iIScience

¢? CellPress

OPEN ACCESS

Employing broad learning and non-invasive risk
factor to improve the early diagnosis of metabolic

syndrome

000

Data samples

oOo oOo

= &
wx D

M

Non-invasive conventional risk factors

GP -

Machine learning

MetS
Non MetS

Junwei Duan,
Yuxuan Wang,
Long Chen, C. L.
Philip Chen,
Ronghua Zhang

jwduan@jnu.edu.cn (J.D.)
tzrh@jnu.edu.cn (R.Z.)

Highlights

15 noninvasive CRF are first
utilized for early diagnosis
of MetS

Broad learning is first
proposed to improve the
early diagnosis of MetS

The performance of our
proposed GP-CCBLS
model is superior to seven
other models

Duan et al., iScience 27, 108644
January 19, 2024 © 2023 The
Author(s).
https://doi.org/10.1016/
j.isci.2023.108644



mailto:jwduan@jnu.edu.cn
mailto:tzrh@jnu.edu.cn
https://doi.org/10.1016/j.isci.2023.108644
https://doi.org/10.1016/j.isci.2023.108644
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.108644&domain=pdf

iIScience ¢? CellP’ress

OPEN ACCESS

Employing broad learning and non-invasive risk
factor to improve the early diagnosis
of metabolic syndrome

Junwei Duan,’*’* Yuxuan Wang,” Long Chen,® C. L. Philip Chen,* and Ronghua Zhang>®*

SUMMARY

Metabolic syndrome (MetS) as a multifactorial disease is highly prevalent in countries and individuals.
Monitoring the conventional risk factors (CRFs) would be a cost-effective strategy to target the increasing
prevalence of MetS and the potential of noninvasive CRF for precisely detection of MetS in the early stage
remains to be explored. From large-scale multicenter MetS clinical dataset, we discover 15 non-invasive
CRFs which have strong relevance with MetS and first propose a broad learning-based approach named
Genetic Programming Collaborative-competitive Broad Learning System (GP-CCBLS) with noninvasive
CRF for early detection of MetS. The proposed GP-CCBLS model can significantly boost the detection per-
formance and achieve the accuracy of 80.54%. This study supports the potential clinical validity of nonin-
vasive CRF to complement general diagnostic criteria for early detecting the MetS and also illustrates
possible strength of broad learning in disease diagnosis comparing with other machine learning ap-
proaches.

INTRODUCTION

Metabolic syndrome (MetS) is a group of metabolic risk factors whose main clinical manifestations include obesity, hyperglycemia (diabetes or
impaired glucose regulation), dyslipidemia [high fasting triglyceride (TG) and/or low fasting high-density lipoprotein cholesterol (HDL-C)],
and hypertension.'” In epidemiological studies, the prevalence of MetS ranges from approximately 20% to 45% of the total population,
with an average prevalence of 31%. It is estimated that the incidence rate of MetS will increase to about 53% by 2035.% The current diagnostic
criteria for MetS were proposed by the Chinese Medical Association Diabetes Branch in 2017 which involves many important invasive test data
such as triglycerides and high-density lipoprotein (HDL)." In addition, studies on the incidence of MetS have shown that hyperinsulinemia is
also a common risk factor.” However, these data are highly dependent on medical equipment and resources; especially, regular monitoring of
risk factors is the cornerstone of early detection and management the MetS.

If patients do not have timely physical examinations and blood tests, they may miss the optimal treatment period and lead to exacerbation
of the disease. However, the number of health check-ups in China in 2019 was 444 million, with a coverage rate of only 31.71%.” With the
increasing incidence of MetS in the population, a novel early diagnostic model that does not rely on invasive risk factors may be a new
idea to address the problem. In order to meet this need, we consider the noninvasive CRFs which have great value in disease diagnosis.
For instance, early signs of disease in the heart, spleen, and stomach can be seen through the tongue, and visceral organ lesions can be
seen from the look of the face.’

Moreover, many researchers have shown that machine learning can be used to build models for disease diagnosis. For example, Shimoda,
Ichikawa, and Oyama’ built machine learning models such as logistic regression (LR) based on health data collected by Japan’s National
Health Examination System to predict the likelihood of disease in participants and provide guidance to high-risk groups to improve their life-
styles. And some researches have focused on the diagnosis of MetS. For instance, decision tree (DT) is a popular machine learning method for
the diagnosis of MetS due to the fact that it is easy to understand and its high accuracy.'®'? In addition, a better machine learning model
could be selected by comparing multiple evaluation metrics. A good case in point is that Karimi-Alavijeh, Jalili and Sadeghi'® used support
vector machine (SVM) and DT to predict the risk of MetS and the performance of SVM model was better than the DT model with accuracy,
sensitivity and specificity of 75.7%, 77.4% and 74.0% respectively.
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However, current machine learning models for MetS diagnosis still rely heavily on clinical data, especially for some invasive factors such as
blood glucose, which are not very practical in real-life situations. In this context, the main goal of this paper is to build a reliable and usable
early diagnosis model for MetS through machine learning techniques that rely only on basic information and noninvasive risk factors.

RESULTS

Subjects

This study included 1849 participants aged 18-90 years who were admitted to and hospitalized in Guangdong Provincial Hospital of Tradi-
tional Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, and Xinjiang Traditional Chinese Medicine Hospital
from November 2019 to November 2021, with the following conditions were excluded from the study population: (1) patients with malignancy;
(2) patients with severe cardiac and renal insufficiency including blood creatinine clearance <30 mL/min, alanine aminotransferase > 2.5 times
the normal upper limit, total bilirubin > 1.5 times the upper limit of normal, chronic cardiac insufficiency, cardiac function class Ill or above); (3)
patients with new onset of cardiovascular disease within the last six months; (4) patients with acute infection; (5) pregnant or lactating women;
(6) patients with secondary dyslipidemia, hypertension, abnormal blood glucose, (7) patients with Type 1 diabetes, (8) patients with hyperthy-
roidism or hypothyroidism, (9) patients who are taking corticosteroids, contraceptives, diet pills or other medications that affect their weight.

Methods

Based on extensive literature and expert consultation, a questionnaire was designed to cover five main categories, including basic informa-
tion, habits and customs, syndrome types, main observed symptoms, all relevant test indicators of the subjects were collected through the
questionnaires and medical records. Table 1 shows the characteristics of the study sample.

Diagnostic criteria

According to the 2017 unified criteria of the Diabetes Branch of the Chinese Medical Association, the diagnosis of MetS can be made when
three or more of the following five items are met.

e Abdominal obesity (i.e., central obesity): male waist circumference >90 cm, female waist circumference >85 cm;

e Hyperglycemia: fasting blood glucose >6.1 mmol/L or 2 h postprandial blood glucose >7.8 mmol/L and/or diagnosed and treated for
diabetes mellitus.

e Hypertension: blood pressure >130/85 mmHg and/or diagnosed with hypertension and receiving treatment;

e TG > 1.70 mmol/L;

e HDL-C < 1.04 mmol/L.

Statistical processing

We use Statistical Product and Service Solutions (SPSS, version23.0) statistical software for the analysis. For different kinds of data, we used
different statistical and testing methods. The data that conform to a normal distribution were represented by their mean (x) and standard
deviation (s) X *+ s, and tested by ANOVA. The data that did not follow a normal distribution were examined by the Kruskal-Wallis test
and shown with interquartile ranges M (Pys, P7s). The chi-squared test was applied for qualitative variables that were reported as percentages
n (%). Statistically significant indicators (P-value <0.05) were screened out. Indicator characteristics were complex and large in number, so
feature selection was required. Taking MetS as the dependent variable and all the above-mentioned statistically significant indicators
were used as independent variables for correlation analysis. Spearman correlation analysis'“ was used to test the correlation between these
statistically significant indicators and MetS, and the indicators with stronger correlations were selected as risk factors. In the experiment, the
level of statistical significance was fixed at an alpha error of less than 5%. Detailed information about the noninvasive CRF can be seenin Ta-
ble 2, and the results of the correlation analysis are displayed in Table 3.
Tongue color, fur color, and nature of pee belong to the main observation symptoms.

e The six indexes of tongue color are expressed respectively 1: light red; 2: red; 3: dark red; 4: dark; 5: magenta; é: purple.

e The five indicators of fur color, referring to the color of the tongue coating, are expressed as follows, 1: white moss; 2: slightly yellow
moss; 3: yellow moss; 4: gray moss; 5: black moss.

e The meanings of the four indicators of the nature of pee are 0: normal; 1: clear and long urine; 2: yellow urine; 3: frothy urine.

Table 3 shows the Spearman correlation coefficient between noninvasive CRF and MetS and the significance level of the correlation. The
P-value represents whether the Spearman correlation coefficient has statistical significance. The statistical significance level is fixed at an alpha
error of less than 5%, and P-value in Table 3 are all less than 0.05, indicating significant correlation between the noninvasive CRF and MetS.
With regard to Spearman column, it represents the values of the correlation coefficients and the range of the correlation coefficient should be
in [-1, 1]. If the correlation coefficient is positive, it indicates there is a positive correlation between MetS and this indicator; if the correlation
coefficient is negative, it means a negative correlation between MetS and that indicator. Nonparametric statistical inference. New York: M.
Dekker. Retrieved from EBSCO Publishing: e-book Collection on 3, 2016.]. For example, the age correlation coefficient with MetS is 0.185,
which means that the likelihood of developing MetS will increase with age growth. In addition, the gender correlation coefficient with
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Table 1. The characteristics of study data

Female Male
Anthropometric measurements
n=1849 986 863
(53.33%) (46.67%)
Age 58.73 55.46
Body fat rate 32.10 26.37
BMI (kg/m2) 24.93 25.86
Waist-hip ratio 0.93 0.97
Habits and customs
Average daily air conditioning Duration in summer 6.98 8.67
(hours/day)
Fatty diet 46 99
(4.67%) (11.47%)
Smoking 23 408
(2.33%) (47.28%)
Syndrome types
Qi-deficiency 403 326
(40.87%) (37.78%)
Yin-deficiency 259 195
(26.27%) (22.60%)
Yang-deficiency 154 82
(15.62%) (9.50%)
Blood-deficiency 42 9
(4.26%) (1.04%)
Spleen-deficiency 410 297
(41.58%) (34.41%)
Kidney-deficiency 124 97
(12.57%) (11.24%)
Liver-depression 88 32
(0.89%) (3.71%)
Air-stagnation 44 30
(0.45%) (3.48%)
Congestion 486 436
(49.29%) (50.52%)
Phlegm 99 135
(10.04%) (15.64%)
Wet 148 169
(15.01%) (19.58%)
Damp-heat 129 204
(13.08%) (23.64%)
Main observation symptoms
Nocturia frequency(times/night) 1.37 1.32
Nature of pee 392 210
(39.76%) (24.33%)
Analytical variables
Visceral Fat Index 8.89 12.01

(Continued on next page)
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Table 1. Continued

Female Male
ALT 18.39 25.78
(U/L)
AST 18.97 20.66
(U/L)
Cr 64.90 82.71
(u mol/L)

Mean [X] for continuous variables; n% for categorical variables.

BMI: body mass index; Waist-hip ratio: waist divided by hip; Fatty diet: dietary preference for fat; Syndrome types: a classification of disease states in Chinese
medicine; ALT: alanine aminotransferase; AST: aspartate aminotransferase; Cr: creatinine.

Available for 1,849 persons.

MetS is —0.138, i.e., compared to females, males maybe more likely to develop MetS. The closer the absolute value of the correlation coef-
ficient is to 1, the stronger the correlation is.

Broad learning system

The broad learning system (BLS) is a new type of flattened and incremental learning neural network proposed by Chen, and Liu."” As shown in
Figure 1, BLS is an efficient learning system without deep architecture, which is designed based on the idea of linking neural networks with
random vector functions.'®™"®

Suppose the training dataset {(Ak,Bk)‘AkeRa,BkeRb,k = 1,---,N}, where Nis the number of samples in the training set, a and b represent
the dimension of input and output data respectively. It is assumed that there are ny groups of feature nodes, and each group contains p no-
des. Therefore, the i th group of feature nodes can be expressed as

P,-Zf(AWc, + ﬂc,v)J.: 1,-,n1, (Equation 1)

where f(-) is amapping function. All feature nodes can be expressed as P" £ [Py - - - P, ],W,, B, are the weight matrix and bias term, which
are randomly generated by the network.

Then, suppose there are n; groups of enhancement nodes, and each group contains g nodes. Thus, the j th group of enhancement nodes
can be expressed as,

G = 9<Pm W +ﬁd,-)»f= 1,000,z (Equation 2)

where g(-) is an activation function, W}, 8, are randomly generated by the network, and all the enhancement nodes can be represented as
QrA[Q - - - Q).
Hence, the final broad learning network output can be expressed as,

B = HW, (Equation 3)

where H = [P™|Q™], and W is the output weight connecting the feature nodes and the enhancement nodes to the output layer.
Finally, the output weight W is solved by the following formula, while this optimization problem can also be an alternative to solve the
pseudo-inverse directly in order to reduce the amount of computation.

argmin||B — HWH% + A||WH§, (Equation 4)
w
Equation 4 is the objective function of BLS, by setting the derivative of W to 0, the solution of the output weight can be obtained as

W= (2+HTH) 'H'B, (Equation 5)

where 1 is the regularization parameter and | is the identity matrix.

Sparse autoencoder and collaborative-competitive representation

In BLS, a sparse autoencoder (SAE) is adopted to fine-tune the mapped features which are randomly generated at first. As mentioned above,
the random feature P is obtained from P = AW, and W is randomly initialized. SAE adds L1 regularization on the basis of autoencoder, con-
straining most of the nodes in each layer to be zero, and only a few are not zero. In order to get sparse features, we need to solve the mini-
mization problem in (6),
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Table 2. Noninvasive CRF grouped by Mets [x + s, M (P25, P75), n (%)]

Group Quantity  Gender-Male  Eye anomaly ~ Smoking Fatty diet ~ Congestion  Thirsty
(%)

(%) (%) (%) (%) (%) Normal  Drink more Not drinking much
Patient 1107 579 621 309 112 623 511 558 38

(52.30) (56.10) (27.91) (10.12) (56.28) (46.16) (50.41) (3.43)
Non-patient 742 284 302 112 33 299 470 251 21

(38.27) (40.70) (15.09) (4.45) (40.30) (63.34) (33.83) (2.83)
P-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Group Quantity Tongue color Fur color

(%) (%)

1 2 3 4 5 6 1 2 3 4 5
Patient 1107 325 216 329 199 4 34 700 217 188 1 1

(29.36) (19.51) (29.72) (17.98) 0.36) (3.07) (63.23) (19.60) (16.98) (0.09) (0.09)
Non-patient 742 363 126 141 103 5 4 543 133 66 0 0

(48.92) (16.98) (19.00) (13.88) (0.67) (0.54) (73.18) (17.92) (8.89) (0.00) (0.00)
P-value <0.01 <0.01
Group Quantity BMI Body fat rate Waist-Hip Ratio  Age Daily air conditionerusage  Nocturia frequency ~ Nature of pee

time (%)
0 1 2 3
Patient 26.06 1 29.8 61 8 1 587 69 190 261
1107 (24.22,28.31) 0.9,1) (26.2,34.7) (51,69) (4,10) (1,2) (53.03) (6.23) (17.16) (23.58)

Non-patient 742 23.24 0.9 28 56 6 1 514 41 97 90

(21.37,25.49) 0.9,1) (23.3,32.9) (43,64) (1,70 0,2) (69.27) (5.53) (13.07) (12.13)
P-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Median x, lower quartile P,5 and upper quartile P;s for continuous variables not conforming to a normal distribution.
n% for categorical variables.
Available for 1,849 persons.
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Table 3. Noninvasive CRF and MetS correlation analysis results

Variable Spearman P-value
Nocturia frequency (times/night) 0.183 <0.05
Nature of pee 0.173 <0.05
Tongue color 0.190 <0.05
Fur color 0.116 <0.05
Eye anomaly 0.151 <0.05
Thirsty 0.164 <0.05
Fatty diet 0.103 <0.05
Daily air conditioner usage time (hours/day) 0.135 <0.05
Smoking 0.133 <0.05
Congestion 0.164 <0.05
Age 0.185 <0.05
Gender —-0.138 <0.05
Body fat rate 0.362 <0.05
Waist-Hip Ratio 0.173 <0.05
BMI (kg/m?) 0.404 <0.05
argmin]/A PWI> + AW, (Equation 6)

where W is the solution of SAE, 4 is a regularization parameter greater than 0. There are many ways to find the solution of the above optimi-
zation problem, such as K-svD," Alternating Direction Multiplier Method (ADMM),° etc

A collaborative-competitive representation based on classification model (CCRC) was first proposed by Yuan.?' The model adds the
competition term to the formula of collaborative representation-based classification (CRC),?” and the objective function formula is as follows:

2 .
argmin ly X85 + Mwuzwz ly — X613, (Equation 7)

i=1
where y is the label of data, X is the data used for training and ¢ indicates how many categories there are. The first term is the collaborative
term while the third term is the competition term, and the parameters A1, A, are used to balance them. collaborative-competitive represen-
tation (CCR) uses all training data to cooperatively represent test samples while encouraging competing representations of distinct classes at

the same time.”>

Collaborative-competitive representation based broad learning system

In 2022, Wu and Duan replaced SAE in BLS with collaborative-competitive representation based autoencoder (CCRAE) in order to improve
the feature representation, and proposed collaborative-competitive representation based broad learning system (CCBLS), which was moti-
vated by the collaborative-competitive representation (CCR) methodology.”” The objective function of the replaced autoencoder is:

o~ — —_— 2
arg min((JA - GWI[; + 11| W) sy |a - oW (Equation 8)

Output B
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where G is the randomly generated feature node, W is the solution of CCRAE and A is the input. In addition, kq is the number of columns in
every mapped feature group, G = [0,---,0,G(,0,---0], and G is the i th column of G. The first term expresses collaborative and the second
term expresses competition, which is similar with Equation 7.

Figure 2. Structure of CCBLS

On the basis of the competitive representation, CCRAE and BLS, we can obtain the new network structure, namely CCBLS, as shown in the
Figure 2.

It can be noted that the overall framework of the CCBLS is very similar to the BLS, with changes in the mapped features,

G=f(AW), (Equation 9)

where f(+) is a mapping function, and W is the weight generated by the CCRAE. In addition, as the mapped feature changes, the enhance-
ment features will also change to the following equation:

Q = g(PW,), (Equation 10)

where g(+) is an activation function, and W, is randomly generated by the network. However, this also brings about the problem that the
randomly generated weights Wy do not allow us to ensure the performance of the enhancement features. Hence, we need to finetune
the random weight W, by introducing the competitive representation again. Assuming that the finetuned weight and finetuned enhancement
features are W and Qf respectively, which can be obtained through the following equations:

QF = QWE, (Equation 11)
ko 2
arg n\)van; HQFU)WF - QHZ, (Equation 12)
where k; is the number of columns in the enhancement layer, Qi,(;” = [0,---,0, O(Fj),O,~~~O], and Q(Fj) is the j th column of Qf.

Genetic programming

Genetic programming (GP) is a kind of evolutionary algorithm, which can dynamically construct trees like mathematical formulas, as well as
being suitable for feature construction due to its flexible representation.””*’ It has been tested that GP can extract factors with incremental
information from a limited amount of data and has been applied to stock selection.

Like many other evolutionary algorithms, GP starts with a randomly generated set of formulas, and the genetic operations in GP are suit-
able for individuals selected based on fitness probability, that is, better individuals are more likely to have more children than poor ones.”®
According to the different goals, it is possible to choose to use different fitness. The one with the highest fitness is selected as the parent, do
genetic operations to produce new generation for the next iteration and repeat the process. Figure 3 shows the structure of genetic
programming.

By simulating the process of genetic evolution in nature, we can gradually generate formula sets that satisfy a specific goal. The genetic
evolution of organisms involves inheritance, mutation, and adaptation to the ecological environment. This is also true in the genetic program-
ming algorithm, where there will also be operators such as copy, mutation, and crossover. As shown in Algorithm 1 and Figure 2, the algorithm
has two termination conditions: (1) reaching the maximum fitness; (2) reaching the maximum number of generations. In this study, the
maximum number of generations is used as the termination condition. As a supervised learning method, the advantage of GP is that it

iScience 27, 108644, January 19, 2024 7
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Figure 3. Structure of genetic programming

can make full use of the powerful computing capability of computers for heuristic search while breaking through the limitations of human
thinking to uncover some hidden factors.

Genetic programming collaborative-competitive broad learning system

As mentioned above, GP, as a suitable method for feature engineering, can use the strong computing power of computers to dig more in-
formation about factors that are hard to discover directly. Likewise, CCBLS has the advantage of introducing a competitive collaboration
mechanism among features in the network. Considering the strength of both, we decided to introduce GP to CCBLS and propose a
completely new model Genetic Programming Collaborative-Competitive Broad Learning System (GP-CCBLS). Figure 4 illustrates the overall
framework of this model.

In GP-CCBLS, firstly, GP needs to be deployed to dig out more information from the original input data and to generate new factors
through iterations. After that, the factors obtained from the iterations are used as input to the CCBLS and the final predictions are output.

Training process

The proposed method can judge whether a patient has MetS according to his/her external performance and living habits. 1849 samples were
available in the dataset, including 1107 patients and 742 non-patients. We randomly selected 80% of the data as the training set and the re-
maining 20% as the test set. During the division process, we tried to maintain a balance between the number of sample categories in the
training and test sets. By using Numpy and gplearn in Python 3.9, we implemented the above method.

In the process of the training experiment, we decided the values of the essential parameters by grid search. Firstly, we set a wide search
scope with a large step. After experiments, we found that it performs better in some certain ranges, and then we further adjusted the
search scope and reduced the step. For the parameters of CCBLS, n; is searched within the range of [1,200], and n;, is searched within
the range of [100,400]. As for the parameter of genetic programming, we finally chose the number of generations of evolution, genera-
tions = 18, which was also the end condition of our experiment. We set the number of individuals generated in each generation to
3000, that is, population_size = 3000, and we chose n_components = 20, which means that eventually 20 optimal children would be
selected as the newly generated features.

Table 4 displays the training process of the GP, where the average length is growing as the number of generations increases. This means
that the genetic operations performed become more and more complicated and at the same time, the training time may be extended. In

Algorithm 1. Genetic programming
1: An initial population created at random.

2: repeat.

3: Run every program and determine fitness.

4: Choose one or two program(s) with fitness-based probabilities from the population to engage in genetic operations, and then apply the chosen genetic
operations to produce new individuals.

5: Until a solution is identified or other conditions are satisfied that would stop it.

6: Return the optimal solution so far.

8 iScience 27, 108644, January 19, 2024
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Figure 4. The overall framework of GP-CCBLS

addition, the algorithm will select the best individuals based on fitness for reproduction and gradually optimizes their fitness through iteration.
In the early stages of iteration, the value of the fitness will increase as the number of iterations rises. As the number of iterations continues to
increase, the individuals in the population gradually converge and the fitness tends to be stable. According to Figure 5, when the evolution
reached to the sixth generation, the average fitness achieved a high level and did not improve significantly in the following generations. How-
ever, the fitness of the best individuals stayed at a high level.

Evaluation metrics

Receiver operator characteristic (ROC) curves were conducted and the area under the curve (AUC) was calculated to determine which models
best displayed the risk of MetS. To conduct diagnostic test accuracy study, accuracy, sensitivity, specificity, F1-score, and precision were
analyzed and defined as follows:

Accuracy = %, (Equation 13)
Sensitivity = %, (Equation 14)
Specificity = %7 (Equation 15)

Precision = %, (Equation 16)

Precision x Sensicivity
Precision+Sensicivity ’

F1 —score=2x (Equation 17)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative, respectively.

Classification experiment results

Table 5 shows the result of the evaluation metrics (accuracy, sensitivity, specificity, F1-score, precision and AUC) for each model, where we also
show the classification results on the same dataset using several traditional supervised learning methods. In addition, we further use 5-fold
cross-validation to obtain average evaluation metrics in Table 6.

In previous studies, some traditional machine learing methods such as DT, SVM, KNN, and LR have all been used for the classification
of MetS and achieved good experimental results. In addition, these traditional machine learning models have their own characteristics. LR
is a probability-based model with strong interpretability, performs well in handling large-scale data and it is widely used in the
medical field due to its simple model and fast training speed. KNN is a classification model based on distance measurement. As a
non-parametric classification algorithm, KNN can adaptively learn the distribution of data and is easy to implement. DT is a classification
model based on the tree structure, which can automatically select the most important features, making it very useful when processing high-
dimensional data. Similarly, SVM is a model based on maximum margin classification and it also performs well in handling high-dimen-
sional data. In order to compare with the BLS, we also included a Deep Neural Network (DNN) model. DNN is an artificial neural
network composed of multiple hidden layers, used to solve complex nonlinear problems. In recent years, broad learning system has
been widely applied to disease diagnosis and has shown better classification ability than other traditional machine learning models.
For instance, Han, Liu, Chen, Xu, and Peng”’ predicted mortality in COVID-19 patients by BLS. This model achieved 94.50% sensitivity
and 94.80% specificity in blood samples from 375 patients, performing better than other models and providing a reliable method for mor-
tality prediction in COVID-19 patients. Therefore, we chose these five models and two BLS series models as the baseline models for
comparison.
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Table 4. GP training process of the dataset

Generation Average length Average fitness Best individual length Best individual fitness
1 8.91 0.123053 8 0.448338
2 5.54 0.270810 " 0.465023
3 5.17 0.337414 9 0.484392
4 7.35 0.375631 8 0.491079
5 8.33 0.393073 12 0.492437
6 9.22 0.399159 21 0.501052
7 9.01 0.401346 18 0.498767
8 9.1 0.401295 21 0.505983
9 10.24 0.404796 12 0.516635
10 13.31 0.402767 28 0.514059
1 18.30 0.414306 S8 0.519095
12 21.37 0.421058 14 0.518305
13 22.71 0.417728 23 0.523636
14 22.22 0.409068 26 0.525935
5 21.05 0.407933 27 0.528289
16 21.37 0.407680 27 0.528182
17 20.60 0.403239 36 0.526666
18 19.88 0.399382 33 0.527850

Average length: the average program length of the generation.
Average fitness: the average program fitness of the generation.
Best individual length: the length of the best program in the generation.
Best individual fitness: the fitness of the best program in the generation.

Karimi-Alavijeh, Jalili, and Sadeghi have employed DT and SVM to predict the 7-year incidence of MetS and the accuracy were 0.757 (0.739)
in SVM (DT) method. Similarly, SVM also outperformed DT in terms of accuracy in our study. What's more, K-Nearest Neighbors (KNN) and LR
have also been used for the risk prediction in MetS, with external validation AUC of 0.780 (KNN) and 0.782 (LR), respectively.30 In arecent study
published in 2023,>" DNN was used to develop a MetS classification and prediction model, which showed high accuracy and reliability. They
constructed the DNN model, which consists of hidden layer with 16, 8 and 4 nodes and the output layer with one node, and the developed the
DNN model of deep learning shown the improved accuracy compared with traditional models such as LR.

With regards to the experimental results in Table 5, BLS and CCBLS are better than the other five models in accuracy and AUC,
but the performance in other evaluation metrics is not very ideal. In terms of the proposed model, the accuracy of GP-CCBLS
improves about 7% compared to BLS and CCBLS. Meanwhile, all the remaining evaluation metrics have obvious increases. For accuracy,
precision, F1-score and AUC, the GP-CCBLS all performs the best In Table 6, we can see that the similar results of performance can be
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Figure 5. Learning curve of fitness
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Table 5. Comparison of other machine learning methods

Method

Metrics DT SVM KNN LR DNN BLS CCBLS GP-CCBLS
Accuracy 0.6703 0.7108 0.6892 0.7216 0.7000 0.7297 0.7324 0.8054
Sensitivity 0.6802 0.9549 0.7703 0.8514 0.9550 0.8784 0.8829 0.9189
Specificity 0.6554 0.3446 0.5676 0.5270 0.3176 0.5068 0.5068 0.6351
Precision 0.7475 0.6861 0.7277 0.7297 0.6773 0.7276 0.7286 0.7907
F1-score 0.7123 0.7985 0.7484 0.7859 0.7925 0.7959 0.7984 0.8500
AUC 0.6678 0.6498 0.6689 0.6892 0.6363 0.6926 0.6948 0.7770

DT: decision tree; SVM: support vector machine; KNN: k-nearest neighbors; LR: logistic regression; BLS: broad learning system; DNN: Deep Neural Network;
CCBLS: collaborative-competitive representation based BLS; GP-CCBLS: genetic programming collaborative-competitive broad learning system.

obtained by 5-fold cross-validation and our proposed GP-CCBLS method achieves the best performance compared to seven other
methods.

Validation of the new proposed model
To examine the validity of the proposed model, we collect some new samples for the experiment. This new dataset has 153 new participants,
79 of whom are with MetS (51.63%). In terms of validating our proposed model for the early detection of MetS, and 106 of the 153 participants
were diagnosed with MetS. The proposed new method identified 69 of the 79 subjects as with MetS and 37 of the 74 as not having MetS, thus
achieving a sensitivity of 87.34% and specificity of 50.00%. The validation results can be found in Table 7.

However, the results of the evaluation metrics are not very high because of the limited newly collected validation dataset.

Web app for early diagnosis of MetS

To better validate, explain and bring the model into real-life scenarios, we have created a demo that allows the patient to assess the risk of
MetS as long as the patient inputs the 15 noninvasive CRFs, which can further support the development of early diagnosis of MetS. Using
Gradio, a visual interface may be created for our model, and we can also perform input operations, interactions, and output conclusions
with this open-source Python module.’” Here, we provide a permanent public uniform resource locator (URL) address for this model
(https://huggingface.co/spaces/WangYX/WYX_DEMOforMetS) as well as an illustration of the interactive user interface in Figure 6. On
the left side of the interface, there are the 15 non-intrusive traditional risk factors that we need to input. After entering them, click the “Submit”
button and the results will be displayed in the output section.

DISCUSSION

In this study, we analyze the clinical validity of noninvasive CRF to improve the diagnosis of future MetS using machine learning. We demon-
strate that noninvasive CRF can be used as variables for the model and have good diagnostic performance and, more importantly, the advan-
tage of not requiring blood tests (invasive and analytical variables) further enhances the general usefulness of the model and expands its
application scenarios and scope. To the best of our knowledge, it is the first time for BLS to be used for the diagnosis of diseases based
on noninvasive CRF, and it performs well compared to other more traditional popular machine learning methods. Based on the BLS and
CCBLS models, we apply GP to extract more features, which provides a new approach for primary diagnosis of MetS. In addition, we compare
the proposed model with other machine learning algorithms such as DT, SVM, LR and KNN that have been used to the diagnosis of MetS and
further illustrate the advantages of GP-CCBLS. With these 15 noninvasive variables, the result shows that the proposed model presents
80.54% accuracy, 91.89% sensitivity, 79.09% precision, and 85% F1-score on the test data.

Table 6. Results of 5-fold cross-validation

DT SVM KNN LR DNN BLS CCBLS GP-CCBLS
Accuracy 0.6587 0.7236 0.6993 0.7161 0.6341 0.7231 0.7204 0.7773
Sensitivity 0.7173 0.9449 0.7814 0.8384 0.5930 0.8555 0.8726 0.8991
Specificity 0.5715 0.3936 0.5768 0.5337 0.6948 0.5256 0.4932 0.5956
Precision 0.7145 0.6993 0.7340 0.7286 0.7478 0.7304 0.7203 0.7693
F1-score 0.7155 0.8037 0.7568 0.7792 0.6370 0.7872 0.7889 0.8288
AUC 0.6444 0.6692 0.6791 0.6860 0.6439 0.6906 0.6829 0.7474

DT: decision tree; SVM: support vector machine; KNN: k-nearest neighbors; LR: logistic regression; BLS: broad learning system; DNN: Deep Neural Network;
CCBLS: collaborative-competitive representation based BLS; GP-CCBLS: genetic programming collaborative-competitive broad learning system.
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Table 7. Validation of the proposed model

DT SVM KNN LR DNN GP-CCBLS
Accuracy 0.6993 0.6144 0.6667 0.5686 0.6275 0.6928
Sensitivity 0.8354 0.9241 0.8101 0.6582 0.8987 0.8734
Specificity 0.5541 0.2838 0.5135 0.4730 0.3378 0.5000
Precision 0.6667 0.5794 0.6400 0.5714 0.5917 0.6509
F1-score 0.7416 0.7122 0.7151 0.6118 0.7136 0.7459
AUC 0.6947 0.6039 0.6618 0.5656 0.6183 0.6867

DT: decision tree; SVM: support vector machine; KNN: k-nearest neighbors; LR: logistic regression; DNN: Deep Neural Network; GP-CCBLS: genetic pro-
gramming collaborative-competitive broad learning system.

Limitations of the study

There are also some limitations to this study. This study was conducted in some hospitals in different regions of China and represents only a
portion of the Chinese population. It is possible to conduct model validation studies in more regions, and even prospective cohort studies are
necessary to verify the accuracy of our proposed model. However, this study demonstrates that BLS has a wide range of application prospects
in the field of disease diagnosis.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Validation data This study https://github.com/WYX-ID/Data-sample
Training and testing data This study https://github.com/WYX-ID/GPCCBLS

Software and algorithms

BLS Gong, Xinrong et al. "Research review for https://broadlearning.ai/
broad learning system: Algorithms, theory,
and applications." IEEE Transactions on
Cybernetics 52.9 (2021): 8922-8950.
GPCCBLS This study https://github.com/WYX-ID/GPCCBLS

DT Pedregosa Fabian et al. “Scikit-learn: Machine https://scikit-learn.org/stable/modules/tree.html
learning in Python.”, Journal of machine
Learning research 12 (2011): 2825-2830.

SVM Pedregosa Fabian et al. “Scikit-learn: Machine https://scikit-learn.org/stable/modules/svm.htm|
learning in Python.”, Journal of machine
Learning research 12 (2011): 2825-2830.

KNN Pedregosa Fabian et al. “Scikit-learn: Machine https://scikit-learn.org/stable/modules/
learning in Python.”, Journal of machine neighbors.html#regression
Learning research 12 (2011): 2825-2830.

LR Pedregosa Fabian et al. “Scikit-learn: Machine https://scikit-learn.org/stable/modules/linear_
learning in Python.”, Journal of machine model.html#logistic-regression
Learning research 12 (2011): 2825-2830.

DNN Hyerim Kim et al. “Development of a Metabolic https://github.com/WYX-ID/DNN

Syndrome Classification and Prediction Model
for Koreans Using Deep Learning Technology:
The Korea National Health and Nutrition
Examination Survey (KNHANES) (2013-2018),
Clinical Nutrition Research, (2023) 12(2): 138-153.

Other

Visual interface This study https://huggingface.co/spaces/WangYX/WYX_
DEMOforMetS

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Junwei Duan
(jwduan@jnu.edu.cn).

Materials availability

This paper did not result in the generation of novel reagents.

Data and code availability

Data have been deposited at https://github.com/WYX-ID/GPCCBLS. They are publicly available as of the date of publication. All original
code has been deposited at https://github.com/WYX-ID/GPCCBLS and is publicly available as of the date of publication. Any additional in-
formation required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study population

This study included 1849 participants aged 18-90 years who were admitted to and hospitalized in three specific geographical areas in China,
namely Guangdong Provincial Hospital of Traditional Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, and
Xinjiang Traditional Chinese Medicine Hospital from November 2019 to November 2021. Among them, 843 were male and 986 were female.

Data collection

Based on extensive literature and expert consultation, a questionnaire was designed to cover five main categories, including basic informa-
tion, habits and customs, syndrome types, main observed symptoms, all relevant test indicators of the subjects were collected through the
questionnaires and medical records. All participants are Chinese and signed an informed consent. The study protocol was approved by the
Ethics Committee of Guangdong Provincial Hospital of Chinese Medicine (Approval No. BF2020-177-01).

METHOD DETAILS
Disease case definitions

According to the 2017 unified criteria of the Diabetes Branch of the Chinese Medical Association, the diagnosis of MetS can be made when
three or more of the following five items are met:

e Abdominal obesity (i.e. central obesity): male waist circumference > 90 cm, female waist circumference > 85 cm;

e Hyperglycemia: fasting blood glucose > 6.1 mmol/L or 2 hours postprandial blood glucose > 7.8 mmol/L and/or diagnosed and
treated for diabetes mellitus.

e Hypertension: blood pressure > 130/85 mmHg and/or diagnosed with hypertension and receiving treatment;

e TG > 1.70 mmol / L;

e HDL-C < 1.04 mmol/ L.

Exclusion criteria

The following conditions were excluded from the study population: (1) patients with malignancy; (2) patients with severe cardiac and renal
insufficiency including blood creatinine clearance <30 ml/min, alanine aminotransferase >2. 5 times the normal upper limit, total bilirubin
>1. 5 times the upper limit of normal. chronic cardiac insufficiency, cardiac function class Il or above); (3) patients with new onset of cardio-
vascular disease within the last six months; (4) patients with acute infection; (5) pregnant or lactating women; (6) patients with secondary dys-
lipidemia, hypertension, abnormal blood glucose, (7) patients with Type 1 Diabetes, (8) patients with hyperthyroidism or hypothyroidism, (9)
patients who are taking corticosteroids, contraceptives, diet pills or other medications that affect their weight.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing

1849 samples were available in the dataset, including 1107 patients and 742 non-patients. We randomly selected 80% of the data as the
training set and the remaining 20% as the test set. During the division process, we tried to maintain a balance between the number of sample
categories in the training and test sets. By using Numpy and gplearn in Python 3.9, we implemented the above method. In addition, for
different kinds of data, we used different statistical and testing methods. The data that conform to a normal distribution were represented
by their mean (x) and standard deviation (s) X + s, and tested by analysis of variance (ANOVA). The data that did not follow a normal distri-
bution were examined by the Kruskal-Wallis test and shown with interquartile ranges M (P25, P7s), where Pos is the lower quartile and P75 is the
upper quartile. The chi-square test was applied for qualitative variables that were reported as percentages n (%), n is the number of samples
for each class. Furthermore, we analyzed the relationship between statistically significant indicators and Metabolic Syndrome disease using
Spearman correlation. In the experiment, the statistics were performed using the IBM SPSS Statistics 23 program, and the level of statistical
significance was fixed at an alpha error of less than 5%.

General framework of modelling

Firstly, 15 non-invasive conventional risk factors were selected as input data by correlation analysis. For detailed information about the non-
invasive CRF and the results of the correlation analysis, see the statistical processing section of the paper. We evaluated models on the test set
and further created a random split of the internal training set and test set five times in an 8:2 ratio (five-fold cross-validation). The evaluation
results are presented in the article, and it can be seen in the classification experiment results part. Moreover, we evaluated on a new dataset
that was not part of the previous training and testing sets. The detailed procedures are explained in the rest of this section.

Model development

BLS extracts features from the input data and generates mapped feature layer and enhancement layer. The mapped feature layer and
enhancement layer are connected to the output layer to generate labels. CCBLS is a collaborative-competitive representation based broad

iScience 27, 108644, January 19, 2024 15




¢? CellPress iScience
OPEN ACCESS

learning system model, SAE in BLS is replaced by CCRAE in the mapped feature layer of CCBLS, and further fine-tuning the enhancement
layer using a competitive representation mechanism. Genetic programming is a suitable method for feature engineering, and it can use the
strong computing power of computers to dig more information about factors that are hard to discover directly. We decided to introduce GP
to CCBLS and propose a completely new model Genetic Programming Collaborative-Competitive Broad Learning System. In the process of
the training experiment, we decided the values of the essential parameters by grid search. Firstly, we set a wide search scope with a large step.
After experiments, we found that it performs better in some certain ranges, and then we further adjusted the search scope and reduced the
step. For the parameters of CCBLS, ny is searched within the range of [1,200], and ny is searched within the range of [100,400]. As for the
parameter of genetic programming, we finally chose the number of generations of evolution, generations=18, which was also the end con-
dition of our experiment. We set the number of individuals generated in each generation to 3000, that is, population_size=3000, and we chose
n_components=20, which means that eventually 20 optimal children would be selected as the newly generated features.

Model evaluation

The performance of all models was evaluated in the test set (20% sample), the five-fold cross-validation and new validation dataset. In addi-
tion, receiver operator characteristic (ROC) curves were conducted and the area under the curve (AUC) was calculated to determine which
models best displayed the risk of MetS. To conduct diagnostic test accuracy study, accuracy, sensitivity, specificity, F1-score, and precision
were analyzed in the paper.

Moreover, we compare and analyze our proposed model with other popular models. For example, some traditional machine learning
methods such as DT, SVM, KNN, and LR have all been used for the classification of metabolic syndrome and achieved good experimental
results in previous study. Additionally, in order to compare with the BLS, we also included a Deep Neural Network (DNN) model. According
to the results, our proposed GP-CCBLS method achieves the best performance compared to other methods.

ADDITIONAL RESOURCES

To better validate, explain and bring the model into real-life scenarios, we have created a demo that allows the patient to assess the risk of
MetS as long as the patient inputs the 15 non-invasive conventional risk factors, which can further support the development of early diagnosis
of MetS. We provide a permanent public uniform resource locator (URL) address for this: https://huggingface.co/spaces/WangYX/
WYX_DEMOforMetS.

16 iScience 27, 108644, January 19, 2024


https://huggingface.co/spaces/WangYX/WYX_DEMOforMetS
https://huggingface.co/spaces/WangYX/WYX_DEMOforMetS

	ISCI108644_proof_v27i1.pdf
	Employing broad learning and non-invasive risk factor to improve the early diagnosis of metabolic syndrome
	Introduction
	Results
	Subjects
	Methods
	Diagnostic criteria
	Statistical processing
	Broad learning system
	Sparse autoencoder and collaborative-competitive representation
	Collaborative-competitive representation based broad learning system
	Genetic programming
	Genetic programming collaborative-competitive broad learning system
	Training process
	Evaluation metrics
	Classification experiment results
	Validation of the new proposed model
	Web app for early diagnosis of MetS

	Discussion
	Limitations of the study

	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Study population
	Data collection

	Method details
	Disease case definitions
	Exclusion criteria

	Quantification and statistical analysis
	Data processing
	General framework of modelling
	Model development
	Model evaluation

	Additional resources




