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Abstract

Polar systems of avian migration remain unpredictable. For seabirds nesting in the
Nearctic, it is often difficult to predict which of the world's oceans birds will migrate to
after breeding. Here, we report on three related seabird species that migrated across
four oceans following sympatric breeding at a central Canadian high Arctic nesting
location. Using telemetry, we tracked pomarine jaeger (Stercorarius pomarinus, n = 1)
across the Arctic Ocean to the western Pacific Ocean; parasitic jaeger (S. parasiticus,
n = 4) to the western Atlantic Ocean, and long-tailed jaeger (S. longicaudus, n = 2) to
the eastern Atlantic Ocean and western Indian Ocean. We also report on extensive
nomadic movements over ocean during the postbreeding period (19,002 km) and over
land and ocean during the prebreeding period (5578 km) by pomarine jaeger, an irrup-
tive species whose full migrations and nomadic behavior have been a mystery. While
the small sample sizes in our study limit the ability to make generalizable inferences,
our results provide a key input to the knowledge of jaeger migrations. Understanding
the routes and migratory divides of birds nesting in the Arctic region has implications
for understanding both the glacial refugia of the past and the Anthropocene-driven

changes in the future.
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of migratory individuals or populations between different stages

Radar and biologging technology (Alerstam et al., 2007; Egevang
et al., 2010) have provided new knowledge about polar systems
of avian migration. But in the Nearctic, routes and destinations
remain unpredictable. For seabirds, it is often difficult to predict
which of the world's oceans birds will migrate across or to from
their Arctic nest sites (Davis et al., 2016; Gutowsky et al., 2020;
Mehl et al., 2004). Migratory patterns are the legacy of millions of
years of changing lands and seascapes, glaciation events, intra- and
interspecific competition, and speciation (Johnson & Herter, 1990).

Studying the migratory connectivity of related species—the linking

of the life cycle (Marra et al., 2019)—can provide insights into the
interplay of ecological, evolutionary, and anthropogenic influences
on migration patterns, habitat use, and coexistence and persistence
(Weber & Strauss, 2016; Weber et al., 2017) in a changing Arctic
(IPCC, 2014).

Jaegers (skuas outside of North America) are the three smallest
Stercorarius species, a genus of predatory and kleptoparasitic migra-
tory seabirds that nests in the Arctic (Furness, 1987). Jaegers are the
only Stercorarius that nest in North America where they play an im-
portant regulating role on other taxa within the Arctic tundra sum-
mer food web (Gilg et al., 2003; Krebs et al., 2003). Jaegers breed
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sympatrically across much of the North American Arctic (Furness,
1987) and range in body size: pomarine jaeger (POJA, S. pomarinus,
~700 g [Wiley & Lee, 2020a)), parasitic jaeger (PAJA, S. parasiticus,
Arctic Skua outside North America, ~450 g [Wiley & Lee, 2020b]),
and long-tailed jaeger (LTJA, S. longicaudus, ~300 g [Wiley & Lee,
2020c]). Jaeger migrations connect land to sea, and the Arctic region
to the tropics (Bemmelen, 2019; Gilg et al., 2013; Troy, 2007). Thus,
as congeners that nest sympatrically across most of the Nearctic and
then take long-distance migrations, jaegers could provide a model
opportunity for studying Nearctic avian migration.

There are still many existing questions surrounding jaeger ma-
rine habitat use. Reviewing many studies of coastal and at-sea obser-
vations, Wiley and Lee (2020b) suggest that during the postbreeding
period, PAJA occur more frequently in shallower coastal waters than
LTJA (Wiley & Lee, 2020c) or POJA (Wiley & Lee, 2020a), but all
species are found in both coastal and open ocean (Furness, 1987).
Previous results from light-level geolocator tracking of jaegers in
North America showed that LTJA from the eastern Canadian Arctic
over-wintered off west and southern Africa (Seyer et al., 2021) and
PAJA from eastern Greenland migrated to the Caribbean region
(Bemmelen, 2019). A presumed-complete southward migration of a
POJA from Alaska, USA, was recorded by satellite and this bird spent
the postbreeding period off the coast of southeastern Australia (Troy,
2007). No full-annual-cycle migration data have been published for
PAJA in North America west of Greenland (Bemmelen, 2019; Wiley
& Lee, 2020b) or for any POJA globally (Wiley & Lee, 2020a).

The phylogenetic placement of POJA remains uncertain (Wiley
& Lee, 2020a). Multiple lines of evidence suggest that POJA is more
closely related to the large skuas that were once classified in a sep-
arate genus (Catharactus) than to LTJA and PAJA (Andersson, 1999;
Chu et al., 2009; Cohen et al., 1997). However, POJA are more similar
in size and plumage to the smaller congeners and the three species
are sometimes thought of as a guild (Ruffino & Oksanen, 2014). Unlike
LTJA and PAJA, POJA do not breed in Greenland or Europe (Furness,
1987; Wiley & Lee, 2020a), creating a break in their breeding distri-
bution in Arctic areas immediately adjacent to the Atlantic Ocean.
Pomarine jaegers overwinter on both sides of the Atlantic Ocean
(Brown, 1979; Starrett & Dixon, 1947) but the breeding origin of these
POJA is unknown. Thus, the break in breeding distribution of POJA
relative to LTJA and PAJA leads to questions about whether the three
species spread across North America in the same direction(s) from the
Palearctic region, their evolutionary origin, and the influences of both
biogeography and evolution on contemporary migratory patterns.
Broadening the study of jaegers across the North American Arctic
could help provide initial answers to these questions.

During the breeding season in North America, pomarine jae-
gers specialize on cyclic brown lemmings (Lemmus trimucronatus)
for successful reproduction and thus POJA nesting is generally
irruptive—occurring in high density at breeding sites in only some
years (Andersson, 1973; Maher, 1974; Pitelka et al., 1955). This ob-
servation has implied that POJA are nomadic during the prebreed-
ing period until they find localized areas of high lemming abundance
(Wiley & Lee, 2020a), although no direct evidence for nomadic

movements of individuals over large areas of the Arctic is known to
be available.

We tracked the migrations of sympatrically-breeding jaeger spe-
cies from a central Canadian high Arctic nesting location where both
Atlantic Ocean and Pacific Ocean destinations seem equally likely.
Our goals were to: (1) describe the migratory routes and phenology
of movements of the tracked jaegers following sympatric breeding;
(2) describe the ocean habitats they used; and (3) provide the first
direct information on full-annual-cycle movements and nomadism
of a pomarine jaeger, an irruptive species whose movements are
still largely a mystery (Wiley & Lee, 2020a). Like LTJA tracked from
the eastern Canadian Arctic (Seyer et al., 2021), and LTJA and PAJA
tracked from Greenland (Bemmelen, 2019), we expected that all
three species would spend the nonbreeding period in the Atlantic
Ocean. We also expected that PAJA would use shallow, coastal hab-
itats and that LTJA and POJA would use deeper habitats in areas of
consistent upwelling. Finally, we hypothesized the POJA would ex-
hibit nomadism in the Canadian Arctic Archipelago prior to nesting
and we did not expect the bird to exhibit nest site fidelity.

2 | METHODS

We captured adult jaegers during incubation (late June to early
July) 2018 and 2019 at Nanuit Itillinga (Polar Bear Pass) National
Wildlife Area, Bathurst Island, Nunavut, Canada (NINWA, 75°43'N,
98°24'W). Birds were captured with spring-loaded bownet traps set
at nests (n = 4), a handheld CO, powered net gun (n = 2), or noose
mat (n = 1). We recorded morphometrics when possible (mass, wing
chord, tarsus, bill, and total head plus bill) and fitted birds with a
metal band and a color band to aid in identifying individuals.

We used 5 g (LTJA,n=2)and 9.5 g (PAJA,n=2and POJA,n=1)
Argos solar-powered satellite tags (Microwave Telemetry Inc., de-
ployed 2018-2019) to track seabird movements. Satellite tags were
attached using a leg-loop harness (Mallory & Gilbert, 2008) made of
4.7625-mm wide tubular Teflon Ribbon (Bally Ribbon Mills) secured
with copper crimps. The total tag and attachment weight comprised
0.4%-2.1% of the body mass of known-weight individuals (Table 1).
We assessed wing and leg mobility prior to release and watched
birds until they flew out of sight.

Data previously collected from two PAJA breeding on nearby
Nasaruvaalik Island, Nunavut, Canada (58 km from NINWA, 75°47'N,
96°17'W), were also contributed to this study. These birds were
tracked using archival light-level geolocators (GLS tags) attached
with plastic cable ties to darvic leg-bands (Lotek Inc. LAT2900, 2.1 g).
Tags were deployed in July, 2010 (n = 1), and June, 2011 (n = 1), and
recovered the following year by recapturing the birds. Tags also re-
corded sea surface temperature (SST) when immersed for more than
120 s and stored the minimum daily value.

Area access and animal handling, banding, and tag attach-
ment were approved by Environment and Climate Change Canada
(ECCC) Western and Northern Animal Care Committee (Mallory-
EC-PN-11-020, Rausch-18JR01, Rausch-19JR01); ECCC Scientific
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From the model-estimated movement paths, we summarized
the distance traveled and the duration of time the jaegers spent in
breeding, staging, and wintering areas. We calculated the maximum
distance reached from nest site, the total distance traveled, and dis-
tances of nomadic movements using the geodist package in R applied
to successive predicted locations using geodesic/great circle dis-
tances. For birds tracked with geolocators, positions are unavailable
during the breeding season when there is 24-h daylight, and during
equinox periods; reported distances should therefore be considered
underestimates. For these birds, we used straight line segments be-
tween the nest site and the first estimated location. During the equi-
nox period, we used straight line segments between the estimated
locations on either side of the equinox. For satellite tags that ceased
transmitting prior to the return northward migration, we added an
estimated distance of the return migration to the distance recorded
up to the date the tag ceased transmitting. We estimated the ex-
pected distance of the return migration if the bird were to retrace
its southward migration, omitting stationary periods. For LTJA, we
also estimated a return route over the open ocean based on previous
studies (Bemmelen et al., 2017; Gilg et al., 2013) and we report the
minimum of the two estimates. Given the omission of movements
during the staging period, this is most likely conservative. We iden-
tified the arrival and departure times to staging and wintering areas
based on a combination of net-squared-displacement values (birds
are resident to an area when the rate of change of net-squared-
displacement plateaus; Seyer et al., 2021) and visual evaluation of
maps.

To describe the jaegers’ marine habitats, we plotted patterns
over time of three oceanographic variables commonly used to
predict seabird distribution and/or foraging behavior (Tremblay
et al., 2009): bathymetry, chlorophyll-a, and sea surface temperature
matched to jaeger locations. We used the rerddapXtracto package
in R to communicate with the NOAA ERDDAP data server (https://
coastwatch.pfeg.noaa.gov/erddap) to pull selected oceanographic
datasets for the specified location and date. Bathymetry (meters)
was derived from ETOPO1, a global relief model with a horizontal
grid spacing of 1 arc-minute (approximately 4 km) developed by the
NOAA National Geophysical Data Center. We used chlorophyll-a
estimates (chl a, mg/m°) derived from ocean color data provided by
the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi
NPP satellite and processed by NOAA. Data were available at a res-
olution of 4 km. Cloud cover resulted in many missing daily values
and we therefore chose to use a weekly composite. For sea surface
temperature (SST, °C), we used a blended product from multiple
satellite retrievals—the Global Nighttime Foundation Sea Surface
Temperature Analysis—produced by the Group for High Resolution
Sea Surface Temperature (https://www.ghrsst.org/) and made
available by the Jet Propulsion Laboratory Physical Oceanography
Distributed Active Archive Center. Unlike other SST datasets, this
product provides daily SST estimates for the polar regions and is
available on a global 0.054 degree grid. Geolocators collected SST
directly, and for these birds, we used tag-based in situ measure-
ments in lieu of remotely sensed data.

3 | RESULTS

The three sympatrically nesting jaeger species migrated from central
high Arctic Canada to postbreeding habitats in the Atlantic, Arctic,
Indian, and Pacific Oceans (Figure 1). Birds departed for migration
between July 22 and September 1 (Table 2). Birds were tracked to
a maximum distance of 15,418 km straight-line distance from the
nest site (Table 2), and for 236-887 days (Table 1). The tag of one
individual remained transmitting as of 17 November 2021 and only
the first year of data for this individual is included in this study
(LTJA-NI-2019-01).

During their migrations, jaegers staged August-December in
cool (10-20°C SST), deep marine habitats (2000-4000 m) before
overwintering in either tropical (Caribbean Sea, Canary Current,
Guinea Current, Micronesian Archipelago), or subtropical (Gulf
of Mexico, Guinea Current, Benguela Current, Agulhas Current)
marine ecosystems (Figure 2). All LTJA and PAJA migrated to the
Atlantic Ocean, staging in some known seabird hotspots (e.g., the
North Atlantic Current and Evlanov Seamount [Davies et al., 2021]).
However, the POJA migrated west across the Arctic Ocean, where it
staged near Wrangel Island, Russia, before continuing to the western
Pacific Ocean off Hokkaido, Japan (Figures 1 and 2).

Birds used overwintering habitats September-May (Table 2) in-
cluding shallow seas, coastal upwelling areas, and oligotrophic and
open ocean habitats (Figure 2). LTJA-NI-2019-01 arrived in deep,
warm water habitats (23-35°C) off the continental shelf of West
Africa in October, shifted to shallow (275 m mean depth) coastal wa-
ters of the Canary Current in December corresponding to a peak in
chlorophyll (3.11 mg/m3), and returned to deep water in January. In
contrast, LTJA-NI-2019-02 covered an extensive area in the south-
east Atlantic Ocean in September-December including multiple high
seas seamount chains as well as the Guinea, Benguela, and Agulhas
Currents before moving to warm, shallow water in the Mozambique
Channel of the Indian Ocean from January-March when the tag
ceased transmitting (Figure 2). The warm wintering habitats used
by satellite-tracked PAJA (22-29°C) generally corresponded with
declining chlorophyll throughout the wintering period and use of
shallower seas (Figure 2). The POJA overwintered in Micronesia and
the western Pacific high seas, where it used deep (4500-5500 m),
warm (>25°C), oligotrophic habitats (<0.05 mg/m?), and completed a
19,002 km loop migration (Figure 1). The surface chlorophyll values
experienced by the bird here were an order of magnitude lower than
most habitats used by LTJA and PAJA.

Four individuals were tracked through a full annual cycle (Table 1;
Figure 2). LTJA and PAJA each used similar staging areas in post-
breeding and prebreeding migrations (Figure 2) but spent less time
staging during the prebreeding migration (Table 2). The return route
of LTJA-NI-2019-01 was over the central Atlantic Ocean rather than
the eastern Atlantic like its postbreeding migration, and the pre-
breeding route of PAJA-NAS-2010-01 was more coastal than the
postbreeding migration (Figure 2).

The two PAJA and one LTJA returned to the same nest site in
their second recorded year (Figures 1 and 2), whereas the POJA did
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FIGURE 1 (a) Model-estimated migration paths of individuals representing three species of jaegers (Stercorarius spp.) following sympatric
breeding recorded using electronic tracking devices. Red star indicates breeding area in Canada where tags were deployed. Gray outline
over the ocean demarcates Exclusive Economic Zones. (b) General locations of staging and wintering areas mentioned in the text color-
coded by the species that used those areas

not return to Bathurst Island in 2020 (Figure 3). After making an the species’ breeding range as far west as 149°E. Russian sites were
overland migration of 253 km, the POJA traveled 5579 km between separated by a linear distance of 1950 km and the total track dis-
terrestrial sites in Russia and Canada including an oceanic migra- tance recorded in Russia was 2472 km. The tag ceased transmitting
tion of 3107 km between western Siberia, Russia and Banks Island, on 27 June, although the onboard activity sensor indicated that tag

Northwest Territories, Canada (121°W, 752 km from 2019 nest site). and bird were still active 23-27 June after arriving on Banks Island,
In Russia, the bird spent 10-12 days visiting multiple sites within Canada.
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TABLE 2 Estimated distances traveled and annual cycle of seven tracked jaegers from a nest site in Arctic Canada (first year of tracking
only)

Long-tailed Jaeger (n =2 Parasitic Jaeger (n =4 Pomarine Jaeger

unless otherwise noted) unless otherwise noted) (n=1)
Distances traveled (km)
Maximum straight-line distance from colony 8890-15,418 5705-7146 14,395
Estimated total distance traveled during annual cycle 30,195-57,147° 28,648-40,477° 41,910
Annual cycle
Departure from nesting area 22 July 30 Aug.-1 Sept. (n = 2) 4 Aug.
Arrival to postbreeding staging area 2-3 Aug. 6-18 Sept. (n = 2) 10 Aug./17 Sept.”
Departure from postbreeding staging area(s) 20 Aug.-21 Sept. 10 Oct-3 Dec. 1-Sept./26 Dec.”
Arrival to wintering area(s) 5-26 Sept. 19 Oct.-12 Dec 27 Dec.”
Departure from wintering area(s) 4 April (n=1) 28 April-7 May (n = 2) 6 May
Arrival to prebreeding staging area 22 April (n = 1) 13-16 May (n = 2) 7 May
Departure from prebreeding staging areas 24 May (n=1) 22-25May (nh = 2) 29 May
Breeding season arrival 6-16 June (n = 1)¢ Unknown June 7-23¢

Note: For individual metadata, see Table 1. Not all dates during the annual cycle were available for all individuals due to cessation of tag transmissions
(LTJA and PAJA) and/or incalculable locations during periods of 24-h daylight or the equinox periods (Parasitic Jaegers tracked via light-level
geolocators).

?See methods for details of estimates for birds tracked via geolocators and for birds whose tags ceased transmitting during the wintering period.
®The POJA staged for 22 days off Wrangel Island, Russia 10 August-1 September. Sept 17 the bird arrived in the Oyashio Current/Sea of Okhotsk off
Hokkaido, Japan where it roamed until December 26 when it commenced a migratory loop over Micronesia. We grouped the movements off of Japan
as a staging period because they proceeded a 5-month migratory loop over Micronesia and the bird also stopped in the Oyashio Current in the spring
before returning to the Arctic. However, the movements off Japan could also be considered a first wintering area.

‘LTJA-NI-2019-01 arrived at Bathurst Island June 6, 2020, but then immediately departed back to Baffin Bay. The bird returned to Bathurst Island,
June 16, 2020.

9June 7 = Date of Arrival to Russia, within known breeding range. June 23 = Date of arrival to Banks Island, Canada, after nomadic movements across

terrestrial sites in Russia, June 7-17).

4 | DISCUSSION

We present new findings on the ecology of three species of sym-
patrically breeding jaegers and further insights into polar migratory
divides. From the central Canadian high Arctic, the three jaeger spe-
cies we tracked visited four oceans and we provide the first direct
evidence of extensive terrestrial nomadic behavior of Pomarine
Jaeger during the breeding season. While the small sample sizes
in our study limit the ability to make statistical comparisons or
species-level inferences, our results provide new information that is
a common benefit of animal tracking studies in their initial phase of
innovation and discovery (Sequeira et al., 2019).

That the POJA we tracked from the central Canadian Arctic mi-
grated across the Arctic Ocean to the western Pacific Ocean while
LTJA and PAJA migrated to the Atlantic Ocean and Indian Ocean
is a notable finding. Radar observations at 99°W in the Canadian
Arctic suggested that many LTJA and PAJA migrate in a westerly di-
rection (Gudmundsson et al., 2002). The LTJA and PAJA we tracked
from a similar longitude (96 and 98°W) migrated east to the Atlantic
Ocean and took similar migration routes to LTJA tracked from east-
ern Canada (81°W and 78°W; Seyer et al., 2021) and LTJA and PAJA
tracked from eastern Greenland (24°W and 19°W; Bemmelen,
2019). The POJA in this study migrated west, but large populations
of POJA have also been observed on surveys in the Gulf of Mexico

(Jodice et al., 2021) and both coasts of the Atlantic Ocean (Brown,
1979; Lee, 1995). The breeding origin of these Atlantic Ocean POJA
remains unknown.

From seabird colonies in the central and eastern Canadian Arctic,
tracking studies showed that eastern Pacific Ocean destinations
were recorded for Thayer's gulls (Larus thayeri; n = 4 [Gutowsky
et al., 2020]), exclusively Atlantic Ocean routes were recorded for
Arctic terns (Sterna paradisaea; n = 22 [Wong et al., 2021]), both
eastern Pacific (n = 24) and eastern Atlantic destinations (n = 2) were
recorded for Sabine's gulls (Larus sabini) including a mated pair that
exhibited a migratory divide (Davis et al., 2016), and from isotopic
data, 69% of 167 king eiders (Somateria spectabilis) wintered in the
North Pacific Ocean while the remainder wintered in the Northwest
Atlantic Ocean (Mehl et al., 2004). Our results add new informa-
tion about jaeger migration routes from a central Canadian site
(20 degrees west of previous jaeger tracking studies, [Seyer et al.,
2021]) to help further assess the potential for jaeger migratory di-
vides in the Nearctic. Seabird migratory divides to the Pacific and
Atlantic Oceans from the high Canadian Arctic Archipelago remain
unpredictable.

Our results of disparate migratory routes of sympatrically breed-
ing congeners also raise additional questions about the evolution-
ary origins (Braun & Brumfield, 1998; Chu et al., 2009; Cohen et al.,
1997) and biogeographic spread of North American jaegers. For
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FIGURE 2 Habitats used by long-tailed jaeger (LTJA), parasitic jaeger (PAJA) and pomarine jaeger (POJA) electronically tracked following
breeding in the Canadian high Arctic. Points on maps indicate model-estimated daily positions, color-coded by month. Daily estimates of
habitat variables are grouped and colored by month. Bathymetry (water depth), and chlorophyll-a were derived from remotely sensed data
(see methods for datasets used). SST was either recorded directly by the tag (GLS tags: PAJA-NAS-2010-01 and PAJA-NAS-2011-01) or
were derived from remotely sensed data (Argos satellite tags). Time series begin in July when the birds were incubating eggs and tags were
deployed. Solid black lines indicate a loess smooth of the daily estimates and shading around the line indicates the 95% confidence interval

example, given the observed westerly migration route of the POJA,
were POJA populations in central Canada partially populated by in-
dividuals originating from westerly populations as glaciers retreated
after the last ice age? Do some LTJA and PAJA from the central
Canadian Arctic migrate west to the Pacific Ocean as suggested by
Gudmundsson's radar observations (Gudmundsson et al., 2002)? Do
some POJA observed in the Atlantic Ocean originate from central or
western Canada? Given our small sample size, genetic comparisons
and additional tracking are needed to answer these questions.

In their geolocator study of the consistency of LTJA migration
routes and wintering areas, Bemmelen et al. (2017) suggested that
future studies should link location data with oceanography. Here,
we provide these first links for a small sample of birds. We found
that all birds used both shallow coastal habitats and deep ocean
habitats. As in previous studies (Bemmelen, 2019; Bemmelen et al.,
2017; Gilg et al., 2013; Simeone et al., 2014; Troy, 2007), jaegers
used upwelling habitats of the Benguela Current (LTJA), Canary
Current (LTJA), and Oyashio Current (POJA for staging). However,
jaegers also used nutrient-poor habitats. For example, the POJA
wandered widely during the postbreeding period over the western

North Pacific Sub-tropical Gyre—an oligotrophic area of low surface
chlorophyll, high temperatures, deep water (Karl, 1999), and a place
not typically mentioned as a primary overwintering habitat for the
species (Furness, 1987; Wiley & Lee, 2020a). The deep water and
low productivity habitats used by this POJA also contrasted with the
individual Troy (2007) tracked from Alaska that spent its recorded
postmigration period in the East Australian Current where dynamic
eddies result in localized upwelling and high productivity (Suthers
et al.,, 2011). In addition to describing the oceanographic features
jaegers use during the postbreeding period, future studies could
evaluate relationships with the distribution of other seabird species
that are kleptoparasitized by jaegers and with the distribution of sea-
bird colonies with active nesting during the jaegers’ postbreeding
period.

This study is the first to record the full annual cycle of a poma-
rine jaeger (Wiley & Lee, 2020a). A presumed-complete southward
migration path was reported by Troy (2007) but the bird was not
tracked on its return prebreeding migration. Seabirds are known to
vary the extent of their movements throughout the breeding season
(e.g., incubation vs. late chick-rearing [Gutowsky et al., 2015]) and
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FIGURE 3 (a) Nomadic movements of pomarine jaeger (POJA-NI-2019-01) tracked via Argos-satellite tag during a second recorded
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Zones. Insets indicate panels b-d. (b) near Billings, Chukotka Autonomous Okrug, Russia (c) near Russkoye Ustye, Sakha Republic, Siberia,
Russia. (d) Banks Island, Northwest Territories, Canada (ceased transmission June 27, 2020). Satellite imagery is a composite of images taken

by the Copernicus Sentinal-2 satellite at each location, June 2020

long-distance movements during this period is an expanding area of
study for even the smallest birds (Cooper & Marra, 2020). Until this
study, only indirect evidence for POJA nomadism existed (reviewed
by Wiley & Lee, 2020a) and the geographic extent of nomadism was
unknown. During the second recorded breeding season (2020), this
individual showed its ability like snowy owls (Bubo scandiacus) to
prospect across the Arctic presumably in search of lemmings and/
or nest sites (Therrien et al., 2014). The international nomadic move-
ments of the POJA in June (5579 km) exceeded the maximum record
for the prebreeding nomadic movements of snowy owls (4093 km
over 108 days) by 1486 km. Additional tracking is needed to deter-
mine if the pattern we observed is representative of the species and
to determine the full extent of POJA nomadic behavior.

Distance between Canadian territories in consecutive years was
similar to the mean breeding dispersal of 725 km of nine snowy owls
(Therrien et al., 2014), although it is unknown whether the POJA
in our study initiated a nest in its second year of tracking. In their
review of POJA breeding phenology, Wiley and Lee (2020a) noted
that most nesting territories in the North American Arctic were

established by the third week of June, although some were not es-
tablished until early July (Bathurst Island peak territory establish-
ment 20-30 June). Maher (1974) observed that transients in Alaska
(arriving from at-sea flocks) also occasionally established short-term
terrestrial territories. Therefore, timing suggests that the POJA in
our study arriving at Banks Island, Canada on June 23 could have
initiated a nest, but it is equally plausible that these locations repre-
sented a transient terrestrial territory of a non-breeding bird.

Our study modified previous approaches to track jaegers with
satellite tags (Seyer et al., 2021; Sittler et al., 2011; Troy, 2007). These
modifications may have led to longer tracking durations than were
previously attained (maximum 86 days for LTJA and approximately
275 days for POJA), although our small sample size limits general in-
ferences. Rather than a backpack-style harness that loops over the
wings (used previously with LTJA [Seyer et al., 2021; Sittler et al.,
2011]), we used a leg-loop attachment (Mallory & Gilbert, 2008) as
had been trialed for POJA (Troy, 2007). For acrobatic birds like jae-
gers, we felt a leg-loop harness would have the lowest risk of detri-
mental impact to the bird but may have a higher risk of being shed
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(sliding off the tail and legs of the bird possibly due to weight changes
or interactions with other birds). For LTJA and POJA, we also used
smaller tags than in previous studies: LTJA, 5 g instead of 9.5-10 g
(Seyer et al., 2021; Sittler et al., 2011) and POJA, 9.5 g instead of
18 g (Troy, 2007). For LTJA and POJA, our 1% tag and harness to bird
mass ratios were conservative in the context of conventional rules
for seabird tracking studies (i.e., <3% of the body weight of the bird
[Phillips et al., 2003]). To our knowledge, this was the first pilot of
satellite tag and harness attachment with PAJA. The 9.5 g tag and
harness combination we used for PAJA was <3% of their mass but a
5 g tag would likely have been a better choice due to weight but also
due to its lower profile. We have subsequently tracked PAJA from
Alaska through full annual cycles (5 of 6 birds) with 5 g tags (1% of
body weight, unpublished data, Harrison A-L. 2021).

Since pelagic seabirds like jaegers spend their postbreeding
period at sea, when a tag stops transmitting the reason is often
unknown. In this study, the 9.5 g tag included an activity sensor
to indicate whether a transmitting tag had stopped moving, but
this option was not available on the 5 g tags. Individual PAJA-NI-
2018-02 was last tracked at sea during an offshore storm with east-
erly winds. Final positions were located inland over protected forest
in Nicaragua. The tag continued to transmit from this location and
the activity sensor indicated it was stationary. Due to the lack of
human development in the region and the heavy canopy cover, the
solar panel would likely not have charged if the tag was in the forest.
Remotely sensed elevation data indicate a constant height of 30-
50 m for the month during which the tag was stationary on land. We
hypothesize that the tag was dropped solar-panel facing up, over the
trees, or the bird died and was caught by the trees with the tag still
attached and facing up.

To evaluate tagging impacts, study designs that include marked
but untagged individuals in the same breeding population to allow
for comparison of return rates can provide additional understanding.
However, for species with low nesting site fidelity like POJA or high
natural nest depredation as at Bathurst Island (making capture and
resighting difficult), mark-recapture studies may yield few insights.

5 | CONCLUSIONS

The Arctic region is warming faster than most places on the planet
(IPCC, 2014), and even closely related species may respond differ-
ently to environmental change (McMahon et al., 2019; Silva et al.,
2020; Sun et al., 2017). Transformation of Arctic breeding habitats
and disruption to Arctic food webs are thought to be major future
threats (Gilg et al., 2012; Ims & Fuglei, 2005). Since lemmings and
other small rodents depend for survival on good snow conditions in
autumn/winter (Reid et al., 2012), lemming-reliant species like LTJA
and POJA are at special risk of climate change; demonstrated a de-
cline in LTJA in response to collapsing lemming cycles in Greenland.
For these three jaeger species breeding in sympatry in the Canadian
Arctic, disparate patterns of nomadism and marine migratory con-
nectivity may also have species-specific management implications
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(Dunn et al., 2019), although additional tracking is needed to confirm
the patterns we observed from a small sample of individuals.

Trends of North American jaeger populations have been largely
unknown (Gaston et al., 2009; Wiley & Lee, 2020a, 2020b, 2020c)
making it difficult to assess conservation status. Of the three jaeger
species, PAJA is of conservation concern in some parts of its range.
Globally PAJA is considered stable and is assumed to be the most
abundant skua species in the world (Wiley & Lee, 2020b). However,
the United Kingdom breeding population has declined steadily since
1986 and more than any other seabird species monitored in the U.K.
between 2000 and 2019 (JNCC, 2021). Europe's largest PAJA col-
ony (in Norway) has declined by at least 50% since 1997 (Bemmelen
etal., 2021). It is thought that declines are driven by both bottom-up
and top-down effects including lack of food during the breed-
ing season and nest predation by mammalian and avian predators
(Bemmelen et al., 2021; Perkins et al., 2018).

There is good scientific collaboration across the circumpolar
Arctic (Davidson et al., 2020). Avian demographic surveys across
the North American Arctic region have yielded important insights
for shorebirds (Weiser et al., 2020) and have recently met con-
fidence thresholds to provide updated Canadian population esti-
mates for LTJA and PAJA (pers. comm. Smith, P.A. and Rausch, J.
2021). Given that jaegers are critical components of marine and
terrestrial food webs that provide ecological connectivity across
the world's oceans, we encourage the establishment of a multina-
tional long-term demographic survey for the jaegers. Finally, our
study also contributes to the growing body of literature showing
the importance of connectivity across hemispheres and between
the coasts and the high seas to migratory seabirds (Beal et al.,
2021; Harrison et al., 2018). Demonstrated links between marine
biodiversity in the Arctic region and the high seas are timely to
inform ongoing negotiations for an internationally binding legal
instrument on the conservation and sustainable use of marine bi-
ological diversity in the areas beyond national jurisdiction (Popova
et al., 2019; United Nations General Assembly, 2017; Vierros et al.,
2020).
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