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Hepatocellular carcinoma (HCC) is one of the most prevalent life-threatening human
cancers and the leading cause of cancer-related mortality, with increased global
incidence within the last decade. Identification of effective diagnostic and prognostic
biomarkers would enable reliable risk stratification and efficient screening of high-
risk patients, thereby facilitating clinical decision-making. Herein, we performed a
comprehensive, robust DNA methylation analysis based on genome-wide DNA
methylation profiling. We constructed a diagnostic signature with five DNA methylation
markers, which precisely distinguished HCC patients from normal controls. Cox
regression and LASSO analysis were applied to construct a prognostic signature with
four DNA methylation markers. A one-to-one correlation analysis was carried out
between genes of the whole genome and our prognostic signature. Exploration of
the biological function and the role of the underlying significantly correlated genes was
conducted. A mixed dataset of 463 HCC patients and 253 normal controls, derived from
six independent datasets, was used to valid the diagnostic signature. Results showed a
specificity of 96.84% and sensitivity of 96.77%. Class scores for the diagnostic signature
were significantly different between normal controls, individuals with liver diseases,
and HCC patients. The present signature has the potential to serve as a biomarker
to monitor health in normal controls. Additionally, HCC patients were successfully
separated into low-risk and high-risk groups by the prognostic signature, with a better
prognosis for patients in the low-risk group. Kaplan-Meier and ROC analysis confirmed
that the prognostic signature performed well. We found eight of the top ten genes to
positively correlate with risk scores of the prognostic signature, and to be involved in
cell cycle regulation. This eight-gene panel also served as a prognostic signature. The
robust evidence presented in this study therefore demonstrates the effectiveness of the
prognostic signature. In summary, we constructed diagnostic and prognostic signatures,
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which have potential for use in diagnosis, surveillance, and prognostic prediction for
HCC patients. Eight genes that were significantly and positively correlated with the
prognostic signature were strongly associated with cell cycle processes. Therefore, the
prognostic signature can be used as a guide by which to measure responsiveness to
cell-cycle-targeting agents.

Keywords: hepatocellular carcinoma, DNA methylation, diagnostic signature, tumor risk, prognostic signature,
cell cycle, eight gene panel

INTRODUCTION

Hepatocellular carcinoma (HCC) is a leading cause of cancer-
related deaths worldwide, especially in developing countries,
with more than half a million deaths per year (Yang and
Roberts, 2010). Local ablation, surgical resection, and liver
transplantation are recommended therapeutic options for early
stage HCC (Llovet and Bruix, 2003; Forner et al., 2018).
Based on current clinical practice guidelines, surgical resection
is the optimal treatment for patients with a single tumor
lesion and well-preserved liver function. However, even in this
subgroup, the 5-year post-treatment recurrence rate approaches
70%, with no adjuvant therapy available (Villanueva et al.,
2011; European Association for the Study of the Liver,
2018). Because of the highly heterogeneous nature of HCC,
accurate diagnosis, which is mainly based on histological
subtype and other markers associated with histology and
immunohistochemistry, is crucial for choosing the proper
treatment (Vogel et al., 2019). Pre-treatment evaluation of
patients can help identify individuals with a high risk for
recurrence and metastasis as well as poor prognosis. Such
evaluation guides therapeutic strategies. Therefore, there is an
urgent need to identify accurate and effective biomarkers for
diagnosis and prognosis.

DNA methylation is a key epigenetic regulatory factor that
typically results in gene silencing, playing an important role in
cancer initiation and progression (Hattori and Ushijima, 2016;
Koch et al., 2018). Numerous studies have shown that promoter
hypermethylation is responsible for silencing of cancer tumor
suppressor genes (Thienpont et al., 2016; Ma et al., 2017).
Hypomethylation of oncogene promoters has also been observed
in multiple types of cancer (Irizarry et al., 2009; Wang et al.,
2018). Cancer-related DNA methylation is often detected earlier
than the actual neoplastic transformation, with changes in DNA
methylation correlated with early carcinogenesis (even prior to
tumor formation), distant metastasis, and therapeutic sensitivity
(Teschendorff and Widschwendter, 2012; Teschendorff et al.,
2012; Zhuang et al., 2012; Hughes et al., 2013; Flanagan
et al., 2017). Therefore, DNA methylation is a promising
prognostic and diagnostic biomarker. Although a lot of novel
biomarkers for HCC have been recently identified, there are
few validated methylation biomarkers available for HCC (Qiu
et al., 2017; Xu et al., 2017; Li et al., 2019). Owing to the
lack of an unbiased comprehensive and systematic approach
to whole-genome methylation analysis, many studies have
overlooked the potential biological mechanisms associated with
individual biomarkers.

The aim of this study was to identify and validate HCC
DNA methylation biomarkers for diagnosis and prognosis.
We analyzed whole-genome methylation profiles of HCC
patients and normal controls from multicenter databases and
employed multiple statistical methods to construct diagnostic
and prognostic signatures. A diagnostic signature was validated
in other independent datasets and a prognostic signature
was combined with transcriptome datasets to explore the
biological mechanisms underlying the signature. The results
demonstrate diagnostic and prognostic signatures to be reliable
and accurate for the diagnosis, surveillance, and prognosis
of HCC patients.

MATERIALS AND METHODS

Data Sources
In this study, whole-genome DNA methylation profiles based
on the Illumina HumanMethylation450 BeadChip Assay data
for 836 HCC patients and 303 normal controls were collected.
Of these, profiles of 371 HCC patients and 50 normal controls
with clinical survival information were obtained from The
Cancer Genome Atlas (TCGA) using UCSC Xena1, with the
remaining profiles of 461 HCC patients and 253 normal
controls from six independent datasets downloaded from
the Gene Expression Omnibus (GEO) database (GSE54503,
GSE56588, GSE60753, GSE75041, GSE77269, and GSE89852).
Gene expression profiles and clinical information of 371
HCC patients and 50 normal controls were downloaded from
TCGA using UCSC Xena, with gene expression normalized
using the upper quartile normalization method. Gene
symbols corresponding to ensemble IDs were converted
using gencode.v22.annotation.gene.probeMap2. Gene expression
profiles based on the Illumina HiSeq RNA-Seq platform and
clinical information of 232 Japanese HCC patients were collected
from the International Cancer Genomics Consortium (ICGC,
LIRI-JP) (International Cancer Genome Consortium, 2010).
Gene expression matrix files based on Affymetrix microarray
profiling and corresponding clinical information of 242 HCC
patients were download from the GEO database (GSE14520).
Most HCC and normal control samples were fresh-frozen
clinical tissues, only two HCC samples were formalin-fixed
paraffin-embedded (FFPE) clinical tissues. Details for these
datasets are listed in Supplementary Table S3.

1https://xenabrowser.net/datapages/
2https://gdc.xenahubs.net/download
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Data Analysis
Genome-Wide DNA Methylation Preprocessing
To minimize the impact of certain low-quality and unreliable
methylation probes in the TCGA dataset, two-step filtering
criteria were adopted. In the first step, probes located on
sex chromosomes or not mapping uniquely to the genome
were removed. In the second step, only probes available
in at least 90% of samples were considered. At each CpG
site, methylation is quantified by the beta value (β-value)
as β = M/(M+U), where M and U denote the methylated
and unmethylated intensities, respectively (Du et al., 2010).
Therefore, we can use β-values (ranging from 0 to 1) to
estimate methylation levels of each CpG site. Missing β-values
were estimated with the median β-value of the identical
methylation marker of the remaining samples. After the above
preprocessing steps, 370,011 of 485,512 methylation markers
were retained. To achieve similar distribution of methylation
β-values across patients, β-values were normalized using the
function “normalizeBetweenArrays” with default parameters
from the “limma” R package (Ritchie et al., 2015).

Differential DNA Methylation Analysis
We randomly selected two-thirds of the 371 HCC samples from
the TCGA dataset and all 50 normal controls of the TCGA
dataset. For each marker, the mean quotient was calculated
between average methylation β-value in HCC patients (AveT) and
normal controls (AveN):

Log2 (fold change) = Log2

[
max(AveT, 0.01)

max(AveN, 0.01)

]
(1)

We calculated statistical significance using the multiple testing-
corrected Wilcoxon test (FDR). The standard deviation (SD)
of the β-value of each marker was also calculated (SDT:
SD of β-value in HCC patients; SDN : SD of β-value in
normal controls).

Construction of a Diagnostic Signature
The preselection of methylation markers for diagnostic analysis
was based on the following three criteria: first, AveT > 0.3
or AveN > 0.3; second, |Log2 (fold change)| > 1 and FDR <
0.01; third, SDT < 0.2 and SDN < 0.2. After preselection, 1306
candidate markers were available for further analysis. For each
marker, the highest balanced accuracy (BA) for optimal β-value
threshold was obtained as follows (Chang and Chen, 2019;
Gao et al., 2019):

Balanced accuracy =
(

TP
TP + FN

+
TN

TN + FP

) /
2 (2)

Where TP is the number of HCC patients correctly identified as
HCC; FP is the number of normal controls incorrectly identified
as HCC; FN is the number of HCC patients incorrectly identified
as normal; TN is the number of normal controls correctly
identified as normal. We ranked candidate markers based on BA
(from high to low). Then we built a diagnostic signature with the
following steps:

1. We built a matrix whose column is the number of
simulations and the row is the top methylation markers
(Supplementary Figure S2A).

2. For the first column as an example, we sampled 186 HCC
patients and 25 normal controls from the TCGA dataset.
We applied these to the diagnosis model as an increase
in methylation markers, to calculate BA individually as
follows:

Sumij =

{
Sum(i−1)j + βij, AveT > AveN
Sum(i−1)j − βij, AveT ≤ AveN

(3)

Where βij is the β-value of marker i in sample j, Sumij is the
sum of β-values of the top i markers in sample j.

MT = Q1− 1.5(Q3− Q1) (4)

Here, we assumed that average Sumij in HCCs greater than
average Sumij in normal controls. Qi is the lower quartile of
Sumij in HCCs, Q3 is the upper quartile of Sumij in HCCs.
Individuals with Sumij not less than MT were identified
as HCC, otherwise individuals were identified as normal.
Then, equation 2 was used to calculate balanced accuracy.

3. To avoid dataset bias, we repeated step 2. For the top
methylation markers, we got the average BA with increase
of simulation number (Supplementary Figure S1).

Construction of a Predictive Signature
for Prognosis and Survival
We randomly divided the TCGA dataset into two cohorts. The
first two-thirds were used as a training dataset for construction
of a prognostic signature. The remaining one-third were used
as a validation dataset for verification of the performance of the
prognostic signature. Methylation markers with AveT > 0.2 for
the training dataset were selected. Then, we evaluated whether
each marker was able to distinguish between high-risk and
low-risk HCC patients using the training dataset based on the
following:

1. Median methylation β-value in HCCs (MM).
2. Average survival time of HCCs with methylation β-value

not less than MM and dead status (TimeH).
3. Average survival time of HCCs with methylation β-value

less than MM and dead status (TimeL).
4. Fold change of average survival time FC = TimeH

TimeL .

Markers with FC greater than 2 or less than 0.5 were
used to perform univariate Cox proportional hazard regression
analysis. Markers that significantly (p < 0.01) correlated
with overall survival (OS) of HCC patients were identified
as candidate markers. Subsequently, we applied a variable
selection method that is suitable for high-dimensional data:
Least Absolute Shrinkage and Selection Operator (LASSO)
(Tibshirani, 1997; Zhang and Lu, 2007). We adopted 100-fold
cross-validation to select the optimal lambda value to minimize
the prediction error, known as “min” lambda. A total of 22
candidate markers were selected by the LASSO-Cox method
and incorporated into the multivariate Cox regression analysis.
Finally, an optimal prognostic signature consisting of four
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DNA methylation markers was constructed (Supplementary
Figure S1). We obtained a combined risk-score by multiplying
coefficient estimates and methylation β-values of the marker
matrix in the training and validation datasets.

To determine the predictability of the prognostic signature,
Kaplan-Meier estimator and log-rank test were performed. In
this manner, we investigated whether HCC patients could be
divided into low-risk and high-risk groups using a median
risk-score obtained from the training dataset. To evaluate the
specificity and sensitivity of the prognostic signature for survival
prediction, the area under ROC curve (AUC) was calculated
by time-dependent ROC analysis. All the above analysis was
conducted in R version 3.6.0 with the following packages:
“limma,” “glmnet,” “timeROC,” “survival,” “survminer,” “ggplot2,”
“forestplot,” “pheatmap,” “FactoMineR,” and “factoextra.”

RESULTS

Constructing and Validating a Diagnostic
Signature for HCC Based on DNA
Methylation
We first evaluated genome-wide DNA methylation profiles of the
TCGA dataset. Eligible methylation markers had a significantly
differential β-value for HCCs and normal controls, small β-value
standard deviation (SD<0.2) for both HCCs and normal controls,
and an average methylation β-value greater than 0.3 for either
HCCs or normal controls. These three stringent criteria were
defined for the initial screening of candidate methylation markers
(see section “Materials and Methods”). After the prescreening
process, 1306 methylation markers able to distinguish and
identify HCCs and normal controls were selected (Figure 1A
and Supplementary Figure S1). We ranked these candidate
markers based on BA. Two-thirds of methylation profiles
of the HCC patients and normal controls from the TCGA
dataset were sampled and applied to the diagnostic model to
assess an increase in methylation markers. To avoid bias of
the sampling dataset, we simulated the process for sampling
10, 50, 100, 300, 500, 1000 times, respectively, to calculate
the average BA (Figure 1B and Supplementary Figure S2A,
see section “Materials and Methods”). After 100 simulations,
the diagnostic signature consisting of the top 5 methylation
markers (cg24985525, cg24035245, cg21072795, cg07274716, and
cg14188840) discriminated HCC patients and normal controls
with the highest average BA (Figure 1B and Supplementary
Figure S2B, Supplementary Tables S1, S2). These five DNA
methylation markers correspond to LDL receptor-related protein
5 (LRP5), T-box transcription factor 15 (TBX15), NCK associated
protein 1 like (NCKAP1L), paired like homeodomain 1 (PITX1),
and homeobox A10 (HOXA10), respectively. The use of too few
or too many markers for the diagnosis signature can decrease BA
and increase the instability of BA for different datasets (Figure 1B
and Supplementary Figure S2B, Supplementary Table S1).
Therefore, we constructed a diagnostic prediction signature with
five DNA methylation markers created by the class-score formula
as follows: class-score = β-value of cg24985525 + β-value of

cg24035245 + β-value of cg21072795 + β-value of cg07274716
+ β-value of cg14188840. The class-score (1.585) of the training
dataset was the cutoff point. Samples with class-scores less
than 1.585 were diagnosed as normal, while samples greater
than or equal to the cutoff point were diagnosed as HCC
or risk for HCC.

To profile the distribution of the β-values of the five DNA
methylation markers of the training and validation datasets,
unsupervised hierarchical clustering analysis was performed.
The heatmap showed that the β-value of the five markers of
the diagnostic signature were significantly different between
HCCs and normal controls. Higher methylation β-values for
HCCs were obtained for cg24985525, cg24035245, cg07274716,
and cg14188840. In contrast, methylation levels of cg21072795
were relatively low for HCCs (Figures 1C,D). However, the
use of the five DNA methylation markers enabled HCCs to be
distinguished from normal controls. In addition, the diagnostic
signature based on the five DNA methylation markers had
better diagnostic performance (Figures 1C,D). Applying the
diagnostic signature, we obtained a specificity of 100% and
sensitivity of 97.57% in the training dataset (Figure 2A).
To substantiate the stability and accuracy of the diagnostic
signature, validation analysis was performed in an external
dataset consisting of six independent datasets (GSE54503,
GSE56588, GSE60753, GSE75041, GSE77269, and GSE89852)
(Supplementary Table S3). The results showed the diagnostic
signature to maintain its discriminative power, yielding a
sensitivity of 96.77% and specificity of 96.84% (Figure 2A).
To investigate the specificity of the diagnostic signature for
diagnostic analysis, the AUC values of the receiver operating
characteristic (ROC) curves were calculated by time-dependent
ROC analysis. The results demonstrated the diagnostic signature
could differentiate HCCs from normal controls for both the
training dataset (AUC = 0.999) and the validation dataset
(AUC = 0.983) (Figure 2B). Next, we visualized HCCs and
normal controls from the training and validation datasets
in two dimensions by principal component analysis (PCA).
As expected, HCCs were separated from normal controls,
directly demonstrating the accuracy of the diagnostic signature
(Figures 2C,D).

A Potential Biological Indicator for HCC
Risk Assessment
Some individuals with primary liver diseases (HBV/HCV viral
infection, alcoholism, and cirrhosis) are at high risk for HCC
(Marengo et al., 2016; Kennedy and Francis, 2017). To investigate
change in methylation levels during the formation of HCC,
we calculated the class-score for the diagnostic signature of
normal controls, individuals with liver diseases, and HCCs. Class-
score was significantly correlated with the risk for HCC. The
class-scores of individuals with liver diseases were between the
values of those of normal controls and HCCs (Figure 2E).
Therefore, the diagnostic signature can be used to evaluate risk
for HCC, enabling timely preventive measures to be taken by
individuals with a high risk for HCC. Further, the five DNA
methylation markers had better performance, better stability, and
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FIGURE 1 | Construction of the diagnostic signature consisting of five DNA methylation markers. (A) Five DNA methylation markers were selected to construct the
diagnostic signature. Volcano plot showing the biological significance (log2 fold change (FC)) on the X axis and the corresponding statistical significance (−log10 false
discovery rate (FDR)) on the Y axis of markers between HCC patients and normal controls. A total of 1306 candidate markers (red and blue) were initially selected,
with five markers (blue) finally selected to construct the diagnostic signature. (B) Curve of average balanced accuracy with increasing number of methylation
markers. The green dotted line indicates that the diagnostic signature with five DNA methylation markers has the highest average balanced accuracy for sampling
100 times. (C,D) Heatmap of five DNA methylation markers selected to construct the diagnostic signature for the training (TCGA) (C) and validation (D) datasets
(GSE54503, GSE56588, GSE60753, GSE75041, GSE77269, and GSE89852).

reliability than other known diagnostic markers (Llovet et al.,
2006; Lou et al., 2017; Zheng et al., 2018).

Constructing and Validating a Prognostic
Signature for HCC Based on DNA
Methylation
We sampled two-thirds of the HCCs from the TCGA dataset
as a training dataset, with the remaining one-third used as a
validation dataset (Supplementary Table S4). Select candidate
markers were evaluated in the following manner. First, markers
with average methylation level greater than 0.2 (AveT >0.2) in
the training dataset were selected. Second, to attenuate variable
dimensions and enhance the accuracy and interpretability of
the prediction model, we prescreened markers with the ability
to divide patients into low-risk and high-risk groups. These

markers showed a two-fold difference in average survival time
for patients with deceased status between the two groups (see
section “Materials and Methods”). A total of 647 methylation
markers were selected as candidate markers. Third, univariate
Cox regression analysis and a LASSO Cox regression model were
implemented to further reduce the number of candidate markers.
After the above filtering process, 22 methylation markers
were retained, and finally incorporated into a multivariate
Cox regression model to construct a prognostic signature
(Guo et al., 2019) (Supplementary Figure S1). The signature
included four of the 22 markers: cg19265480, cg06293745,
cg17186803, and cg0815137. The genes corresponding to the
four markers were NBPF member 8 (NBPF8), ATP binding
cassette subfamily B member 1 (ABCB1) or RUN domain
containing 3B (RUNDC3B), sodium voltage-gated channel
beta subunit 4 (SCN4B), and golgi associated kinase 1A
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FIGURE 2 | Evaluation of the diagnostic signature in the training (TCGA) and validation datasets (GSE54503, GSE56588, GSE60753, GSE75041, GSE77269, and
GSE89852). (A) The predicted results of the diagnostic signature in the training and validation datasets. (B) ROC curves of the diagnostic signature in the training
and validation datasets. (C,D) PCA analysis of the five DNA methylation markers between HCC patients (green) and normal controls (red) in the training (C) and
validation (D) datasets. ***p < 0.001 from Wilcoxon test. (E) Distribution of class-scores for the diagnostic signature of normal controls, individuals with liver diseases
(alcoholism and HBV/HCV cirrhosis), and HCC patients in GSE60753 dataset.

Frontiers in Genetics | www.frontiersin.org 6 August 2020 | Volume 11 | Article 906

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00906 August 13, 2020 Time: 11:2 # 7

Li et al. Diagnosis and Prognosis for HCC

(GASK1A), respectively, (Supplementary Table S5, see section
“Materials and Methods”). The risk score for HCC based
on β-values of the four methylation markers were: risk
score = (1.557 × cg19265480) + (4.321 × cg06293745) +
(1.556 × cg17186803) – (1.786 × cg08151370). Of these
four markers, cg19265480, cg06293745, and cg17186803 had
positive coefficients, indicating a correlation between larger DNA
methylation β-values and shorter overall survival (OS), while a
larger β-value for cg08151370 correlated with longer OS.

To explore the association between prognostic signature and
OS in HCC in the training and validation datasets, we first
assessed the distribution of risk scores and survival status of

HCC patients. Patients with lower risk scores (risk-score < 3.679)
generally had better survival, as evident from 123 observations
with 25 events in the training dataset and 64 observations
with 12 events in the validation dataset; patients with higher
risk scores (risk-score ≥ 3.679) had relatively poor survival,
according to 124 observations with 64 events in the training
dataset and 60 observations with 31 events in the validation
dataset (Figures 3A,B, left panel). By use of the median risk
score (3.679) as the cutoff point, Kaplan-Meier curves were
generated for the training and validation datasets. As expected,
compared with patients in the high-risk group, patients in the
low-risk group had longer OS (training dataset: log-rank test

FIGURE 3 | Kaplan-Meier (KM) survival analysis based on the risk score of the prognostic signature. (A) Training dataset (two-thirds of TCGA dataset), (B) Validation
dataset (one-third of TCGA dataset). Upper left panel: the distribution of risk scores and survival status of HCC patients; lower left panel: heatmap showing
methylation level of four DNA methylation markers in HCC patients. Right panel: HCC patients were divided into low-risk and high-risk groups using a median cutoff
value (black dotted line: 3.679, upper left panel) of risk scores. KM curves along with log-rank test and hazard ratio (HR) were used to compare and visualize the OS
of low-risk and high-risk groups.
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p < 1.0E-04, HR: 3.32, 95% CI of HR: 2.39-4.60; validation
dataset: log-rank test p = 1.6E-04, HR: 2.01, 95% CI of HR:
1.37-2.97) (Figures 3A,B, right panel).

To evaluate the prognostic potential and investigate the
specificity and sensitivity of the prognostic signature for survival

prediction, AUC values were calculated at 1-year, 2-years, and 3-
years by time-dependent ROC analysis. The AUCs estimated for
OS were 0.813 at 1 year, 0.744 at 2 years, and 0.745 at 3 years in
the training dataset (Figure 4A). For the validation dataset, the
AUCs were 0.806 at 1 year, 0.763 at 2 years, and 0.744 at 3 years

FIGURE 4 | ROC and stratification analysis of HCCs based on the risk score of the prognostic signature. (A,B) The ROC analysis of the prognostic signature at three
different time points (1 year, 2 years, and 3 years) for the training (two-thirds of TCGA dataset) (A) and validation (B) datasets (one-third of TCGA dataset). (C) HR of
overall mortality for TCGA HCC patients using the regroup method and based on different clinical characteristics.
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(Figure 4B). These results indicate the prognostic signature to
have great potential as a prognostic biomarker for HCC.

A good prognostic signature should be independent of clinical
variables. To assess the independence of the present prognostic
signature, survival analysis was performed using subsets of
patients with different clinical and pathological characteristics
(age, sex, race, AJCC stage, serum AFP levels and etc.), which
are known as prevailing predictors (Lo et al., 2002; Njei et al.,
2015; Bruix et al., 2016). As shown in Figure 4C, the four-
DNA methylation prognostic signature remained statistically and
clinically significant as a prognostic model based on these clinical
variables. In addition, Kaplan-Meier analysis demonstrated that
patients in the high-risk group had significantly (log-rank test,
all p < 0.05) shorter OS and poorer prognosis, with the AUC
values higher than 0.7 (Supplementary Table S6). These results
suggest the prognostic signature to be independent of patients’
pathological characteristics.

Comparison of the Prognostic Signature
With Known Prognostic Biomarkers
Numerous prognostic biomarkers have been identified for
HCC patients. By comparison of these known biomarkers, we
can determine whether the four-DNA methylation prognostic
signature in this study shows better performance in terms of
predicting patient survival (Xu et al., 2017; Fang et al., 2018;
Yang et al., 2018; Li et al., 2019). Using a previously reported
formula for calculating risk score, ROC analysis at 1-year was
performed with the validation dataset. The results showed the
prognostic signature to have the highest AUC value of any of
the other known biomarkers (Figure 5A). Hence, the four-DNA
methylation prognostic signature had better performance than
the other prognostic biomarkers.

Association of the Prognostic Signature
With Gene Expression
DNA methylation plays an important role in regulation of gene
expression. Hypermethylation inhibits gene expression while
hypomethylation is associated with gene activation (Irizarry et al.,
2009; Thienpont et al., 2016; Ma et al., 2017; Wang et al., 2018).
Using TCGA transcriptome profiles (Supplementary Table S3),
we explored the association between the four-DNA methylation
prognostic signature and gene expression. Pearson’s correlations
between β-value and gene expression were significantly positive
for NBPF8 (p = 8.58E-03) and ABCB1 (p = 1.58E-07), with
inverse significance for FAM198A (p = 5.40E-03) and SCN4B
(p = 0.033). These results demonstrate the four methylation
markers of the prognostic signature to be correlated with
expression of corresponding genes. To explore the relationship
between gene expression and risk score of the prognostic
signature and to investigate the possible role of the prognostic
signature in HCC therapy, we performed one-to-one correlation
analysis between genes of the whole genome and the prognostic
signature. The top 10 genes that were significantly positively
correlated with the prognostic signature were KIF2C, MYBL2,
CDC6, CDC20, CENPA, CENPO, KIF4A, CDCA8, KIAA1524,
and PRR11 (p < 0.001). The top 10 genes that were significantly

FIGURE 5 | ROC analysis of different prognostic biomarkers. (A) ROC curves
demonstrate the sensitivity and specificity of the four-DNA methylation marker
prognostic signature and other known prognostic biomarkers using the
validation dataset (one-third of TCGA dataset).

negatively correlated were PDE2A, CYB5D2, RAMP3, CLEC3B,
CRY2, EMCN, DNASE1L3, GNA14, CSAD, and LINC01537
(p < 0.001).

Gene Ontology (GO) Enrichment Analysis
Biological function underlying the two-correlated gene lists
was evaluated by Gene Ontology (GO) functional enrichment
analysis using the Gorilla tool (Eden et al., 2009). The
top 10 positively correlated genes were mainly involved in
“cell cycle process” (GO:0022402), “mitotic cell cycle process”
(GO:1903047), “microtubule cytoskeleton organization involved
in mitosis” (GO:1902850), and “microtubule cytoskeleton
organization” (GO:0000226) (all FDR < 0.01) (Figure 6A). For
the top 10 negatively correlated genes, there was no significant
GO term enrichment. Intriguingly, eight of top 10 positively
correlated genes were involved in the process of cell-cycle
regulation (Figure 6A). Of these eight genes, KIF2C and MYBL2
overexpression was associated with shorter OS for HCC patients,
therefore, they represent potential therapeutic targets (Chen et al.,
2017; Musa et al., 2017). CDC6 and CDC20 have been reported to
play critical roles in prostate cancer progression, and can serve
as indicators for patient prognosis (Karanika et al., 2017; Zhang
et al., 2019). CENPA combined with CDK1 and CDC20 can serve
as a cluster of prognostic biomarkers for lung adenocarcinoma
(Liu et al., 2018). KIF4A, combined with FOXM1, can mediate
HCC progression (Hu et al., 2019). Some studies have suggested
that the CDCA8-AURKB pathway is a promising therapeutic
target for lung cancer patients via activation of the Wnt/β-catenin
signaling pathway (Hayama et al., 2007). PRR11 plays a critical
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FIGURE 6 | Correlation and Gene Ontology (GO) enrichment analysis. (A) GO terms enriched for the top 10 genes significantly and positively correlated with risk
scores of the prognostic signature. (B) Expression of eight genes by HCCs and normal controls. (C) Distribution and number of genes involved in cell cycle
regulation, for 100 repetitions.

role in HCC progression (Qiao et al., 2019). As expected, these
eight genes were all overexpressed in HCCs (Figure 6B).

Relationship of Prognostic Signature
Genes With Prognosis
To validate the specificity of the results and exclude confounding
factors, we randomly selected four methylation markers from
among 647 candidate markers, and then performed multivariate-
Cox regression analysis to construct a ‘simulated prognostic
model (SPM)’. The top 10 genes positively correlated with risk
score for SPM were used to perform GO enrichment analysis, and

genes related to cell-cycle regulation were counted. We repeated
this random process 100 times, results showed that fewer than
two genes were related to cell-cycle regulation in 93 of the 100
times, with two or three genes related to cell-cycle regulation
for the remaining seven times (Figure 6C). Therefore, compared
with random results, the prognostic signature was significantly
correlated with cell-cycle regulation (FDR < 0.01).

Uncontrolled cell proliferation arising from aberrant activity
of various cell cycle proteins is an obvious feature of tumors,
with cell cycle proteins considered to be promising targets for
tumor therapy (Dominguez-Brauer et al., 2015; Otto and Sicinski,
2017). Thus, the group of eight genes that was significantly
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FIGURE 7 | HCCs grouped based on the expression of eight genes. (A) TCGA dataset, (B) GSE14520 dataset, (C) ICGC dataset. Upper left panel: survival time
distribution of HCC patients with deceased status in group A (green) and group B (blue). Lower left panel: unsupervised hierarchical clustering of eight genes for
HCC patients, patients were divided into two groups based on the expression of the eight genes. Right panel: KM survival analysis for HCC patients in the two
groups. Group B had a better prognosis and OS than group A. AST: average survival time.
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correlated with cell cycle regulation should have the potential
to predict prognosis in HCC. To verify this hypothesis, gene
expression profiles were obtained from TCGA, ICGC-LIRI-
JP, and GSE14520 (Supplementary Table S3). Unsupervised
hierarchical clustering of the eight genes showed that HCCs were
successfully divided into two groups, with the average survival
time of patients with deceased status in the low-expression group
greater than patients with deceased status in the high-expression
group (Figures 7A–C, left panel). Kaplan-Meier curves along
with the log-rank test were used to compare and visualize the
OS of patients in the two groups. As expected, the survival of
patients in the eight-gene low-expression group was significantly
improved in comparison with that in patients in the other group
(Figures 7A–C, right panel). These results indicate the eight
genes to potentially serve as prognostic biomarkers. These eight
genes are highly correlated with the prognostic signature, which
provides indirect evidence to demonstrate the validity of the
prognostic signature.

DISCUSSION

With the development of whole-genome technologies, multiple
diagnostic and prognostic signatures have been established
using methylation markers, mRNA, microRNA, and single
nucleotide polymorphism (SNP) datasets (Liu et al., 2012; Yoon
et al., 2014; Fang et al., 2018; Li et al., 2019). However,
previous studies in this area have several obvious limitations:
(1) They typically focused on patients with a specific clinical
feature, or a single gene or methylation marker; (2) Too
many markers were integrated into one signature, which
reduced the potential for clinical use; (3) The design of the
prediction signature failed to provide a quantitative risk score
of death for each patient, and the formula for risk score
was unavailable; (4) Signatures were not validated in multiple
independent datasets; (5) The biological mechanism underlying
the signature were unclear. These shortcomings prevent the
use of signatures in clinical practice. In this study, multiple
methylation and transcriptome profiles from different sources
were used to construct and validate diagnostic and prognostic
signatures. The diagnostic and prognostic signatures consisted
of five DNA methylation markers and four DNA methylation
markers, respectively.

Alterations in DNA methylation are a molecular hallmark
of tumors, and are the most intensively studied epigenetic
phenomena. Disturbances to methylation levels can alter gene
transcription, thus modifying the biological behavior of tumors
(Irizarry et al., 2009; Hattori and Ushijima, 2016; Thienpont et al.,
2016; Ma et al., 2017; Koch et al., 2018; Wang et al., 2018). To date,
multiple studies have shown that DNA methylation is directly
involved in carcinogenesis, with altered DNA methylation often
observed prior to actual tumor formation (Issa et al., 2001;
Brait et al., 2009; Shenoy et al., 2015). A similar phenomenon
was found for our diagnostic signature: the class-scores had an
upward trend in individuals with liver diseases compared with
that in normal controls. Class-scores were significantly different
between normal controls, individuals with liver diseases, and

HCCs. Hence, this diagnostic signature can be used to monitor
the health status of individuals.

In previous studies, circulating tumor DNA (ctDNA)
methylation markers were used to construct prognostic model
(Xu et al., 2017). However, ctDNA is likely released by apoptotic
cells and may therefore represent a particular subtype of tumor
cells, with differences in methylation levels between ctDNA
and tissue DNA (Diaz and Bardelli, 2014). Therefore, ctDNA
methylation markers are not as suitable as tissue DNA for
diagnostic and prognostic purposes, with ctDNA performing
less well in a prognostic prediction model than other known
biomarkers (Figure 5A). Prognostic signatures can predict
recurrence for early stage HCC (Qiu et al., 2017). The use of
methylation array analysis enabled stratification of HCCs into
different CpG island methylation phenotypic subtypes that can
be used to build prognostic models based on differential subtype
genes (Li et al., 2019). To date, a comprehensive and systemic
approach to build prognostic signatures based on methylation
markers remains unavailable. Using the TCGA methylation
dataset, we successfully built a prognostic signature independent
of clinical variables. Because epigenetic changes can alter gene
expression, there is a causal relationship between methylation
level and gene expression (Irizarry et al., 2009; Thienpont et al.,
2016; Ma et al., 2017; Wang et al., 2018). Intriguingly, correlation
analysis between methylation and gene expression showed that
eight of the top 10 positively correlated genes were involved in
regulation of cell cycle progression. These eight genes performed
as well as our prognostic signature for analysis of progression.
These findings demonstrate the superior performance of our
prognostic signature in terms of predicting HCC OS. We will
further validate this prognostic signature when new clinical
samples are available.

In conclusion, based on multiple independent datasets
from different sources, we constructed an accurate five-DNA
methylation diagnostic signature with excellent specificity
and sensitivity, which was additionally cost-effective for
clinical application. Further, we identified and verified a four-
DNA methylation prognostic signature, which was not only
independent of clinical factors, but also had better performance
for OS prediction than other known biomarkers. Analysis of
transcriptome profiles revealed that eight of the top 10 genes
positively correlated with risk score for HCCs were primarily
involved in cell cycle regulation. This eight-gene panel is a
potential prognostic biomarker.
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FIGURE S1 | Workflow for data analysis. (A) Left panel: construction of the
diagnostic signature: we identified differential methylation markers in the TCGA
training dataset and ranked candidate markers by balanced accuracy. We

constructed an optimal five-DNA methylation marker diagnostic signature with an
increase in methylation markers. The diagnostic signature was validated in a
mixed dataset consisting of six independent datasets. Right panel: construction of
the prognostic signature: we first selected candidate markers that have potential
to distinguish high-risk and low-risk HCC patients. Then univariate Cox, LASSO
Cox, and multivariate Cox model were used to construct a four-DNA methylation
marker prognostic signature. The function of genes significantly correlated with
risk scores of HCC patients was also analyzed with three independent datasets.

FIGURE S2 | Process for construction of the diagnostic signature. (A) With an
increase in methylation markers, we constructed a diagnostic signature with the
highest average balanced accuracy using multiple simulations. BA: balanced
accuracy. (B) The curve of average balanced accuracy with increased numbers of
methylation markers at 10, 50, 300, 500, and 1000 simulated assessments. Right
panel: the red dotted line indicates the diagnostic signature with five DNA
methylation markers to have the highest balanced accuracy after 300 simulations.

TABLE S1 | The result of the simulation.

TABLE S2 | Characteristics of five methylation markers used in the
diagnostic signature.

TABLE S3 | Information regarding datasets used in this study.

TABLE S4 | Clinical characteristics of HCC patients in the TCGA dataset.

TABLE S5 | Characteristics of four methylation markers used in the
prognostic signature.

TABLE S6 | Results of KM and ROC analysis based on different regrouping
methods.
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