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Cancer cell lines are a tremendous resource for cancer biology and therapy development. These multipurpose tools
are commonly used to examine the genetic origin of cancers, to identify potential novel tumor targets, such as tumor
antigens for vaccine devel-opment, and utilized to screen potential therapies in preclinical studies. Mutations, gene
expression, and drug sensitivity have been determined for many cell lines using next-generation sequencing (NGS).
However, the human leukocyte antigen (HLA) type and HLA expression of tumor cell lines, characterizations necessary
for the development of cancer vaccines, have remained largely incomplete and, such information, when available, has
been distributed in many publications. Here, we determine the 4-digit HLA type and HLA expression of 167 cancer and
10 non-cancer cell lines from publically available RNA-Seq data. We use standard NGS RNA-Seq short reads from “whole
transcriptome” sequencing, map reads to known HLA types, and statistically determine HLA type, heterozygosity, and
expression. First, we present previously unreported HLA Class I and II genotypes. Second, we determine HLA expression
levels in each cancer cell line, providing insights into HLA downregulation and loss in cancer. Third, using these results,
we provide a fundamental cell line “barcode” to track samples and prevent sample annotation swaps and
contamination. Fourth, we integrate the cancer cell-line specific HLA types and HLA expression with available cell-line
specific mutation information and existing HLA binding prediction algorithms to make a catalog of predicted antigenic
mutations in each cell line. The compilation of our results are a fundamental resource for all researchers selecting
specific cancer cell lines based on the HLA type and HLA expression, as well as for the development of
immunotherapeutic tools for novel cancer treatment modalities.

Introduction

Cancer cell lines are a tremendous resource that provide a
fundamental model for cancer, immunologic and therapeutic
research and development.1,2 The better the genomic bio-
chemical and molecular state and status of individual cell
lines are known, the better we can interpret and extrapolate
the results from cell line studies as surrogates for patient
tumors.

Indeed, the advent of high throughput profiling technologies
has enabled the determination of the genomic and transcriptomic
states of cancer cell lines. The COSMIC Cell Lines Project3

has curated comprehensive data on somatic mutations in a
broad range of human cell lines and primary tumors and the

Broad-Novartis Cancer Cell Line Encyclopedia (CCLE)4 has
determined genetic alterations and gene expression profiles in
over 1000 cell lines.

Conversely, less attention has been given to tumor immunomics,5

such as human leukocyte antigen (HLA) typing, HLA expression,
and the identification of immunogenic peptides presented on tumor
HLAmolecules. Information in the public domain aboutHLA types
andHLA expression in cancer cell lines is largely incomplete and fre-
quently undetermined. Computational tools drawn largely from
infectious disease research, such as the algorithms available at the
Immune Epitope Database (IEDB),6 predict the binding strength of
a given peptide to a particularMHCmolecule.

In the development of cancer immunotherapies, it is fre-
quently critical to have model systems such as cell lines with a
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specific HLA type. For example, when developing a peptide vac-
cine, one may want access to an HLA A*02 positive cell line7 to
identify HLA-presented ligands and test T-cell activity. Further,
many frequent cancer mutations are predicted to bind HLA Class
I alleles with high-affinity (IC50 <D 50 nM)8 and may be suit-
able for prophylactic cancer vaccination.9 Individual tumors
accumulate on average »10 HLA-A*02:01 mutation-containing
epitopes.10 Developing the tools to rapidly identify the tumor-
specific HLA-presented mutations in an HLA-specific context
may enable therapeutic vaccination.11,12 Thus, for further devel-
opment and testing of immunotherapies, especially in proof-of-
concept and preclinical studies, a catalog of cancer cell line
immunologic information is needed.

This report determines and catalogs cell line HLA types and
HLA expression, and further, predicts likely antigenic mutation
candidates. Using publically available NGS RNA-Seq short reads
from 177 human cancer and non-cancer cell lines, we determined
HLA Class I and II types, HLA heterozygosity, and locus-specific
HLA expression. Not only were we able to determine the HLA
types of the samples, but we found large differences in the expres-
sion of HLA molecules in specific tumor contexts. Integrating the
determined cell line-specific HLA type and somatic mutations,
we used HLA binding algorithms to identify likely antigenic
mutation candidates for 108 widely used cancer cell lines.

Results

HLA typing of 177 human cancer and normal cell lines
Applying our pipeline (Fig. 1) to RNA-Seq data from 167

human cancer and 10 non-cancer cell lines, we generated the
largest catalog of cell line HLA types (Table 1; Table S1) com-
piled to date. The 177 cell lines include 62 from breast tissue,
including 5 non-cancerous breast cell lines and one matched lym-
phocyte cell line, 34 from B cells and 24 from lung-derived can-
cer and normal cell lines (Fig. S1). As an exemplar, we found 2
RNA-Seq datasets from the breast adenocarcinoma cell line
CAMA-1 and the workflow determined the HLA type of
CAMA-1 as A*02:01, A*32:01, B*15:01, B*40:02, C*02:02,
and C*03:03 (Fig. 1).

To test the robustness and confirm our predictions, we com-
pared the results for the cell line replicate samples, and further,
compared our results to previous typings. For 45 cancer cell lines,
multiple RNA-Seq profiles were available, often from different
laboratories. In all cases with sufficient HLA locus expression, the
typings agree with the reported consensus HLA type, demon-
strating the robustness of the method (Table S2). Further, when
compared to previously determined HLA types, we find good
agreement for HLA class I 4-digit typings. Partial HLA typing
data exists for 17 cell lines (Table S1B) with 59 available 4-digit
typed HLA Class I alleles, of which 56 typings overlap with the
91 4-digit typings determined by seq2HLA (Table 2). For 2 of
the 3 missing calls, only the 2-digits could be determined and
one allele wasn’t called, all of which is due to very low expression
(2 of the 3 missing 4-digit calls are associated with K-562 cells,
which is known to not express HLA). Of the 56 overlapping

4-digit typings, 53 calls match. Only 3 HLA Class I alleles dis-
agree, of which one wrong call affects the second B allele of
DAUDI with 2244 supporting reads for the mismatched allele,
one mismatch at SK-MEL-5 is due to a true homozygosity deter-
mination of an ambiguous HLA-C allele typing for which the
matching 4-digit allele however is listed as possible solution with
equal confidence score, and one wrong call is a consequence of a
mistaken homozygosity prediction of the C locus of SK-MEL-5.

Seq2HLA works by first determining the HLA groups, i.e., 2-
digit resolution, as well as hetero- vs homozygosity, these calls are
refined to assign the 4-digit HLA types (SupplementaryMethods).
In this first step, the C locus of SK-MEL-5 is determined as homo-
zygous for C*03, as indicated by “hoz” (Table 1 in Supplementary
Methods). However, this homozygosity prediction is also associ-
ated with a poor confidence score (0.78) indicating that this locus
is likely not homozygous with C*07 being the second allele (as
proposed next to the “hoz”-output), which matches the reported
typings. Subsequently, the 4-digit prediction of this allele has also
a poor confidence score, showing the importance of manually
adjusting the typings according to the confidence scores, which
has been done and documented for all the other cell lines in this
study (Table S1). In addition, the first HLA-C allele shows an
ambiguous typing, again the matching 4-digit type is listed as pos-
sible solution. Of the 17 cell lines, 85 HLA Class I alleles are avail-
able in at least 2-digit resolution (including the 59 4-digit alleles
stated above), seq2HLA determined 101 alleles in at least 2-digit
resolution and 84 alleles overlap, of which 79 2-digit typings
match exactly (Table 2). One HLA allele could not be determined
occurring again in K-562, due to a very low number of supporting
mRNA-Seq reads. Five HLA class I 2-digit calls disagree, includ-
ing 2 of the 3 false 4-digit typings mentioned above (Daudi, SK-
MEL-5), a wrong 2-digit call at the 2nd B locus of K-562 and BT-
549, both due to very low expression. For the latter, the overall
expression of the B locus is low (2.7 RPKM) and only 8 support-
ing reads are left in the 2nd iteration to distinguish between the
very similar HLA groups B*55 (truth) and B*56 (prediction). The
last typing mismatch is a consequence of a wrong B locus homozy-
gosity prediction in SK-MEL-5. However, the confidence score of
the second allele, as well as of the 2-digit prediction, is 0.97
(Table S1A), indicating that this locus is likely not homozygous
with B*07 being the second allele.

In the case of HLA Class II, 51 4-digit typings are available, of
which 36 alleles overlap with 64 4-digit alleles determined by
seq2HLA. For the 15 missing HLA Class II alleles no expression
was detectable and so these could not be typed. Thirty of the 36
determinant 4-digit typings match. Three HLA Class II calls (JY,
DAUDI) have ambiguous 4-digit typings from the RNA-Seq
data, of which the matching 4-digit allele is listed as possible solu-
tion with equal or slightly less probability in all cases. Six HLA
Class II calls disagree, with 3 wrong calls (A-549, MCF-7, MDA-
MB-231) due to homozygosity predictions in which the first allele
matches the reported typing but the second allele is missed. This
might indicate the missed allele is not expressed, however expres-
sion of the whole loci is very low (0.003 – 3.2 RPKM). The
remaining 3 wrong calls occur in DAUDI, despite high expression
of the respective loci. Of the 17 cell lines, 59 HLA Class II alleles
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are available in at least 2-digit resolution, seq2HLA made 64 calls
and 40 alleles overlap. Five HLA Class II calls disagree on the 2-
digit level including the 3 false 4-digit typings mentioned above
and one error at MCF-7 due to homozygosity prediction of
DRB1*15, and thus a missed call of DRB1*03, with the whole
locus showing very low expression (1.7 RPKM).

Counting the HLA alleles independently, the most prominent
alleles in the examined cell lines are A*02:01 (65 of 321 determined
4-digit A-alleles), A*24:02 (48), C*04:01 (47 of 340 determined 4-
digit C-alleles), C*07:01 (43), C*07:02 (37), and B*07:02 (32 of
327 determined 4-digit B-alleles) (Fig. S2). This HLA type

frequency determined by seq2HLA mirrors the prevalence of those
alleles throughout the human population.13

HLA type for sample identification
HLA typing can be used as a sample barcode. Indeed, we used

the HLA types to identify possible annotation discrepancies
between related cell lines (Table S3). As positive examples, the
breast cancer cell lines 21NT and 21PT (derived from the pri-
mary tumor) and 21MT1 and 21MT2 (derived from metastasis)
are from the same patient14: our results show the same HLA
type for all samples. Similarly, the breast carcinoma cell line

Figure 1. Data integration and computational workflow. Cancer cell line RNA-Seq samples were retrieved from NCBI Sequence Read Archive (SRA) (A),
which are input into our bioinformatics software seq2HLA to determine the 4-digit HLA expression (B) and type (C). The cell-line specific HLA types (C)
and cell-line specific non-synonymous somatic mutations (D) from mutation repositories, such as Broad-Novartis Cancer Cell Line Encyclopedia (CCLE),
were processed with the Immune Epitope Database (IEDB) consensus HLA presentation algorithm to predict high-affinity HLA-presented (antigenic)
mutations. The list of predicted HLA-binding mutation epitopes is output (E), containing the HLA allele to which the neo-epitope is predicted to bind
and the predicted IC50 value in nanomolar (nM).
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HCC-1937 and the matched lymphocyte cell line HCC-2337
show the same HLA type (Table S3a).

Strikingly, we determined different HLA Class I & II types of
breast cancer cell line SUM149PT using the RNA-Seq reads
from 2 different laboratories. Both replicates labeled as
SUM149PT in SRA project SRP026537 resulted in HLA calls
A*68:01, A*33:01, B*53:01, B*78:01, C*06:02, and C*16:01,
whereas the RNA-Seq reads from samples labeled as SUM149 in
SRA project SRP006908 and SUM149PT in SRA project
SRP008746 resulted in calls A*03:01, B*35:01, B*51:01,
C*12:03 (Table S3b). These unambiguous discrepancies suggest
a possible sample annotation issue. Thus, the HLA type deter-
mined from seq2HLA and RNA-Seq reads acts as an effective
QC sample barcode to identifying inconsistencies such as con-
tamination and mislabeling.

HLA expression profiles
Our algorithm seq2HLA determines not only HLA type but

also HLA Class I and II expression profiles (Table 3; Table S1).

For the exemplar CAMA-1 cell line, the mean HLA-A, B and C
expression levels are 61, 48, and 73 RPKM, respectively
(Fig. 1B).

To determine the variability in determined HLA expression
levels, we again examined the RNA-Seq reads from the same cell
lines but from experiments run at the same and different labora-
tories. Given that the profiles come from cell lines that were cul-
tured and profiled in different labs, we were pleased to find good
agreement of HLA Class I (Fig. 2A) and HLA Class II (Fig. 2B)
expression levels. The relative expression level variation is higher
at low gene expression, reflecting increased proportion of noise
expression, and decreases to less than 30% variability (difference
to mean) at higher expression values.

In general, we observed moderate to high HLA Class I
expression throughout the different tissues/disease-groups
(Fig. 3). Ovarian and prostate cancer cell lines and K-562
show no or very low levels. HLA Class II is absent in almost
all tissue/disease groups, with the exceptions of Burkitt lym-
phoma, mantle cell lymphoma and melanoma cell lines

Table 1. HLA typings from 10 selected cancer cell lines. HLA Class I (A) and HLA Class II typings (B) as determined by seq2HLA. CHLA I and/or II types (some-
times 2 digits only) reported in literature and confirmed by seq2HLA; CCAmbiguity as 4 digit typing not possible due to scarcity of reads; n.a., no typing pos-
sible due to no detectable expression, ‘ambiguity flag

A

cell line Disease HLA-A HLA-B HLA-C

A-549 C lung carcinoma A*25:01 A*30:01 B*44:03 B*18:01 C*12:03 C*16:01
BL-30 Burkitt lymphoma A*01:01 A*11:01’ B*08:01 B*39:01 C*02:02 C*07:01’
CAMA-1 breast adenocarcinoma A*02:01 A*32:01 B*40:02’ B*15:01’ C*02:02 C*03:03
HCC-70 breast (ductal carcinoma, TNM stage IIIA, grade 3) A*30:02 A*03:01 B*78:01 B*15:16 C*16:01 C*16:01
K-562 C bone marrow (chronic myelogenous leukemia) A*11 CC n.a. B*40 CC B*35/B*39CC C*05CC C*03CC

MDA-MB-134VI breast cancer (ductal carcinoma, pleural effusion) A*11:02’ A*24:02 B*40:01’ B*35:01’ C*03:04’ C*04:01’
NCI-H1092 lung carcinoma A*01:01 A*03:01 B*08:01 B*35:03’ C*07:01’ C*07:01
T-47D C breast (ductal carcinoma, pleural effusion) A*33:01 A*33:01 B*14:02 B*14:02 C*08:02’ C*08:02
SNU-5 gastric carcinoma A*26:01 A*24:02 B*35:01 B*40:05’ C*03:03’ C*03:03
PEO1 ovarian carcinoma A*03:01 A*03:01 B*07:02’ B*07:02’ C*07:02’ C*07:02

B
cell line HLA-DQA1 HLA-DQB1 HLA-DRB1
A-549 C n.a. n.a. DQB1*02:02’ DQB1*02:02 n.a. n.a.
BL-30 DQA1*01:03’ DQA1*05:01 DQB1*06:03’ DQB1*02:01’ DRB1*03:01 DRB1*13:01’
CAMA-1 n.a. n.a. DQB1*03:01 DQB1*03:01 DRB1*11:01’ DRB1*11:01
HCC-70 n.a. n.a. DQB1*05:01 DQB1*05:01 DRB1*01:02 DRB1*07:01
K-562 C n.a. n.a. n.a. n.a. n.a. n.a.
MDA-MB-134VI n.a. n.a. DQB1*06:02’ DQB1*03:02’ DRB1*13:27’ DRB1*13:27
NCI-H1092 n.a. n.a. DQB1*06:13’ DQB1*06:13 DRB1*15:02’ DRB1*15:02
T-47D C n.a. n.a. DQB1*05:01 DQB1*05:01 DRB1*01:02 DRB1*01:02
SNU-5 DQA1*05:01 DQA1*05:01 DQB1*03:09’ DQB1*03:09 DRB1*11:01 DRB1*12:01
PEO1 n.a. n.a. DQB1*03:04’ DQB1*03:04 n.a. n.a.

Table 2. Accuracy of 2- and 4-digit typings by seq2HLA from 17 published cell lines. Published HLA types exist for 17 cancer cell lines, comprising
102 possible HLA Class I and 102 possible HLA Class II alleles

Class Existing typing Alleles determined by seq2HLA Overlap Agreement Discrepancy Ambiguities*

4-digit I 59 91 56 53 (95%) 3 2
2-digit I 85 101 84 79 (94%) 5 0
4-digit II 51 64 36 30 (83%) 6 3
2-digit II 59 64 40 35 (88%) 5 0

*Ambiguous typing, for which the matching 4-digit allele is listed as possible solution with equal or slightly less confidence scores, thus not counting as a
wrong call.
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(Fig. 3). Of the 167 cancer cell lines, 39 (23%) showed no or
very weak expression (less than 1 RPKM) for at least one
HLA Class I and 136 (82%) showed no or very weak expres-
sion for at least one HLA Class II locus.

HLA expression in different tissue and disease groups
Among B cell lines, we found high HLA Class I (360

RPKM) and HLA Class II expression (205 RPKM) in the
normal B cell lymphoblastoid cell line, which is in accor-
dance with our previous findings that normal B lymphocytes
express a relatively high level of HLA Class I and II mole-
cules.15 This is not surprising, and in fact should be expected
given their role as antigen presenting cells. However, we
observed low HLA expression in the diffuse large B-cell lym-
phoma (DLBCL) (including one Non-Hodgkin lymphoma)
cell lines studied here (Fig. 2): 8 of the ten cell line samples
showed no a very weak expression of HLA Class I and II
molecules. In contrast, Burkitt lymphoma and mantle cell
lymphoma cell lines display a normal B lymphocyte pheno-
type with high HLA Class I (greater than 120 RPKM) and
Class II expression (greater than 38 RPKM), correlating to
HLA expression levels in primary Burkitt lymphoma samples
(Fig. 4A).

In the case of breast cancer, the majority of the 56 examined
breast cancer cell lines showed HLA Class I and II expression lev-
els comparable to the 6 normal breast cell lines. Indeed, 2 of the
highest HLA Class I expressions were found in breast cancer cell
lines HCC-70 (1614 RPKM) and SUM-225CWN (1460
RPKM) which express HLA Class II very weakly (SUM-
225CWN; less than 1.4 RPKM) or not at all (HCC-70; 0
RPKM). In general, HLA II expression was observed to be low,
even in normal breast lines (less than 19 RPKM). Confirming
the findings here, Teh et al.16 studied HLA mRNA expression in
human breast carcinoma cell lines using HLA-A and HLA-B
locus specific DNA probes and Northern Blot. Five cell lines
overlap with this study and the bands of the autoradiogram corre-
spond well with the HLA expression profiles and levels deter-
mined here (Fig. S3).

Lung cancer cell lines display a heterogeneous HLA expression
landscape, with 9 of the 24 cell lines expressing less than 1
RPKM for at least one HLA I locus and high overall HLA I
expression in 8 cell lines (greater or equal than 100 RPKM). Fur-
thermore, 2 of the highest HLA I expressions were found in lung
cancer cell lines: DMS 53 (1718 RPKM) and NCI-H196 (1563
RPKM). In contrast, HLA Class II expression was not detectable
in 11 cell lines (0 RPKM) and expression (greater than 1 RPKM)
was found in only 5 samples.

Among melanoma cell lines, there was an overall high expres-
sion of HLA Class I (greater than 125 RPKM), although
MEWO (less than 2 RPKM) and Mel501 (22 RPKM) exhibit
low and moderate expression, respectively. Of the non-B cell can-
cer cell lines, the melanoma samples showed the highest HLA
Class II expression (mean: 48 RPKM), with Mel501 and
MEWO again the exceptions, with no detectable HLA Class II
expression. Overall HLA expression levels in melanoma lines are
much higher than the normal epidermal keratinocytes cell line
NHEK (Class I: 45 RPKM, Class II: 2 RPKM).

We had previously analyzed HLA expression in a non-cancer-
ous brain samples as part of the Illumina Body Map project.15

We have additionally analyzed an independent normal human
brain sample (SRA: SRR332171) and in both cases found lower
HLA Class I expression (40 and 31 RPKM). Surprisingly, both
glioblastoma cell lines (U-87MG and U-251 MG) and the neu-
roblastoma cell line (SK-N-SH) show a high mean HLA Class I
expression with more than 135 RPKM (Fig. 4B), suggesting
HLA Class I upregulation in those samples.

In contrast, tumor cells downregulate or even lose HLA
expression as a tumor escape mechanism,17,18 and the chronic
myelogenous leukemia cell line K-562 is a prominent example of
this cancer cell adaptation.19 Using seq2HLA, we confirm
extremely low HLA expression in 6 K-562 RNA-Seq samples
(Table S1). HLA-C is expressed at very low but non-zero HLA-
C expression in all 6 K-562 samples, enabling us to determine
the K562 HLA-C type as HLA-C*05 (Table 1A) and corroborat-
ing reports of the constitutive expression of HLA-C on K-562
cells.20

Interestingly, we also find examples of massive imbalance
of locus-specific HLA Class I expression throughout all
malignant disease tissue types (Fig. S4). For example, in all 3
RNA-Seq samples from the breast cancer cell line HCC2218
display very low expression of HLA-A (less than 1 RPKM)
and HLA-B alleles (less than 4 RPKM) concurrent with mas-
sive expression of HLA-C alleles (79-105 RPKM). Vice versa,
the gastric adenocarcinoma cell line AGS shows high expres-
sion of HLA-A and HLA-B alleles (134 – 158 RPKM) and
low expression of HLA-C alleles (5 RPKM). Previous stud-
ies21 showed a reduced HLA-B expression as compared to
HLA-A alleles in small cell lung cancer cell lines. We confirm
this finding, as all 24 lung cancer cell lines display lower
HLA-B than HLA-A expression (Supplementary Fig. S4),
with 9 cell lines having HLA-B loci expression less than 1
RPKM in contrast to the respective A locus that is expressed
more abundantly (2 -69 RPKM). Similarly, melanoma cell
lines express higher levels of HLA-A in contrast to HLA-B

Table 3. HLA expression profiles from 10 selected cancer cell lines. Locus-
specific HLA Class I and HLA Class II expression profiles determined by
seq2HLA in reads per kilobase of exon model per million mapped reads
(RPKM). In case of replicate RNA-Seq samples, mean RPKM and standard
deviation are indicated

Cell line HLA-A HLA-B HLA-C HLA-DQA1 HLA-DQB1 HLA-DRB1

A-549 C 8.4 0.2 4.4 0 0 0
BL-30 15.7 90.6 22 16.4 24.9 89.8
CAMA-1 28 21.7 37.4 0 1.1 0.1
HCC-70 405.7 636.6 572 0 0.6 2.2
K-562 C 0 0 1.1 0 0 0
MDA-MB-134VI 38.6 43.2 73.1 0 3.3 2.1
NCI-H1092 25.2 0.3 2.3 0 0.1 0.1
T-47D C 26 177.9 115.7 0 2.6 2.8
SNU-5 61.6 127.2 54.9 3.1 54.2 81.5
PEO1 5.1 1.7 4.7 0 0 0
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and HLA-C.22 We observed such imbalanced HLA profiles in
7 out 9 melanoma samples.

Catalog of neo-epitope candidates
Integrating the determined HLA types, the point mutations

and HLA binding prediction tools, we generated a catalog of

predicted antigenic mutation candidates for each individual cell
line (Table 3; Table S4). The cell-line specific catalog of muta-
tions is predicted to bind to at least one HLA allele in the respec-
tive cell lines. For example, in CAMA-1, there are 190 non-
synonymous point mutations, of which 84 (44%) are predicted
to be presented on a CAMA-1 HLA alleles (Fig. 1E; Fig.S5).

Figure 2. HLA expression levels of replicate cell line RNA-Seq samples. For 45 cancer cell lines, multiple RNA-Seq datasets were available, often from dif-
ferent laboratories. Each point represents HLA expression of one RNA-Seq sample, retrieved from public databases. There is an overall good agreement
of HLA Class I (A) and HLA Class II (B) expression levels between those replicate samples. HLA Class I expression is defined as sum of individual reads for
each HLA-A,HLA-B and HLA-C and HLA Class II expression is defined as the sum of individual reads for HLA-DQA1, HLA-DQB1, HLA-DRB1. The mean (red)
and SEM (gray) are plotted for each cell line with replicate RNA-Seq reads for HLA Class I (A) and HLA Class II (B).
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Of the 167 cancer cell lines examined in this study, COSMIC
lists 39,414 non-synonymous SNVs (nsSNVs) in 83 cell lines
and CCLE lists 3,745 nsSNVs in 100 cell lines, for a total of
40,813 nsSNVs and with 2,346 entries overlapping between the

2 sources. We predicted HLA binding of mutation-containing
peptides in the 107 cell lines for which at least one HLA
Class I allele could be determined at 4-digit resolution
(Table S3a). Using a HLA binding affinity cut-off of

Figure 3. HLA expression profiles of 167 cancer cell lines grouped according to the tissue/disease of origin. The 167 cancer cell lines analyzed in the
study are grouped according to their cancer type and each point represents the HLA expression level in one distinct cell line and in cases of replicate
RNA-Seq datasets (for 45 cell lines), a point represents the mean expression value of the respective cell line. (red) and SEM (gray) is plotted for HLA Class
I (A) and HLA Class II (B). HLA Class I expression is defined as the sum of individual reads for each HLA-A, HLA-B and HLA-C and HLA Class II expression is
defined as the sum of individual reads for HLA-DQA1, HLA-DQB1, HLA-DRB1.RPKM, reads per kilobase of exon model per million mapped reads.
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500 nM, 18,102 (44%) nsSNVs were predicted to produce
neo-epitopes likely to be presented and are thus good neo-
epitope candidates (Table S3b).

The cell line with the largest number of reported nsSNVs is
the melanoma cell line MEWO, comprising 4,508 nsSNVs, of
which 1,335 (30%) nsSNVs are predicted to be strong MHC
binders. However, predictions could only be performed for the 2
HLA-A alleles as the expression of the HLA-B and HLA-C locus
was too low to determine the B and C types. Thus, the number
of likely antigenic mutation candidates can be assumed to be
higher. The cell lines with the largest ratio between total number
of nsSNVs and mutations producing neo-epitopes with predicted
binding capacity less or equal than 500 nM are HeLa (251 of
292, 86%), UACC-812 (249 of 319, 78%) and HCC-202 (312
of 400, 78%). The cell lines with the smallest ratio are MKN-28
(13 of 465, 2.8%) and SNU-1 (1 of 123, 0.8%), of which predic-
tions for only one HLA-allele could be performed as the IEDB
consensus tool does not offer prediction models for the

remaining HLA alleles. Thus, the number of candidate epitopes
might be higher.

One way to look at the antigenic neo-epitope candidates is to
compare the predicted binding affinity of the mutated neo-
epitope versus the corresponding wild-type peptide. Of the
18,102 predicted antigenic neo-epitope peptides (IC50 less or
equal than 500 nM), 4,673 peptides have a corresponding wild-
type peptide predicted to not bind (IC50 greater than 500 nM).
Note that we have calculated the binding of the wild-type peptide
corresponding to the strongest binding mutated peptide
(Fig. S6), not the mutated peptide with the maximum binding
difference between mutated and wild-type peptides. As expected,
the peptides for which there is the greatest difference in binding
(mutated versus wild-type peptide) contain mutations leading to
amino acids substitutions in anchor positions according to the
SYFPEITHI Motif database23 and MHCcluster.24 For example,
the large binding differences for HLA-B*57:01 occur for trypto-
phan substitutions at the C-terminal residue (Fig. S7).

Figure 4. Comparison of HLA expression profiles of cancer cell lines versus primary samples. (A) Analyses from seq2HLA of 13 Burkitt lymphoma cell lines
(green) and 28 primary samples (blue) showing comparable HLA Class I and Class II locus specific expression profiles (SRA: SRP009316). Shown are the
means (red) and SEM (gray). (B) The glioblastoma cell lines U-251 MG (2 samples), U-87MG (5 replicates) and the neuroblastoma cell line SK-N-SH
(2 replicates) - shown in red – HLA Class I expression levels (red; the sum of HLA-A,HLA-B and HLA-C expression) compared to wild-type primary brain
samples (blue; SRA:SRR332171 and Illumina body map project with SRA ID ERR030882, one replicate each).

Table 4. Neo-epitope candidate catalog. Shown are example database (source) entries indicating non-synonymous point mutations in known cancer-
related genes producing neo-epitopes predicted to bind the respective HLA allele with high affinity (IC50 less or equal than 500 nM) and one example with
the greatest in binding (predicted IC50 value of mutated vs wild-type peptide, denoted as D)

cell line gene AA change HLA allele MUT epitope Source MUT IC50 WT IC50 D(WT-MUT)

CAMA-1 MAGEC1 p.E700Q HLA-B*15:01 LQGEDSLSSL COSMIC 26 902 876
HCC-1419 TP53 p.A74P HLA-C*03:03 EAAPPVPPA COSMIC 321 287 -34
BT-20 TP53 p.K132Q HLA-A*24:02 TYSPALNQMF COSMIC/CCLE 34 111 77
SK-MEL-28 BRAF p.V600E HLA-A*11:01 KIGDFGLATEK COSMIC/CCLE 164 381 218
A-375 BRAF p.V600E HLA-B*57:01 LATEKSRW COSMIC/CCLE 49 33 -16
AGS KRAS p.G12D HLA-C*03:03 GADGVGKSAL COSMIC/CCLE 16 16 0
NCI-H2081 PTEN p.C124F HLA-A*68:01 HVAAIHFK COSMIC/CCLE 5 9 4
JeKo-1 BRCA1 p.N742S HLA-A*11:01 KVSSNAEDPK COSMIC/CCLE 60 60 0
MDA-MB-361 BRCA2 p.N1657S HLA-A*01:01 ATCYTSQSPY COSMIC/CCLE 482 622 140
A-375 CECR2 p.R1331W HLA-B*57:01 TGPPYTPQW COSMIC 438 105552 105114
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Further, the same mutation can produce a different neo-epi-
tope sequence in individuals with different HLA types. For exam-
ple, the re-occurring BRAF V600E is predicted to result in 2
different neo-epitopes, with KIGDFGLATEK binding to HLA-
A*11:01 in the melanoma cell line SK-MEL-28 and
LATEKSRW binding to HLA-B*57:01 with high affinity in the
melanoma cell line A-375 (Table 4).

Finally, the “Database of T cell-defined human tumor anti-
gens”25 provides a manually curated catalog of tumor antigens
resulting from mutations recognized by T cells. The TP53
missense mutation Y220C produces an immunogenic neo-epi-
tope (VVPCEPPEV) in HLA-A*02:01 positive squamous cell
carcinomas of the head and neck.26 This mutation is also pres-
ent in the breast cancer cell line HCC-1419 (Cosmic and
CCLE) and we predict the same mutation-producing peptide
to bind to HLA-A*02:01 with high affinity (399.95 nM;
Table S3).

Discussion and Conclusion

Despite the broad use of cancer cell lines, their immunological
characterization has been lacking. HLA typing, in particular, has
been left incomplete and what little characterization has been
done is broadly distributed in the literature. Similarly, the expres-
sion of HLAs is largely unknown, and the identity of immuno-
genic cancer mutations in cancer cell lines remains obscure.
Here, we used publicly available RNA-Seq data and an optimized
version of our algorithm seq2HLA15 to determine the 4-digit
HLA Class I and II types of 167 cancer and 10 non-cancer cell
lines. HLA typing has obvious application in regards to any
immunological-related scientific processes, encompassing basic
research to cohort disease studies and clinical studies. Knowing
the various HLA types for such cancer models allows the selection
of cell lines for use in biochemical assays, for example, if one
needs a cell line expressing a particular HLA subtype (e.g., HLA-
A*02:01 or HLA-B*51:01) at high levels to determine the HLA
ligandome (i.e., the HLA ligand repertoire) via mass spectrome-
try. Thus, by itself, this catalog is a useful resource enabling
researchers to select cell lines for experiments based on HLA type
and their expression.

Further, current estimates are that 18% to 36% of all active
cell lines are either cross-contaminated or misidentified,27 such
that mislabeled and ‘sans papiers’ cell lines (i.e. cell lines without
a valid identity check) are not uncommon.28 This is a serious
issue for conclusions drawn from experiments with cell lines.
HLA typing using the catalog presented here is one solution for
cell line identity checking and tracking. Here, we show that dif-
ferent cell lines derived from the same donor express the same
HLA types. We identified a complete HLA mismatch of the
same cancer cell line used in different projects, suggesting an
annotation swap. In addition, cancer studies typically compare
the transcriptomes of tumor and normal samples from the same
individual, and such isogenic samples should have the same HLA
type. Seq2HLA provides a fast and easy quality control method
to validate annotation.

We determined HLA Class I and II expression profiles for var-
ious cancer cell lines. Whereas the Burkitt and mantle cell lym-
phoma derived lines maintain the B-cell phenotype with respect
to high HLA Class I and II expression, the DLBCL cell lines
show a massive downregulation of both classes. Relative to the
wild-type brain, both glioblastoma and neuroblastoma cell lines
displayed higher HLA Class I expression. On the other hand, the
ovarian and prostate cancer cell lines showed either no, or very
low, HLA Class I and II expression contrasting with melanoma
cell lines exhibiting high expression of both HLA Class I and II.
The lung cancer cell lines were found to be heterogeneous, with
HLA Class I expression ranging from very high (greater than
1500 RPKM) to very low (less than 5 RPKM). Furthermore, we
found an imbalance of locus-specific HLA Class I expression
throughout all diseased tissue types.

Most cancer genome sequencing studies, including either
those encompassing cancer cell lines or primary tumor material,
focus on the identification and classification of driver muta-
tions.29 The goal of these endeavors is to unravel the underlying
genetics of tumorigenesis30 and to propose new therapies target-
ing such drivers.31 However, a mutation that is not a driver can
nevertheless be immunogenic and useful for immunotherapies.
Analogous to the mutational landscape, we define here the pre-
dicted neo-epitope landscape of a wide variety of cancer cell lines
using the HLA types and mutations in each specific cell line.
Neo-epitopes generated from mutations have been previously
shown by us and others to be good targets for cancer immuno-
therapy, including cancer vaccines targeting mutational epito-
pes or in the context of adoptively transferred tumor-reactive
T cells.32 Recurrent immunogenic somatic mutations have
been identified and proposed for use in prophylactic cancer
vaccination regimens.9 Indeed, we predict that recurrent
somatic mutations are presented in specific cell lines, such as
BRAF V600E on HLA-B*57:01 in A-375 cells and KRAS
G12D on HLA-C*03:03 in AGS cells. This catalog contains
neo-epitopes that are predicted to bind to a respective HLA
allele using “reverse immunology” and this invaluable
resource could be used to prioritize candidates for further
immunogenicity testing.33,34 Computational prediction and
prioritization of antigenic and immunologic mutation-con-
taining peptides is rapidly evolving as we better understand
HLA binding (e.g, IC50 or percentile ranks), pMHC stability
and T cell receptor (TCR) recognition parameters; neverthe-
less previous work suggests roughly one third of these muta-
tions are indeed immunogenic.11,35

There are ongoing discussions about the translation of find-
ings in cancer cell lines into the human cancers.1 We find that
the HLA types of the cancer cell lines examined in this study are
representative for the human population, such that the most fre-
quent alleles (HLA-A*02:01, A*24:01, C*07:01, C*07:02)
match those with high prevalence in human populations. Fur-
thermore, the pattern of HLA Class I expression in many of the
cell lines correlates with that of the corresponding primary can-
cers. For example, the examined Burkitt lymphoma cell lines cor-
relate with those of primary Burkitt lymphomas. On the other
hand, the brain cancer cell lines evaluated mysteriously display
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elevated HLA Class I expression in contrast to the normal brain
samples analyzed here.

In conclusion, this study provides a catalog of HLA types
and HLA expression levels of widely used cancer and normal
cell lines. It further identifies predicted cell line specific high-
affinity binding neo-epitopes. We demonstrate an integrative
bioinformatics approach to integrate publicly-available geno-
mic data with existing software tools to predict cell line spe-
cific high-affinity binding neo-epitopes. This knowledge
enables easier development of the tools for immunological
studies using cell lines, for developing tools to develop cancer
immunotherapies, and for the development of cancer immu-
notherapy drug structures.

Materials and Methods

RNA-seq data
Paired-end RNA-Seq sequence reads for 177 cell line samples

sequenced with the Illumina platform were downloaded from the
NCBI Sequence Read Archive (SRA), ENCODE36 and Genen-
tech37 (Tables S1 and S2). In addition, we analyzed 2 normal
human brain samples, (SRA: SRR332171, ERR030882 [Illu-
mina human body map]), as well as 28 human primary Burkitt
lymphoma samples (SRA: SRP009316).

Cell line naming
There exist different annotations of the same cell line, e.g.

“K-562” and “K562” or “MCF-7”, “MCF 7” or “MCF7”, which
makes automated data search, data retrieval, combination of dif-
ferent data sources and analysis tedious. There is an obvious need
for controlled vocabulary to have a standardized nomenclature
for cell line names and there have been attempts to address this,
e.g. BRENDA.38 Unfortunately, resources are not comprehen-
sive with cell lines missing or they provide different names for
the same cell line. We therefore decided to apply the following
designation strategy: i) use the cell line names in BRENDA
whenever possible; ii) apply the rules from BRENDA to similar
cell lines that are not in BRENDA (e.g., HCC-1954 is in
BRENDA, HCC-1806 is not, but we follow the same rule); iii)
use the names given by the authors who established the cell lines
(if the original publication is available/accessible); or iv) use the
listed named by the cell line distributor (Table S1).

HLA-types
For 17 cell lines in this study, partial or complete 2-digit or 4-

digit HLA type information is available from Adams et al.,39 the
IMGT/HLA Cell Database at the European Bioinformatics Insti-
tute (EBI)40 and the HLA Typed Collection.41

Four-digit HLA typing from RNA-seq
The tool seq2HLA15 was used to derive cell line HLA Class I

& II types from the RNA-Seq data. Seq2HLA previously deter-
mined 2-digit resolution HLA types with high accuracy. We
extended seq2HLA to automatically assign the 4-digit HLA types
by first determining the HLA group (2-digit resolution) as well

as hetero- vs homozygosity and in a second step refining the typ-
ings by taking into consideration the number of reads assigned to
any allele within the determined group. After filtering out not
significant alleles based on read counts and confidence score and
not probable alleles based on the dbMHC table, the most likely
4-digit allele is reported. If more than one solution is likely, an
ambiguity flag is assigned to the reported allele and alternative
alleles are reported in a separate file. Ambiguous alleles are
defined as being in the 95th percentile based on the RNA-Seq
read count distribution (Supplementary Methods).

In some cases, ambiguous typings were adjusted manually
based on population specific HLA frequencies,13,42 if the origin
of the donor of the cell line is reported or pan-population HLA
frequencies otherwise. In case of replicate samples, the consensus
of the calls is reported (Table S2). No call was made in the case
that a locus was not expressed. This occurred in 13 cell lines for a
Class I locus and in 123 cell lines for at least one Class II locus.

Expression values are reported as reads per kilobase of exon per
million mapped reads (RPKM).43 The new version of seq2HLA
(v2.2) is available as stand-alone module from http://tron-mainz.
de/tron-facilities/computational-medicine/seq2HLA/.

Mutations

Cell line mutation information was downloaded from the
Broad-Novartis Cancer Cell Line Encyclopedia (CCLE)4 and
from the COSMIC Cell Lines Project.3 CCLE provides a list of
mutations across CCLE cell lines determined by targeted hybrid
capture sequencing. Variations found in the 1000 Genomes SNP
database were excluded. COSMIC v67 comprises likely somatic
coding mutations of 1015 cell lines from exome sequencing.
SNVs entries were discarded for which the wild-type amino acid
at the mutation positions did not match that found in the respec-
tive reference sequence according to the associated protein identi-
fier (Ensembl, RefSeq or Uniprot). Mutation and RNA-Seq data
are both available for 108 cancer cell lines (Table S3).

MHC binding predictions
The IEDB MHC binding prediction algorithm v2.9,

“consensus” method6,44,45 was used to predict MHC-binding,
mutation-containing epitopes. The cell-line specific HLA type
and the cell-line specific mutations were input to the IEDB
software. For each cell line and each mutation, we calculated
and recorded: i) the best neo-epitope sequence (i.e., the pep-
tide containing the amino acid substitution), ii) the respective
HLA allele, iii) the predicted binding score (IC50 and con-
sensus rank) of the neo-epitope and HLA allele, and iv) the
predicted binding score (IC50 and consensus rank) of the
associated wild-type peptide. The best neo-epitope for a
mutation was calculated as follows: all possible 8-, 9-, 10-,
11-mer peptides containing the mutated amino acids were
input to the IEDB algorithm, which predicts the binding
affinity (IC50 in nM and the consensus percentile rank) of
the peptide to the cell line HLA alleles. The best neo-epi-
tope-HLA pair is defined as the peptide which has the lowest
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(best) predicted binding affinity to the respective HLA allele
(Fig. S6). All neo-epitopes with a predicted binding affinity
(IC50 value) of less or equal than 500 nM were reported as
likely antigenic candidates.34,46 Of note, a recent study indi-
cates, that absolute binding affinity is preferable over percen-
tile rank and that 500 nM is a good “universal” threshold.47

However, these investigators also propose, that distinct HLA-
A and HLA-B alleles have different affinity thresholds and
subsequent unique peptide-binding repertoires.

Computational workflow
For each cell line, we applied the seq2HLA algorithm to the

NGS RNA-Seq reads (Fig. 1A), determining HLA type and
expression (Fig. 1B and D). Next, the cell-line specific HLA
types and cell-line specific non-synonymous somatic mutations
were processed with the IEDB HLA presentation algorithm to
predict HLA-presented (antigenic) mutations (Fig. 1D). The list
of predicted HLA-binding mutation epitopes is output (Fig. 1E;
Fig. S6).
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