay. Kruskal–Wallis tests
were used to determine differences between groups and post-hoc comparisons were made with the
Mann–Whitney U test. **, p < 0.01, ***, p < 0.001, vs. PBS; $, p < 0.05, $$, p < 0.01, $$$, p < 0.001, vs.
PA-BSA; #, p < 0.05, ##, p < 0.01 vs. PA-BSA with PPB, DK; dieckol, PHB; 2,7-phloroglucinol-6,6-bieckol,
PFFA; phlorofucofuroeckol-A, PPB; pyrogallol-phloroglucinol-6,6-bieckol.
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CM treated VSMCs had the highest α-SMA levels, and PPB CM had greatest effect, suggesting 
VSMCs would be closer to the contractile phenotype (Figures 4D and S5C). Phenotype switching of 
VSMCs is important for the maintenance of vascular tone and alpha-smooth muscle actin (α-SMA) 
promotes the synthetic phenotype. In previous studies, higher expression of α-SMA in PA-BSA than 
in BSA treated VSMCs was found to reduce the contractile phenotype and increase proliferation and 
migration rates via the AKT and ERK pathways [31–33]. VSMCs can perform both contractile and 
synthetic functions, which are associated with the maintenance of vascular tone. The synthetic 
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Figure 4. DK, PHB, PFFA or PPB inhibited monocytes migration and prevented monocyte-associated
vascular smooth muscle cell proliferation and migration. (A) Illustration of the CM-induced vascular
smooth muscle cells (VSMCs) proliferation and trans-migration model. (B) VSMC proliferation after
CM treatments were measured using a proliferation assay. (C) Trans-migrating VSMC numbers were
measured using a trans-migration assay. (D) Protein levels of proliferation and migration related
molecules, that is, ERk, pERK, AKT, pAKT, α-SMA in CM treated VSMCs were determined by western
blotting. Kruskal–Wallis tests were used to determine differences between groups and post-hoc
comparisons were made with the Mann–Whitney U test. **, p < 0.01, vs. PBS; $, p < 0.05, $$, p < 0.01, vs.
PA-BSA; #, p < 0.05, ##, p < 0.01, vs. PA-BSA with PPB, DK; Dieckol, PHB; 2,7-phloroglucinol-6,6-bieckol,
PFFA; phlorofucofuroeckol-A, PPB; pyrogallol-phloroglucinol-6,6-bieckol.

2.4. Effects of All Four Compounds on Monocyte-Induced VSMC Proliferation and Migration

DK, PHB, PFFA and PPB CM treated VSMCs proliferated and migrated significantly less than
PA-BSA CM treated VSMCs, and PPB CM was related with phosphorylations of the AKT and ERK
pathways (Figure 4B–D), and the results were similar in Raw 264.7 (Figure S5). In addition, PA-BSA
CM treated VSMCs had the highest α-SMA levels, and PPB CM had greatest effect, suggesting VSMCs
would be closer to the contractile phenotype (Figure 4D and Figure S5C). Phenotype switching of
VSMCs is important for the maintenance of vascular tone and alpha-smooth muscle actin (α-SMA)
promotes the synthetic phenotype. In previous studies, higher expression of α-SMA in PA-BSA than
in BSA treated VSMCs was found to reduce the contractile phenotype and increase proliferation and
migration rates via the AKT and ERK pathways [31–33]. VSMCs can perform both contractile and
synthetic functions, which are associated with the maintenance of vascular tone. The synthetic VSMCs
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phenotype has characteristics that include increased proliferation and migration rates, extensive ECM
degradation/synthesis abilities, and an increased cell size, which is closely related with neo-intima
hyperplasia formation [31–34].

3. Materials and Methods

3.1. Materials

3.1.1. E. cava Extraction

E. cava powder (2.5 g) was soaked in 50% ethanol (100 mL) and stirred at 130 rpm for 1 h at room
temperature. The mixture was then centrifuged at ~3667× g for 10 min, and the supernatant was
filtered through 3M paper and concentrated under vacuum. The crude extract was stored at −20 ◦C
until required.

3.1.2. Isolation of Compounds from E. cava Extract

Compounds were isolated, as previously described [16]. Briefly, centrifugal partition chromatography
(CPC) was performed using a two-phase solvent system comprised of n-hexane/ethyl
acetate/methanol/water (2:7:3:7, v/v/v/v). The CPC column was first filled with the organic stationary
phase and the mobile phase was pumped into the column in descending mode at the same flow rate
used for separation (2 mL/min).

3.1.3. Experimental Cell Models

To prepare PA-BSA, 2.267 g of fatty acid-free BSA (Sigma-Aldrich; St. Louis, MO, USA) was
thawed in pre-warmed 100 mL of 150 mM NaCl. The mixture was stirred at 37 ◦C (no higher than
40 ◦C) in a water bath until completely dissolved. The BSA solution was from a filtered new bottle and
it was stirred at 37 ◦C. While the BSA was being stirred in the water bath, 30.6 mg of Sodium palmitate
was thawed in 150 mM NaCl 50 mL in a water bath at 70 ◦C.

The PA-BSA was divided into 5 mL portions and transferred to the BSA solution, stirred at 37 ◦C
for 1 h, and adjusted to a final volume of 100 mL with 150 mM NaCl and pH 7.4 with 1N NaOH.
The solution was stored −20 ◦C until required and thawed in a 37 ◦C water bath for 10 min prior
to use.

3.2. Cell Culture and Treatment

3.2.1. Monocytes

Monocytes (P388D1 cells) were purchased from ATCC (Washington, DC, USA). RPMI 1640 (Gibco;
Grand island, NY, USA), 10% fetal bovine serum (FBS), 25 mM hydroxyethyl-piperazineethane-sulfonic
acid buffer (HEPES) buffer and 1% penicillin-streptomycin were used as growth medium.
To investigate the inhibitory effects of DK, PHB, PFFA and PPB in 0.25 mM PA-BSA treated monocytes,
we used the same concentration (2.5 µg/mL) for a treatment time of 48 h. To collect conditioned
medium (CM), monocytes were treated with PA-BSA with or without DK, PHB, PFFA or PPB for 48 h.

3.2.2. Vascular Endothelial Cells (ECs)

ECs (SVEC 4–10 cells) were also purchased from ATCC. Dulbecco’s Modified Eagle’s medium
(DMEM; Gibco) and 1% penicillin-streptomycin (Gibco) were used as growth medium.

3.2.3. Vascular Aortic Smooth Muscle Cells (VSMCs)

VSMCs (MOVAS cells) were also obtained from ATCC. DMEM, 10% FBS and antibiotics G-418
were used as growth medium.
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3.3. Extraction and Isolation

3.3.1. RNA Extraction and cDNA Synthesis

The cells were homogenized in ice using a disposable pestle in 1 mL of RNisol (TAKARA; Kusatsu,
Japan), and homogenates were added to 0.2 mL of chloroform, mixed, and centrifuged at 12,000× g
for 15 min at 4 ◦C. Aqueous phases were collected, placed in cleaned tubes, mixed with 0.5 mL of
isopropanol, and centrifuged using the same conditions. Isolated RNA was then washed with 70%
ethanol and dissolved in 50 µL of diethyl pyrocarbonate (DEPC) treated water. To perform quantitative
real-time polymerase chain reaction (qRT-PCR), cDNA was synthesized from 1 µg of total RNA using
a Prime Script 1st strand cDNA Synthesis Kit (TAKARA, Japan).

3.3.2. Protein Isolation

Cell proteins were extracted using the EzRIPA lysis kit (ATTO; Tokyo, Japan). Initially, tissues were
homogenized with lysis buffer containing proteinase and phosphatase inhibitors and briefly sonicated
for 10 s in a cold bath sonicator. After centrifuging at 14,000× g for 20 min at 4 ◦C, supernatants were
collected and protein concentrations were determined using a Bicinchoninic acid assay kit (BCA kit;
Thermo Fisher Scientific, Inc.; Waltham, MA, USA).

3.4. Monocyte Trans-Well Migration Assay

Monocytes were seeded at a density of 106 per well onto 8-µm Transwell inserts (Thermo Fisher
Scientific). The lower chamber was filled with 500 µL low serum medium containing DK, PHB, PFFA
or PPB and 0.25 mM PA-BSA and incubated for 48 h at 5% CO2 incubator. Migration activities were
evaluated using water-soluble tetrazolium salts (WST; Daeil Lab Service Co.; Seoul, Korea) and optical
densities were measured.

3.5. Monocyte-Associated EC Viability Assay

To analyze monocyte-associated EC viability, 5000 ECs were seeded in the wells of a 96-well
culture plate (Thermo Fisher Scientific) and incubated for 24 h in a 5% CO2 humidified incubator
at 37 ◦C. The WST was mixed with serum free DMEM (1:9, v/v, 200 µL/well) and the mixture was
incubated for 4 h in ECs. Optical densities were measured using a plate reader at 450 nm (Spectra max
plus, Molecular devices).

3.6. Monocyte-Associated VSMC Proliferation Assay

To analyze monocyte-associated VSMC proliferation, VSMCs were seeded in a 96-well culture
plate (Thermo Fisher Scientific Inc.; Waltham, MA, USA) at 5000 per well and incubated for 24 h in 5%
CO2 humidified incubator at 37 ◦C. VSMC proliferations were determined using the WST assay as
described above.

3.7. Monocyte-Associated VSMC Trans-Well Migration Assay

VSMCs were seeded at 5 × 104 per well onto 8-µm Transwell inserts (Corning Inc.; Corning, NY,
USA). Lower chambers were filled with 500 µL of containing each CM and incubated for 48 h in a 5%
CO2 atmosphere. Migration activities were evaluated using the WST assay as described above.

3.8. Western Blotting

Inhibitory effects of DK, PHB, PFFA and PPB on monocyte-associated EC survival and VSMC
proliferation and migration were investigated by western blotting. Cell lysates were prepared as
described above. Equal amounts of proteins were separated by 8–12% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to polyvinylidene fluoride (PVDF)
membranes, which were incubated with appropriate diluted primary antibodies at 4 ◦C overnight.
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Membranes were then washed with tris buffered saline containing 1% Tween 20 (TTBS) three times
and incubated with secondary antibodies for 1 h at room temperature. Primary and secondary
antibodies are listed in Table S1. Membranes were developed by enhanced chemiluminescence (ECL)
on LAS-4000s (GE Healthcare; Chicago, IL, USA).

AKT Inhibition Study

EC were seeded at a density of 105 per well in 100 mm culture dish (SPL Life Science; Pocheon,
Korea) and incubated for 24 h in 5% CO2 humidified incubator at 37 ◦C. Then ECs were treated with
A6730 (Sigma) 40 µM for 1 h. 1 h later, the supernatant of monocyte was treated for 48 h. Then EC
were isolated EzRIPA lysis kit (ATTO).

3.9. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

qRT-PCR was performed using the CFX384 TouchTM Real-Time PCR detection system and
reaction efficiencies and threshold cycle numbers were determined using CFX ManagerTM Software.
Primers are detailed in Table S2.

3.10. Statistical Analysis

Non-parametric analysis was used given the small samples available. Comparisons were made
using the Mann-Whitney U test. Significant differences are indicated as follows; by an asterisk (*)
versus PBS, $ versus PA-BSA, and # versus PA-BSA with PPB. Results are presented as means ± SDs
and experiments were performed in triplicate. The analysis was conducted using SPSS version 22
(IBM Co.; Armonk, NY, USA).

4. Conclusions

Four major phlorotannins, that is, DK, PHB, PFFA and PPB, were isolated for the ethanoic
extraction of E. cava. Monocyte trans-migration and inflammatory macrophage differentiation by
monocytes were effectively reduced by PPB, which also modulated vascular tone by protecting
monocyte-associated EC death, by increasing phosphorylations of PI3K-AKT and AMPK and reducing
monocyte-induced VSMC proliferation and migration via the phosphorylations of ERK and AKT in
PPB treated the cells. The study suggests PPB be considered as a component in healthy functional
foods to ameliorate vascular dysfunction in diseases associated with poor circulation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/11/441/
s1, Materials and methods: High-performance liquid chromatography (HPLC) chromatogram, Raw 264.7 cell
cultivation and quantification of Western blotting; Figure S1: HPLC chromatograms and purity of four compounds
from E. cava extract; Figure S2: Mass spectrometry analysis of four compounds from E. cava extract; Figure S3:
Inhibitory effects of PPB in monocyte polarization and related cytokines; Figure S4: Inhibitory effects of PPB
in Raw 264.7 cell-associated endothelial cell death; Figure S5: Inhibitory effects of PPB in Raw 264.7-associated
VSMC proliferation and migration. Table S1: List of antibodies for western blotting; Table S2: List of primer
for qRT-PCR.
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