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Highlights Impact and implications

� Transplanted hepatocytes dedifferentiate into HPCs

before repopulation.

� Y-27632 (Y) and CHIR99021 (C) convert mouse
hepatocytes into HPCs & support long-term culture
(>30 passages) in vitro.

� YC stimulate the proliferation of transplanted he-
patocytes in Fah-/- livers by promoting their con-
version into HPCs.

� Two clinically used drugs target the same pathways
as YC, also promoting hepatocyte proliferation
in vitro and in vivo.
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Hepatocyte transplantation may be a treatment option
for patients with end-stage liver disease. However,
one important obstacle to hepatocyte therapy is the
low level of engraftment and proliferation of the
transplanted hepatocytes. Herein, we show that small
molecule compounds which promote hepatocyte
proliferation in vitro by facilitating dedifferentiation,
could promote the growth of transplanted hepato-
cytes in vivo and may facilitate the application of he-
patocyte therapy.
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Background & Aims: Hepatocyte transplantation has emerged as a possible treatment option for end-stage liver disease.
However, an important obstacle to therapeutic success is the low level of engraftment and proliferation of transplanted
hepatocytes, which do not survive long enough to exert therapeutic effects. Thus, we aimed to explore the mechanisms of
hepatocyte proliferation in vivo and find a way to promote the growth of transplanted hepatocytes.
Methods: Hepatocyte transplantation was performed in Fah-/- mice to explore the mechanisms of hepatocyte proliferation
in vivo. Guided by in vivo regeneration mechanisms, we identified compounds that promote hepatocyte proliferation in vitro.
The in vivo effects of these compounds on transplanted hepatocytes were then evaluated.
Results: The transplanted mature hepatocytes were found to dedifferentiate into hepatic progenitor cells (HPCs), which
proliferate and then convert back to a mature state at the completion of liver repopulation. The combination of two small
molecules Y-27632 (Y, ROCK inhibitor) and CHIR99021 (C, Wnt agonist) could convert mouse primary hepatocytes into HPCs,
which could be passaged for more than 30 passages in vitro. Moreover, YC could stimulate the proliferation of transplanted
hepatocytes in Fah-/- livers by promoting their conversion into HPCs. Netarsudil (N) and LY2090314 (L), two clinically used
drugs which target the same pathways as YC, could also promote hepatocyte proliferation in vitro and in vivo, by facilitating
HPC conversion.
Conclusions: Our work suggests drugs promoting hepatocyte dedifferentiation may facilitate the growth of transplanted
hepatocytes in vivo and may facilitate the application of hepatocyte therapy.
Impact and implications: Hepatocyte transplantation may be a treatment option for patients with end-stage liver disease.
However, one important obstacle to hepatocyte therapy is the low level of engraftment and proliferation of the transplanted
hepatocytes. Herein, we show that small molecule compounds which promote hepatocyte proliferation in vitro by facilitating
dedifferentiation, could promote the growth of transplanted hepatocytes in vivo and may facilitate the application of hepa-
tocyte therapy.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Globally, liver cancer and cirrhosis are responsible for approxi-
mately 2 million deaths each year.1 For these patients with end-
stage liver diseases, liver transplantation is the only treatment
option, yet less than 10% of transplantation needs are met by
current organ supply.1 There is a huge gap between suitable
donor organs and patients waiting for transplantation.2 Hepa-
tocyte, instead of whole liver, transplantation is emerging and
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may overcome the shortages of organs and reduce the need for
invasive surgical procedures.3 However, many obstacles still
remain, including limited donor livers, difficulties in isolating
good-quality hepatocytes from often suboptimal donor livers
and expanding hepatocytes in vitro, problems in maintaining
hepatocyte viability after cryopreservation, low levels of
engraftment and proliferation in transplanted hepatocytes, as
well as allograft rejection.2,3 Studying the mechanism of hepa-
tocyte proliferation and finding ways to promote hepatocyte
growth after transplantation may help to remove some of these
obstacles.

The liver is normally a quiescent organ. Mature hepatocytes
do not cycle and their turnover occurs very slowly over a period
of several months.4 Recent evidence has suggested hepatocytes
in all liver zones are able to proliferate in random to maintain
homeostasis; thus, a stem/progenitor cell compartment is not
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required for liver maintenance.5 However, injury-induced liver
regeneration occurs via different mechanisms.6 Early research
demonstrated that hepatic progenitor cells (HPCs, also named
oval cells), residing within the Canals of Hering7 and expressing
hepatoblast marker AFP and other biliary genes,12 serve as an
alternative pathway for regeneration during prolonged, severe
liver injury when hepatocyte proliferation may be blocked.8

However, several lineage-tracing studies have shown that pre-
existing HPCs contribute little to liver regeneration, virtually all
new hepatocytes come from preexisting hepatocytes,9 and the
ability to proliferate is broadly distributed among hepatocytes
rather than limited to a rare stem cell-like population.5 However,
these studies did not explore whether hepatocytes dedifferen-
tiate into HPCs before proliferation. Other studies have found
that in chronic liver injury, hepatocytes can dedifferentiate into a
HPC state to restore the liver mass. In diet-induced chronic liver
injury, hepatocytes have been shown to convert to
cholangiocyte-like cells (Sox9+EpCAM+ cells) and supply new
hepatocytes to repair damaged tissues,10 and around 20% of
newly regenerated hepatocytes were derived from hepatocyte-
derived HPCs.11 Another study utilizing hepatocyte-chimeric
mice showed that bipotential HPCs were derived from chroni-
cally injured mature hepatocytes and could revert back to he-
patocytes.12 Present evidence suggests that HPCs may emerge
from hepatocytes via dedifferentiation upon liver injury and
contribute to liver regeneration. However, whether such a pro-
cess also occurs during repopulation after hepatocyte trans-
plantation remains unclear.
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Mature hepatocytes were difficult to culture or grow in vitro,
while cells with HPC characteristics, such as Lgr5+ hepatocytes
from mice liver13 or Epcam+ hepatocytes from human liver14

could be expanded in vitro. Recently, several studies have
shown that small molecule chemicals or cytokines could convert
mature hepatocytes into HPCs which can proliferate in vitro. In
2017, the combination of small molecules A-83-01 (inhibitor of
TGF-b signaling), Y27632 (inhibitor of ROCK kinase) and
CHIR99021 (agonist of WNT signaling) were used to grow mice
hepatocytes in vitro by inducing hepatocyte dedifferentiation.15

Immediately after, another combination of A-83-01, Y27632,
CHIR99021, S1P and LPA were found to induce the conversion of
mouse hepatocytes to HPCs and promote growth in vitro.16 One
year later, a combination of Wnt3a, A-83-01 and Y27632 was
found to support human hepatocyte proliferation via dediffer-
entiation to HPCs.17 Then, a study reported that A-83-01 and
CHIR99021 were enough to support the dedifferentiation and
proliferation of human primary hepatocytes.18 It seems that
inducing hepatocyte dedifferentiation into HPCs is a common
mechanism to promote their growth in vitro. We wonder
whether the conditions used to facilitate hepatocyte to HPC
conversion in vitro can stimulate hepatocyte growth in vivo after
transplantation.

Herein, we report that HPC-dependent regeneration occurs in
Fah-/- mice receiving hepatocyte transplantation. We also iden-
tify that small molecules which promote hepatocyte dediffer-
entiation in vitro can facilitate the growth of transplanted
hepatocytes in vivo.
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Materials and methods
Mice
All mice were housed under controlled humidity and tempera-
ture conditions and under 12 h light/dark cycles. The care and
use of animals complied with international guidelines and were
approved by the Animal Ethics Committee of Shanghai Institute
of Materia Medica.

Isolation of mice primary hepatocyte
Primary hepatocytes were isolated by the classic two-step
collagenase perfusion technique from mice (C57BL/6 J) at the
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age of 8-10 weeks. R26RtdTomato mice (Jackson Laboratory) were
crossed with Albumin-Cre mice and the offspring Albumin-
Cre:R26RtdTomato (Alb-td) mice were used for the isolation of
tdTomato+-hepatocytes. The liver was perfused through the
inferior vena cava with 25 ml perfusion buffer and then 25 ml
enzyme buffer. The hepatocytes were then released into the
M199 medium (GIBCO) using sterile surgical scissors. Cell sus-
pension was filtered through a 70 lm cell strainer (Corning).
After which, hepatocytes were purified with 50% Percoll gradient
media (Sigma) at low-speed centrifugation (1,500 rpm, 15 min)
then the pellets were dissociated into a single-cell suspension.
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The viability of isolated hepatocytes was about 90% as deter-
mined by Trypan blue staining. For further details please see the
supplementary materials and methods.

Hepatocyte transplantation and sample collection
Fah-/- mice were fed with 7.5 mg/L 2-(2-nitro-4-trifluoro-meth-
ylbenzyol)-1,3-cyclohexanedione (NTBC) in drinking water, Fah-/-

mice at the age of 8-12 weeks were used for transplantation. For
transplantation, hepatocytes (2.5 × 106) were suspended in 200
ll of 0.9% sodium chloride solution and transplanted into Fah-/-

mice via intrasplenic injection through a left-flank incision under
1.25% tribromoethanol anesthesia. After the operation, NTBC was
withdrawn from the drinking water. After transplantation, Fah-/-

mice were treated with vehicle (0.5% sodium carboxymethyl
cellulose in PBS), YC (10 mg/kg Y27632 and 14 mg/kg CHIR99021,
per os every day) or NL (0.3 mg/kg Netarsudil and 3 mg/kg
LY2090314, per os every day). The blood and liver samples were
collected at indicated time points. Total serum bilirubin, alanine
aminotransferase (ALT), alkaline phosphatase (ALP), and aspar-
tate aminotransferase (AST) were measured (Bioassay system
kit).

Statistical analysis
Values are reported as the means ± SEM. p values were calculated
with Student’s t test, two-way ANOVA test or log-rank test as
indicated in the figure legends, p <0.05 was considered statisti-
cally significant. All graphs were plotted with GraphPad Prism
software. The Immunofluorescence images were analyzed using
ImageJ software.
Results
Hepatocytes are reprogrammed to a hepatic progenitor state
during repopulation in vivo
To trace hepatocytes after transplantation in vivo, tdTomato+-
hepatocytes (td-hepa) were isolated from mice obtained by
crossing R26RtdTomato mice with the Albumin-Cre mice19 (Fig.
S1A,B). Fah-/- mice require NTBC for survival.20 After NTBC
withdrawal, Fah-/- mice experience liver failure and die in about
30 days unless they receive hepatocyte transplantation.21,22 This
is an ideal model to study the proliferation and function of
transplanted hepatocytes in vivo.12 Therefore, after NTBC with-
drawal, td-hepa were transplanted into Fah-/- mice via intra-
splenic injection through a left-flank incision under tri-
bromoethanol anesthesia (Fig. 1A). The body weight of these
animals kept dropping in the first 3 weeks, before gradually
recovering (Fig. 1B). Liver samples of Fah-/- mice receiving td-
hepa were collected at different time points (day [D] 4, 7, 14,
D56. Three of the mice in the YC group continued to receive YC until D56, and an
differences between the two groups were analyzed from D0-D21. *p <0.05, **p
ANOVA test for C) (D) Serum levels of ALT, AST, ALP and TBIL in the Fah-/- mice
(C); Fah-/- mice before NTBC withdrawal (Fah-/- (D0)) were used as controls. (E) R
liver (right) of td-hepa-vehicle and td-hepa-YC mice (D28), scale bar represents 1
group, n = 8, td-hepa-YC group, n = 13) (G) Immunofluorescence staining of Fah a
vehicle and td-hepa-YC mice (D28) (H) Statistical analysis of the intensity of Fah, A
cycle genes (CyclinB1, Cdc20, Cdk1) and hepatic progenitor genes (Afp, Cd133 and
D7, D14 and D28 (n = 3). Fah-/- before NTBC withdrawal (D0) was used as control
FACS) from td-hepa-vehicle and td-hepa-YC mice (D28) (K) Statistical analysis of t
genes (Cdc20 and CyclinB1) and hepatic progenitor genes (Cxcr4, Sox9, Gata4, Dl
vehicle and td-hepa-YC mice (D28) (n = 3). Primary td-hepatocytes were used
100 lm. All data are means ± SEM. *p <0.05, **p <0.01, ***p <0.001 (Student’s t t
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30, 60, 90 and 120). Compared to the livers of Fah-/- mice before
NTBC withdrawal, the cell cycle genes (CyclinB1, Cdc20 and Cdk1)
and HPC genes (Afp, Sox9, Dlk1, Cd133 and Fn14) in the livers of
Fah-/- mice receiving td-hepa were upregulated from D4,
reached a peak at around D30 and then decreased to normal
(Fig. 1C). The td-hepa showed clonal expansion at D30 and
almost fully occupied the liver at D120 (Fig. 1D and Fig. S1C). It is
not surprising that only the td-hepa were positive for Fah
staining (Fig. S1C and D). Interestingly, only the repopulating
(D30) td-hepa in Fah-/- mice were positive for AFP staining but
not the repopulated (D120) td-hepa (Fig. 1D,E). These results
suggest that the transplanted hepatocytes dedifferentiate to an
HPC stage to proliferate and then redifferentiate after
repopulation.

Reprogramming of hepatocytes into expandable HPCs by
Y27632 and CHIR99021
A previous study has shown that a cocktail of small molecules A-
83-01 (inhibitor of TGF-b signaling), Y27632 (inhibitor of ROCK
kinase) and CHIR99021 (agonist of Wnt signaling) (AYC) can
convert rat and mouse hepatocytes into HPCs with high prolifer-
ative capacity.15Wewondered whether the combination could be
simplified to facilitate in vivo application. To optimize the chem-
icals, we cultured hepatocytes in the classical hepatocyte culture
medium (containing epidermal growth factor and hepatocyte
growth factor) supplemented with AYC or any two of the three
chemicals (YC, AY and AC). Consistent with current knowl-
edge,15,23 no proliferation of hepatocytes was observed in the
vehicle (DMSO)-treated group at D14 (Fig. 2A,B). As expected, AYC
stimulated significant proliferation as the cell number increased
about 20 times, which was similar to a previous report15 (Fig.
2A,B). Interestingly, YC was found to induce a similar speed of
hepatocyte growth as AYC, while AY or AC could only promote
moderate proliferation (Fig. 2A,B). The proliferating cells in YC and
AYC groups at D14 show typical epithelialmorphologywith a high
nucleus/cytoplasm ratio, which is a typical feature of HPCs15 (Fig.
2A). Immunofluorescence staining revealed that the proliferating
cells in the YC group expressed the highest level of AFP and Dlk1,
which was also expressed in the AYC group, but absent in fresh
isolated hepatocytes, or cells cultured for 14 days in other condi-
tions (Fig. 2C,D, Fig. S2A,B). Quantitative reverse-transcription
(RT-PCR) analysis also confirmed more cell cycle genes and HPC
genes were upregulated in YC-induced HPCs (YC-iHPCs) (D14)
(Fig. S2C and D). Compared to hepatocytes, the proliferating cells
in the YC group were also highly positive for the cell cycle marker
Ki67 but showed significantly reduced expression of the mature
hepatocyte marker albumin (Fig. 2E,F). Hence, these cells were
named YC-iHPCs. Moreover, YC-iHPCs (D14) could be
other three in the YC group started to receive vehicle from D28-D56. Statistical
<0.01, ***p <0.001 vs. td-hepa-vehicle group (log-rank test for B and two-way
after transplantation, animal numbers were the same as the survived mice in
epresentative tdTomato images of the whole liver (left) and frozen sections of
mm (F) Quantitative analysis of tdTomato-positive areas in (E) (td-hepa-vehicle
nd progenitor markers (AFP, Dlk1 and Ck19) in frozen liver sections of td-hepa-
FP, Dlk1 and Ck19 staining in (G) (n = 3) (I) Quantitative RT-PCR analysis of cell
Dlk1) in livers of td-hepa transplanted Fah-/- mice treated with vehicle or YC at
(J) Representative morphology and fluorescence images of td-hepa isolated (by
dTomato+ hepatocytes in (J) (n = 3) (L) Quantitative RT-PCR analysis of cell cycle
k1, Afp, Ck19, Cd24, Cd34, Cd44, and Cd133) in td-hepa isolated from td-hepa-
as controls. Nuclei were stained with Hoechst 33342. Scale bars represent

est unless specified otherwise).
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Fig. 4. Netarsudil and LY2090314 promote hepatocyte expansion in vitro and repopulation in vivo. (A, B) Representative images (A) and growth curves (B) of
primary hepatocytes cultured with Netarsudil (N, 0.1 lM) and LY2090314 (L, 1 lM) for 0-14 days (n = 3), ***p <0.001 (two-way ANOVA) (C) Quantitative RT-PCR
analysis of cell cycle genes (Cdc20, CyclinB1, Cdk1, Pcna, and Bcl2) and hepatic progenitor genes (Afp, Ck19, Epcam, Gata4, Cd34, Cd44 and Cd133) in NL-iHPCs (D14)
(n = 3). Primary td-hepatocytes were used as controls (D) Representative phase contrast images of NL-iMHs (D21) (E, F) Immunofluorescence staining (E) and
statistical analysis (F) of HNF4a and albumin in Hepa (D0) and NL-iMHs (D21) (eight random fields for each group) (G) Body weight change and survival curves of
Fah-/- mice without transplantation (n = 6), or receiving td-hepa transplantation and then treated with vehicle (td-hepa-vehicle, n = 21) or NL (td-hepa-NL, n = 20)
for 28 days after NTBC withdrawal. Statistical differences between two groups were analyzed from D0-D21 for body weight change, *p <0.05 vs. td-hepa-vehicle
group (two-way ANOVA for body weight change, log-rank test for survival curves) (H) Serum levels of ALT, AST, ALP and TBIL in the Fah-/- mice without
transplantation (sham-vehicle, n = 4), or Fah-/- mice transplanted with td-hepa and then treated with vehicle (td-hepa-vehicle, n = 14) or NL (td-hepa-NL, n = 20).
Fah-/- mice before NTBC withdrawal (Fah-/- (D0), n = 4) were used as controls (I) Representative tdTomato images of the whole liver (left) and frozen sections of
liver (right) of td-hepa-transplanted Fah-/- mice receiving vehicle or NL (D28), scale bar represents 1 mm (J) Quantitative analysis of tdTomato-positive areas in (I)
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differentiated intomature hepatocyteswith awidely used hepatic
maturation medium (HMM)15 with minor modifications. After
culturing YC-iHPCs (D14) in HMM for 7 days, YC-iHPCs trans-
formed into cells with typical mature hepatocyte morphology
(Fig. S2E and F), which were named YC-induced mature hepato-
cytes (YC-iMHs). The YC-iMHswere negative for AFP and Ki67, but
albumin was significantly increased (Fig. 2E,F). Quantitative RT-
PCR analysis also confirmed more HPC genes and cell cycle
genes were upregulated in YC-iHPCs (D14) but greatly reduced in
YC-iMHs (D21) (Fig. S2G), while the genes related to mature he-
patocyte functions were downregulated in YC-iHPCs (D14) but
then upregulated in YC-iMHs (D21) (Fig. S2H). To test whether YC
could support long-term culture, YC-iHPCs (D14) were passaged
every 5 to 7 days (�90% confluence) in YC-supplemented hepa-
tocyte culturemedium. YC-iHPCs could be passagedmore than 30
times and the cumulative cell number increased from 1 × 105 to
about 1 × 1040 in �150 days without any apparent morphological
changes (Fig. 2G and Fig. S2I). YC-iHPCs at passage 10 and 30
expressed high levels of the HPC markers Sox9 and Ck19 and cell
cycle markers CyclinD1 and Ki67 (Fig. S2J,K). Importantly, YC-
iHPCs at passage 30 could be differentiated into YC-iMHs which
were highly positive for Periodic Acid-Schiff staining and
expressed high levels of albumin and HNF4a (Fig. 2H). The strat-
egy of using YC to promote hepatocyte proliferation in vitro was
summarized in Fig. 2I. Taken together, the combination of two
chemicals (YC) is enough to reprogram mature hepatocytes into
expandable HPCs in vitro, and these cells could be redifferentiated
into more mature hepatocyte-like cells.
Combination of Y27632 and CHIR99021 promotes hepatocyte
proliferation in vivo
Next, we sought to evaluate whether YC could promote hepato-
cyte proliferation in vivo. According to the concentration of
Y27632 (10 lM) and CHIR99021 (3 lM) used in vitro, Y27632 (10
mg/kg) and CHIR99021 (14 mg/kg) were tested in Fah-/- mice by
oral administration (Fig. 3A). After NTBC withdrawal, all Fah-/-

mice without transplantation, who were given vehicle (Sham-
vehicle) or YC (Sham-YC), showed continuous body weight loss
(Fig. 3C) and died in about 25 days (Fig 3B). In contrast, Fah-/-mice
receiving td-hepa and then treatedwith vehicle (td-hepa-vehicle)
showed significantly less body weight loss (Fig. 3C), and 16 out of
22 Fah-/-mice survived formore than 1month (Fig. 3B). Fah-/-mice
receiving td-hepa and YC treatment (td-hepa-YC) showed even
less body weight loss (Fig. 3C), and 24 out of 25 Fah-/- mice sur-
vived for more than 1 month, the survival rate was significantly
improved comparing to td-hepa-vehicle group (Fig. 3B). The sur-
viving animals were sacrificed for analysis on D28 or D56 (Fig.
3A,B). The highly increased serum levels of AST, ALT, ALP and to-
tal bilirubin due toNTBCwithdrawalwere significantly reduced in
the td-hepa-vehicle group (Fig. 3D) and were further reduced in
the td-hepa-YC group (Fig. 3D) at D28. The repopulated td-hepa in
YC-treated mice were significantly more abundant than in the
vehicle group (Fig. 3E and 3F) at D28. The repopulated td-hepa at
D28 were almost 100% positive for Fah staining in both groups
(td-hepa-vehicle group, n = 5, td-hepa-NL group, n = 8) (K) Immunofluorescence
mice receiving vehicle or NL (D28) (L) Statistical analysis of the intensity of Fah
represent 100 lm. All data are means ± SEM. *p <0.05, **p <0.01, ***p <0.001 (St

JHEP Reports 2023
(Fig. 3G,H) at D28. However, the td-hepa in YC-treated animals
expressed higher levels of the HPC markers AFP, Dlk1 and Ck19
than that in vehicle-treated mice (Fig. 3G,H) at D28. Quantitative
RT-PCR confirmed that the expression of cell cycle genes (CyclinB1,
Cdc20 and Cdk1) and HPC genes (Afp, Cd133 and Dlk1) were
gradually increased in livers after transplantation (Fig. 3I), and YC
treatment further upregulated these genes (Fig. 3I). The repopu-
lated td-hepa were isolated by FACS at D28 after transplantation,
more than 90% of the cells were tdTomato positive (Fig. 3J and 3K).
Quantitative RT-PCR confirmed that cell cycle genes (Cdc20,
CyclinB1) and HPC genes (Cxcr4, Sox9, Gata4, Dlk1, Afp, Ck19, Cd24,
Cd34, Cd44 and Cd133) were significantly upregulated in the YC-
treated group (Fig. 3L).

To further confirm that YC stimulated growth of transplanted
hepatocytes via dedifferentiation, the global gene expression
profiles in the livers were compared. Gene set-enrichment
analysis showed there was a clear enrichment of genes related
to cell cycle regulation, stem cell proliferation and somatic stem
cell population maintenance in the td-hepa-YC group compared
to the td-hepa-vehicle group at D28 (Fig. S3A). Transcriptomic
comparison was also carried out among Fah-/- (D0, before NTBC
removal), td-hepa-vehicle and td-hepa-YC groups at D28 (Fig.
S3B). Genes related to cell cycle regulation, stem cell prolifera-
tion and somatic stem cell population maintenance were upre-
gulated in livers receiving td-hepa transplantation and were
even higher in the YC-treated group (Fig. S3B).
Combination of Y27632 and CHIR99021 does not affect
hepatocyte engraftment and maturation
At D56, the surviving transplanted mice had been treated with
vehicle or YC for 56 days, or treated with YC for 28 days and then
treated with vehicle for another 28 days (Fig. 3A). The livers from
all three groups at D56 were as normal as the Alb-td-mice (Fig.
S4A), td-hepa repopulated more than 95% of the liver in these
animals (Fig. S4A). The highly increased serum levels of AST, ALT,
ALP and total bilirubin after NTBC withdrawal were almost
returned to normal after transplantation (Fig. S4B). The repo-
pulated td-hepa in Fah-/- mice were almost 100% positive for Fah,
Albumin and Cyp1a2 staining (Fig. S5A-C). The repopulated td-
hepa expressed pericentral marker Cyp2e1 only in the peri-
central region (Fig. S5D) , in line with previous studies.24 At D56,
the transplanted td-hepa in Fah-/- mice were negative for HPC
markers AFP and Dlk1 staining (Fig. S5E and F).

Successful hepatocyte transplantation requires efficient
engraftment (typically within 3 days after transplantation) and
then repopulation.25 A previous study25 has demonstrated that
blocking macrophage-mediated elimination of transplanted
hepatocytes facilitates engraftment and later-on repopulation.
We also assessed whether YC treatment affects hepatocyte
engraftment. Fah-/- mice receiving td-hepa were treated with YC
or vehicle for 3 days and the engraftment of td-hepa did not
show a significant difference between YC and vehicle groups
(Fig. S6A and S6B). Taken together, these results indicate that YC
treatment does not affect the engraftment stage and the
staining of Fah and AFP in frozen liver sections of td-hepa-transplanted Fah-/-

and AFP staining in (K). Nuclei were stained with Hoechst 33342. Scale bars
udent’s t test unless specified otherwise).
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maturation after repopulation, but only affects the proliferation
stage.

Netarsudil and LY2090314 promote hepatocyte proliferation
in vitro and repopulation in vivo
Y27632 and CHIR99021 have not been tested in clinical studies.
For possible future clinical application, we aimed to identify an
effective combination of available drugs. Netarsudil (N) is also a
ROCK inhibitor which is used to treat open-angle glaucoma in
the clinic,26 and LY2090314 (L) is a WNT agonist which has
been tested in phase II clinical trials to treat leukemia.27 So, we
tested the combination of different concentrations of N (0 to 0.1
lM) and L (0 to 3 lM) in hepatocyte culture (Fig. S7A), and the
combination of N at 0.1 lM and L at 1 lM yielded the best
result (Fig. S7B and C), so this NL combination was used for
further studies. The primary hepatocytes cultured in NL grow
rapidly (Fig. 4A,B). The proliferating cells at D14 showed similar
morphology as YC-iHPCs and expressed high levels of cell cycle
genes (Cdc20, CyclinB1, Cdk1, Pcna and Bcl2) and HPC genes (Afp,
Ck19, Epcam, Gata4, Cd34, Cd44, Cd133), so these cells were
named NL-iHPCs (Fig. 4C). After culturing in HMM for 7 days,
the NL-iHPCs could be differentiated into mature hepatocytes
(NL-iMHs, Fig. 4D). Immunofluorescence staining revealed that
NL-iMHs were highly positive for HNF4a and albumin at levels
comparable to primary hepatocytes (Fig. 4E,F). Corresponding
doses of N (0.3 mg/kg) and L (3 mg/kg) were then tested in
Fah-/- mice by oral administration in the same way as YC (Fig.
3A), but with all mice sacrificed at D28. Similar to YC treat-
ment, Fah-/- mice receiving td-hepa and then treated with NL
(td-hepa-NL) showed significantly less body weight loss and no
animal death compared to the td-hepa-vehicle group, which
already showed significant therapeutic effect compared to the
sham-vehicle group (Fig. 4G). Serum levels of AST, ALT, ALP and
total bilirubin were further reduced by the treatment of NL in
mice receiving td-hepa transplantation (Fig. 4H), and the
repopulated td-hepa in NL-treated mice were significantly
more abundant than in the vehicle-treated group (Fig. 4I,J).
Immunofluorescence staining revealed that the repopulated td-
hepa at D28 were almost 100% positive for Fah staining, and the
levels were similar in both NL- and vehicle-treated groups (Fig.
4K,L), but the AFP level was significantly higher in repopulated
td-hepa in the NL-treated animals (Fig. 4K,L). Taken together,
these results indicate that the drug combination NL could
enhance the repopulation of hepatocytes in vivo by promoting
the reprogramming of hepatocytes into HPCs.
Discussion
Herein, we demonstrate that transplanted hepatocytes can un-
dergo dedifferentiation to HPCs and then convert back to a
mature state after repopulation. Small molecules that can induce
hepatocyte to HPC conversion in vitro can be used to stimulate
the same process in vivo after hepatocyte transplantation, facil-
itating growth and repopulation. It is also possible that the same
strategy can be used to stimulate in situ liver regeneration in
various types of liver injury if hepatocyte dedifferentiation is the
major route of regeneration.

However, whether the regeneration of the liver after various
types of injury requires hepatocyte-HPC-hepatocyte conversion
remains to be debated. In partial hepatectomy (PHx), a hepatocyte
fate-tracing study has shown that about 98% of newly formed
JHEP Reports 2023
hepatocytes were derived from preexisting hepatocytes, and that
the remaining small fraction might be derived from preexisting
HPCs.28 A recent study using single-cell RNA-sequencing and
ATAC-sequencing showed that after PHx, some hepatocytes ac-
quired chromatin landscapes and transcriptomes similar to fetal
hepatocytes, suggesting dedifferentiation to HPCs.29 Liver regen-
eration in models of carbon tetrachloride-induced acute or
chronic injury has been shown to be attributable to the prolifer-
ation of mature hepatocytes.30 In another toxin-induced liver
injury study, genetic labeling suggested that hepatocyteswere the
source for hepatocyte renewal and regeneration,9 although
whether these hepatocytes pass through a HPC stage remains
unclear. Another study, based on a 3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC) diet-induced model of liver injury, indi-
cated that mature hepatocytes may convert into cholangiocyte-
like cells, which serve as hepatic progenitors for clonal prolifera-
tion and can then differentiate into functional hepatocytes.10

Another study also reported that bipotential adult liver pro-
genitors are derived from chronically injured mature hepato-
cytes.12 It seems hepatocyte toHPC conversion is a rather common
phenomenon after liver injury and may facilitate regeneration. In
our transplantation model, it was very clear that HPC markers
gradually increased and peaked at D30 and, at that time point,
most of the transplanted cells expressed AFP, indicating the con-
version of hepatocytes to HPCs, accompanying cell growth. So,
promoting hepatocyte dedifferentiation may also facilitate the
regeneration of the liver following other injuries.

A number of pathways have been proposed to drive hepato-
cyte to HPC dedifferentiation in vivo, including Notch, WNT and
YAP signaling pathways. One study using mice with a liver-
specific deletion of RBP-Jj (an essential component of the ca-
nonical Notch pathway) has demonstrated that Notch signaling
is required for hepatocyte reprogramming under DDC diet-
induced liver injury.31 Hes1, a target gene of RBP-Jj, is also
important for the conversion of hepatocytes into primitive
ductular cells in DDC-treated chronically injured livers.32 Con-
ditional knockout of Ctnnb1 has been shown to reduce the
number of HPCs in DDC diet-induced liver injury, demonstrating
that the WNT/b-catenin pathway plays a key role in the prolif-
eration of HPCs.33 Similarly, Ctnnb1 overexpression results in a
higher number of proliferating HPCs in DDC diet-induced liver
injury.34 The YAP-driven transcriptional program has also been
reported to be crucial for the process of liver regeneration after
DDC injury and specifically for the reprogramming of hepato-
cytes towards a progenitor, biliary-like fate.35 Overexpression of
active YAP in hepatocytes may drive reprogramming via Notch2
transcriptional regulation, suggesting that YAP-Notch is indeed a
crucial axis for this process.36

Many of the compounds/supplements used to induce in vitro
hepatocyte to HPC conversion also target these pathways. In our
study, CHIR99021 and LY2090314 are inhibitors of GSK-3b, which
may lead toWNTpathway activation. Activation ofWNT/b-catenin
signaling has also been reported to promote hepatocyte prolifer-
ation and liver regeneration in PHx, by upregulating cell cycle
regulators.37 Y27632 and Netarsudil are ROCK inhibitors. ROCK
regulates cellular growth, adhesion, migration, metabolism, and
apoptosis through control of actin cytoskeletal assembly and cell
contraction.38 There are limited reports on the direct role of the
ROCK pathway in inducing hepatocyte to HPC dedifferentiation.
However, ROCK inhibitors have now been recognized as useful
tools to promote the survival of multiple types of stem cells.39
8vol. 5 j 100670



Up to now, we have observed Fah-/- mice receiving td-hepa for
170 days (the first 56 days receiving YC treatment) and found
that the livers of these mice are normal. But we believe the safety
of such treatment should be assessed in large-scale and long-
JHEP Reports 2023
term experiments in the future. In conclusion, drugs/conditions
promoting hepatocyte dedifferentiation may promote the
growth of transplanted hepatocytes in vivo and may facilitate the
application of hepatocyte therapy.
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