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Abstract The basolateral amygdala complex (BLA), extensively connected with both local

amygdalar nuclei as well as long-range circuits, is involved in a diverse array of functional roles.

Understanding the mechanisms of such functional diversity will be greatly informed by

understanding the cell-type-specific landscape of the BLA. Here, beginning with single-cell RNA

sequencing, we identified both discrete and graded continuous gene-expression differences within

the mouse BLA. Via in situ hybridization, we next mapped this discrete transcriptomic

heterogeneity onto a sharp spatial border between the basal and lateral amygdala nuclei, and

identified continuous spatial gene-expression gradients within each of these regions. These

discrete and continuous spatial transformations of transcriptomic cell-type identity were

recapitulated by local morphology as well as long-range connectivity. Thus, BLA excitatory neurons

are a highly heterogenous collection of neurons that spatially covary in molecular, cellular, and

circuit properties. This heterogeneity likely drives pronounced spatial variation in BLA computation

and function.

Introduction
The amygdala is a brain region that governs a variety of functions and behaviors (Janak and Tye,

2015). Classically, the amygdala has been studied for the role it plays in acquisition and expression

of conditioned fear memory (Fanselow and LeDoux, 1999; Maren and Quirk, 2004), with more

recent evidence also implicating this brain region to be involved in other aversive states like anxiety

(Daviu et al., 2019). Complementing this work examining the role of the amygdala in negative

valence settings, it is also becoming increasingly apparent that the amygdala participates in appeti-

tive and reward-based behavior (Baxter and Murray, 2002; Wassum and Izquierdo, 2015). The

mechanisms by which this single brain region mediates such a variety of functions is unclear.

One reductionist approach to understanding amygdala computation lies in identifying functional

contributions of specific amygdalar regions (Beyeler and Dabrowska, 2020). The basolateral amyg-

dala complex (BLA) is one region that has received particular attention, in large part due to its high

degree of reciprocal long-range connectivity with other brain regions (Amir et al., 2018; Janak and

Tye, 2015; Little and Carter, 2013; McGarry and Carter, 2017; Senn et al., 2014). This anatomical

arrangement suggests a powerful role for the BLA in orchestrating a variety of long-range computa-

tions, and moreover, enables circuit-specific experimental access for mapping circuits onto function

and behavior (Tovote et al., 2015). Harnessing this experimental tractability, a body of work has

emerged demonstrating that BLA projections to different downstream regions control of a range of
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diverse, and sometimes bidirectional, functional and behavioral phenotypes (Beyeler et al., 2018;

Beyeler et al., 2016; Burgos-Robles et al., 2017; Felix-Ortiz et al., 2013; Felix-Ortiz et al., 2016;

Felix-Ortiz and Tye, 2014; Herry et al., 2008; Kim et al., 2013; Namburi et al., 2015; Tye et al.,

2011).

One central consideration for interpreting circuit-based manipulations is understanding the extent

to which BLA neurons can be considered to be an intrinsically homogeneous population

(Namburi et al., 2015; Zirlinger et al., 2001). In principle, differential behavioral effects following

circuit-specific BLA manipulations may simply reflect different downstream readouts of otherwise

identical BLA inputs. Conversely, and not mutually exclusively, such differential behavior could also

reflect variable intrinsic BLA neuron identity that conveys different long-range information indepen-

dent of downstream readout. Indeed, as different BLA projections can emanate from different gross

geographic locations (Beyeler et al., 2018; McGarry and Carter, 2017), there exists a potential

organizational substrate wherein projection target and intrinsic identity of BLA neurons might spa-

tially covary.

One perspective that can provide comprehensive insight into BLA neuronal identity is from tran-

scriptomic ‘cell typing’, wherein cells with similar gene-expression properties can be identified and

mapped onto higher order structural and functional roles (Cembrowski, 2019; Lein et al., 2017b;

Zeng and Sanes, 2017). This approach has proven useful for deciphering cell-type-specific organiza-

tion and operation in a wide variety of other brain regions, especially in cases where spatial variation

in gene expression can be mapped to spatial variation in higher order properties (e.g. morphology,

connectivity) (Cembrowski et al., 2018a; Cembrowski and Spruston, 2019; Economo et al., 2018;

Lein et al., 2017a; Mandelbaum et al., 2019; Phillips et al., 2019; Wu et al., 2017). Thus, applica-

tion of transcriptomic cell typing to the BLA has the potential to inform cell-type-specific identity

rules and spatial organization, as well as to infer higher-order structural and functional correlates.

Here, we employed such a cell-typing approach to understand the extent and organization of het-

erogeneity within the excitatory neuronal population of the BLA. To initially assess variation within

this population, we performed single-cell RNA sequencing, identifying both coarse discrete hetero-

geneity as well as fine-scale graded variation. To map this variation in space, we used single-gene

and multiplexed in situ hybridization, mapping both discrete and graded transcriptomic variation

onto spatial axes of the BLA. Finally, leveraging this spatial heterogeneity in gene expression, we

identified similar spatial differences in BLA connectivity and morphology. Ultimately, our work dem-

onstrates that excitatory neurons of the BLA are a highly heterogeneous collection of neurons that

vary in space across molecular, cellular, and circuit properties. This prominent variation in intrinsic

BLA identity likely contributes to pronounced circuit-specific and behavioural effects. To facilitate

use of our data as a resource for future studies, we have created a web-based portal to allow easy

access and analysis of the scRNA-seq data in our study (http://scrnaseq.janelia.org/amygdala; sche-

matic: Figure 1).

Results

scRNA-seq reveals discrete gene-expression differences within the BLA
To perform scRNA-seq, we used our previously published manual approach, which facilitates capture

of excitatory neurons due to their general abundance and post-dissociation viability

(Cembrowski et al., 2018a; Cembrowski et al., 2018b). To capture BLA neurons, the BLA was

microdissected, dissociated, and individual cells were manually obtained for scRNA-seq. After subse-

quent processing and sequencing (see Methods), high-depth scRNA-seq data was obtained for 1231

excitatory neurons (5.9 ± 1.2 thousand expressed genes/cell, mean ± SD). Broadly, these scRNA-seq

profiles separated into two discretely separated groups via t-SNE visualization and principal compo-

nent analysis, with this separation recapitulated by graph-based clustering (see Methods; Figure 2A,

B). Such discrete separation was robust, as random classifiers trained on 100 randomly selected cells

(~8.1% of total dataset) was sufficient to predict near-perfect classification accuracy of the remaining

dataset (91.8% +/- 3.7% accuracy of remaining 1131 cells, N = 1000 trials, mean ± SD; Figure 2C).

This discrete separation was also seen using UMAP dimensionality reduction (Figure 2—figure sup-

plement 1A,B; Becht et al., 2019).
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Broadly, sequenced cells expressed markers of neurons in general (e.g. Snap25), as well as more

specific markers of excitatory neurons (e.g. Slc17a7, encoding Vglut1, and Camk2a; Figure 2D). As

expected, expression of markers for inhibitory neurons (e.g., Gad1 and Slc32a1) was effectively

absent. Thus, both coarse clusters of BLA cells represented excitatory neuronal populations. Such

excitatory subtypes of BLA cells were not resolved in a recently published relatively low-depth drop-

let-based scRNA-seq dataset (Zeisel et al., 2018) (see Figure 2—figure supplement 2), highlighting

the utility of our high-depth manual capture approach.

We next examined gene expression that differentiated the two clusters of excitatory neurons.

Using an adjusted p-value threshold of 0.05, we identified a total of 415 differentially expressed

genes between the two clusters. This differential expression incorporated genes that were relatively

binary in expression (‘on’ vs. ‘off’: e.g., Cplx1 and Negr1; Figure 2E), as well as genes that exhibited

expression in only a subset of neurons in the enriched cluster (e.g. Col5a2, Calb1; Figure 2E). More-

over, these differentially expressed genes encompassed a wide array of functionally relevant catego-

ries for neurons, including axon guidance and cell adhesion, ligands and receptors, calcium

handling, synapses, and transcriptional regulation (Figure 2F). These results illustrate many differen-

tially expressed genes across two BLA excitatory neuron subtypes, and suggest that this differential

expression likely maps on to higher-order functional variability.

Discrete separation in gene expression maps onto the lateral vs. basal
amygdala nuclei
We next mapped the spatial location of the two discrete clusters. To do this, we analyzed cluster-

specific marker gene expression via chromogenic in situ hybridization (ISH) data from the Allen

Mouse Brain Atlas (Lein et al., 2007; Table 1). Marker gene expression was examined across the

anterior-posterior axis of the BLA in coronal sections (Figure 3A–D), with the spatial extent of the

BLA identifiable by Slc17a7 expression (Figure 3E–F).

Figure 1. Workflow for assessing heterogeneity within the basolateral amygdala complex. (A) Atlas schematic of the basolateral amygdala complex

(BLA), schematizing microdissection for scRNA-seq. (B) Overview of scRNA-seq data, as visualized through t-SNE dimensionality reduction. Data, along

with analysis and visualization tools, available at http://scrnaseq.janelia.org/amygdala. (C) Analysis of coarse discrete heterogeneity within the BLA (see

Figures 2 and 3). (D) Analysis of fine continuous heterogeneity within the BLA (see Figures 4 and 5). (E) Spatial registration of discrete and continuous

heterogeneity (see Figure 6). (F) Higher order discrete and continuous heterogeneity within the BLA (see Figures 7 and 8).
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Figure 2. scRNA-seq analysis of coarse, discrete transcriptomic differences. (A) Overview of scRNA-seq data, as visualized through t-SNE

dimensionality reduction and colored according to cluster identity. The number of enriched genes for each cluster is provided. (B) As in (A), but with

projections onto the first two principal components. (C) Random forest classification of subsampled data. (D) Expression of known control genes.

Expression is colored from low (white) to high (red). Inset numerical values denote maximum CPM value across all cells. (E) As in (D), but with novel

cluster-enriched marker genes. (F) Functionally relevant neuronal genes that are differentially expressed between clusters. Numerical values denote

CPM values of right tick mark.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. UMAP and t-SNE dimensionality reduction recapitulate the same general organization.

Figure 2 continued on next page
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Marker genes for cluster 1 (e.g. Negr1, Ddit4l) were generally enriched in posterior sections,

occupying the lateral-dorsal regions of the BLA (Figure 3G–H). Notably, such spatial enrichment cor-

responds to the lateral amygdala (LA; Figure 3D). Conversely, expression of marker genes for cluster

2 (e.g. Cplx1, Lynx1) was generally present in the basal amygdala (BA), abutting and largely nonover-

lapping with expression for cluster one markers (Figure 3I–J). Thus, spatial registration of cluster 1

and cluster 2 indicated that these clusters corresponded to the LA and BA, respectively. Consistent

with this, the relative representation of the two clusters in the scRNA-seq dataset was similar to the

relative abundance of LA and BA neurons counted from ISH (scRNA-seq: 27% and 73% from LA and

BA neurons respectively, cf. 39% and 61% from ISH using atlas delineation of LA vs. BA).

We note that some marker genes can indeed show expression in the opposite nuclei, albeit at a

markedly reduced density (e.g. BA-enriched Cplx1 is sparsely expressed in the LA, Figure 3I). Such

lower expression density in the depleted region was similar to the overall abundance of interneurons

(Figure 3—figure supplement 1A,B), suggesting that such geographical expression ‘spill-over’

reflects interneuron labeling rather than displaced excitatory neurons. In support of this, many clus-

ter markers showed minimal spill-over expression (e.g. Ddit4l, Lynx1: Figure 3E,G; additional marker

genes: Figure 3—figure supplement 1C–F), with two-color ISH illustrating this spill-over predomi-

nantly reflected Gad1-expressing interneurons (see Figure 3—figure supplement 2).

Graded heterogeneity within the basal and lateral amygdala
Next, we examined the existence and organization of further fine-scale heterogeneity within each

cluster. To begin, we allowed finer clustering of our scRNA-seq dataset, which split the LA into two

subpopulations and the BA into four subpopulations (Figure 4A; see Materials and methods). Such

subpopulations were generally abutting and/or interspersed when projections onto the first two

principal components were examined (Figure 4B), as well as with UMAP dimensionality reduction

(Figure 2—figure supplement 1C,D), suggesting that these subpopulations might reflect graded

differences within the LA and BA rather than discrete subtypes. Reinforcing this, random forest clas-

sification was relatively error-prone, with neurons that occupied the interface of within-LA and

within-BA subpopulations being poorly classified in particular (Figure 4C).

We therefore considered the possibility that these subpopulations reflected graded, rather than

discrete, differences (Cembrowski and Menon, 2018). We first pursued this by examining heteroge-

neity within the LA, leveraging the fact that gene expression between the two subpopulations varied

substantially (e.g. 199 genes differentially expressed at padjusted <0.05; Figure 4D). Enriched genes

within a given subpopulation exhibited a high degree of gene-to-gene variation, wherein the extent

of expression of one marker gene was a poor predictor of the extent of expression in another

marker gene (Figure 4E,F). Moreover, when comparing between the two subpopulations, differen-

tially expressed genes did not exhibit a clear reciprocal boundary that classically embodies discrete

separation (Cembrowski and Menon, 2018; Figure 4E). All of these observed signatures are sug-

gestive of LA heterogeneity existing in a continuous spectrum, rather than adhering to discretely

separated populations.

In a similar fashion, we considered the four BA subpopulations, examining the 147 genes that

were enriched within individual subpopulations (Figure 4G). As with the LA, these enriched genes

exhibited high gene-to-gene variability within a subpopulation, and as well lacked reciprocal bound-

aries between subpopulations (Figure 4H,I). These findings, coupled with the fact that these subpo-

pulations were abutting and/or interleaved in dimensionally reduced spaces (Figure 4A,B) and

exhibited poor separation at interfaces (Figure 4C), suggested that borders between subpopula-

tions of the BA were graded rather than discrete.

Spatial variation within the lateral and basal amygdala
Motivated by scRNA-seq-graded variation within LA and BA clusters, we next sought to examine

whether such gradients exhibited a spatial correlate. We began with the LA, examining ISH for

markers of the two LA subpopulations (Figure 5A). Markers for the two subpopulations were

Figure 2 continued

Figure supplement 2. Comparison with previously published BLA scRNA-seq data.
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Figure 3. Differentially expressed genes show spatially discrete variation within the BLA. (A) Three-dimensional coronal volumetric rendering of the BLA

in the mouse brain. Image modified from Allen Brain Explorer (Lau et al., 2008). (B,C) As in (A), but for sagittal (B) and horizontal (C) views of the

mouse brain. Coronal sections defined in (D) are shown. (D) Coronal sections highlighting the anterior, intermediate, and posterior geometry of the

BLA. Atlas definitions of LA vs. BA are shown (modified from Paxinos and Franklin, 2004). (E) Spatial expression of Slc17a7 via chromogenic ISH across

Figure 3 continued on next page
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enriched in grossly different regions of the LA: one set of subpopulation markers (e.g. Rorb, Myl4)

was relatively enriched in the anterior and dorsal LA, whereas markers for the other subpopulation

(e.g. Cdh13, Otof) were relatively enriched in posterior and ventral LA (Figure 5B). As expected

from scRNA-seq, strict spatial boundaries between subpopulation marker genes were not apparent;

similarly, prominent gene-to-gene variability in spatial expression within a given subpopulation was

also present. In sum, such results suggest graded spatial variation of cell-type identity within the LA.

Similar spatial organizational rules, consistent with graded cell-type identity, were present within

the BA (Figure 5C,D). Marker genes for BA subpopulation one were generally enriched anterior and

medial, whereas markers for BA subpopulation two were enriched in more posterior and lateral

regions of the BA. Markers for BA subpopulation 3 and 4 showed spatial variation, wherein subpop-

ulation three was enriched medially and subpopulation four was enriched laterally. As with the LA,

no sharp spatial delineations were seen between subpopulations, and marker genes associated with

the same BA subpopulation spatially varied on a gene-to-gene basis.

Importantly, two features of this variable cell identity suggest that gene expression differences

can be largely attributed to graded baseline differences in cell type, rather than cell-state differences

driven by activity. First, most enriched genes (Figure 4D–I) are not associated with activity depen-

dence. Second, for the genes that have been associated with activity dependence (e.g. Bdnf,

Nr4a2), they exhibit different patterns of expression across cells (Bdnf vs. Nr4a2: scRNA-seq:

Figure 4H, ISH: Figure 5C,D; see also Figure 6—figure supplement 1 for within-sample mFISH

comparison). Although we cannot completely discount activity states driving some gene-expression

differences within the BLA population, the above results argue that activity-driven cell-state differen-

ces are small relative to baseline cell-type variability.

Multiplexed spatial mapping captures graded cell-type identities
From single-gene ISH, both BA and LA scRNA-seq heterogeneity can be mapped onto spatial gra-

dients of cell-type identity. However, mapping single genes within individual sections means that

gene-expression covariation within individual cells is lost. Additionally, chromogenic ISH is qualitative

in nature, which precludes quantitative analyses of gene-expression. To circumvent these limitations,

and simultaneously investigate both discrete and continuous heterogeneity with the BLA, we next

employed multiplexed single-molecule fluorescent in situ hybridization (mFISH). With this multi-

plexed approach, we mapped 12 gene-expression targets in the same tissue, providing a compre-

hensive assessment of cell-type identity and organization at single-cell resolution in space. For gene

selection, we used Slc17a7 to identity excitatory neurons, Negr1 and Cplx1 to study the putative dis-

crete spatial divide between LA and BA, and the subpopulation marker genes Nr4a2, Otof, Cdh13,

Rorb, Adamts2, Prss23, Bdnf, Slc5a5, and Nnat (Figures 2–5). Quantitative data on the expression

of each gene was obtained on a per-cell basis, via calculating the number of signal-containing pixels

normalized by the cell area (see Materials and methods).

Gene expression was mapped in anterior, intermediate, and posterior BLA sections (Figure 6A–

C, Figure 6—figure supplement 1, Video 1). To initially study putative discrete differences between

LA and BA, we derived a ‘phenotype index’ that corresponded to the relative expression of LA

marker gene Negr1 and BA marker gene Cplx1 (defined on a per-cell basis according to (ECplx1-

ENegr1)/(ECplx1+ENegr1), where E is the expression for the indicated gene). With this metric, cells

exclusively expressing Negr1 have phenotypic indices of �1, cells exclusively expressing Cplx1 have

indices of 1, and cells expressing non-zero amounts of both genes occupy intermediate values. Using

this metric to study BLA phenotypes across space, it was apparent that phenotypes sharply

Figure 3 continued

the anterior, intermediate, and posterior BLA. Scale bar: 500 mm. Inset shows scRNA-seq expression. (F) Segmentation of Slc17a7-expressing cells from

the BLA. (G,H) As in (E,F), but for Negr1 and Ddit4l, novel markers of cluster 1. For reference, locations of segmented cells are superimposed on the

location of excitatory (Slc17a7-expressing) neurons within the BLA. (I,J) As in (G,H), but for Cplx1 and Lynx1, novel markers of cluster 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Spatial organization of inhibitory marker gene expression, and additional cluster-specific marker gene expression.

Figure supplement 2. Cplx1 expression in the lateral amygdala is associated with inhibitory neurons.
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Figure 4. scRNA-seq analysis of fine, graded transcriptomic differences. (A) Overview of scRNA-seq data, as visualized through t-SNE dimensionality

reduction, at a relatively fine clustering resolution. (B) As in (A), but with projections onto the first two principal components. (C) Random forest

classification of subsampled data. For comparison, results from the coarse 2-cluster scheme are also provided in light grey. Inset illustrates rates of

misclassification on a per-cell basis, with misclassified cells typically found at the interface of fine clusters. Inset results depict averages across 1000

Figure 4 continued on next page
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transitioned across the LA-BA border (Figure 6D), with single-cell phenotypes exhibiting a bimodal

distribution concentrated at extreme phenotypic index values (Figure 6E).

We next used mFISH to visualize graded spatial changes in gene-expression and cell-type identity

within the LA and BA. To do this, a given seed cell was selected (e.g. magenta cell, Figure 6F), and

correlations of mFISH-detected gene expression were computed to all remaining cells (Figure 6F;

see Materials and methods). Distances between the seed cell and all remaining cells within the same

section were calculated, with all cells assigned a LA or BA discrete phenotype (according to a win-

ner-take-all binarization of the results of Figure 6D,E). This approach allowed the spatial profile of

gene-expression correlation to be computed for a given seed cell, and to be examined relative to

phenotypic identity (Figure 6G; see also Figure 6H,I). Averaging this process across all cells, we

identified a spatial gradient of gene expression, providing direct evidence for graded cell-type iden-

tity within BA and LA (Figure 6J). Finally, clustering of mFISH data at different resolutions recapitu-

lated both the discrete and graded cell-type identity changes, providing further evidence of these

organizational patterns within the BLA (Figure 6—figure supplement 2).

scRNA-seq and ISH map interneuron subtypes and geography
In principle, the scRNA-seq and ISH approaches used previously may also provide insight into the

inhibitory cell-type organization of the BLA. To examine this, we next analyzed the 51 interneuron

single-cell transcriptomes obtained by scRNA-seq (Figure 6—figure supplement 3A–C). Despite

the small number of cells in this dataset, this analysis identified two distinct subtypes of interneurons

that differentially expressed dozens of genes. Via chromogenic ISH, we found these subtypes occu-

pied distinct regions, with one subtype within the BLA and the other occupying the pericapsular

region (Figure 6—figure supplement 3D,E). Such results illustrate that different subtypes of neu-

rons occupy the pericapsular and interior regions of the BLA, and highlight that our high-read-depth

approach can identify heterogeneity despite surveying relatively few cells.

Long-range projections recapitulate organization of spatial
heterogeneity
As a focal point of BLA research involves long-range circuits of excitatory neurons (Janak and Tye,

2015), we next examined whether spatial gene-expression patterns we observed in the BLA mapped

to specific circuits. To do so, we used the retrograde AAV tracer rAAV2-retro (Tervo et al., 2016),

and in a given animal injected fluorescent tracers (either rAAV2-retro-GFP or rAAV2-retro-tdT) into

downstream targets of the BLA. In total, six projections were examined: auditory cortex (ACX),

nucleus accumbens (NAC), medial entorhinal cortex (MEC), ventral hippocampus (VHC), prefrontal

cortex (PFC), and the retrosplenial cortex (RSC).

Projections to the ACX and NAC recapitulated the discrete LA-BA divide that was identified tran-

scriptomically, such that ACX projections were enriched within the LA and NAC projections where

enriched in the BA (Figure 7A–H; both obeyed p<0.001 for enrichment relative to random selected

BLA neurons in N = 1000 Monte-Carlo simulations). Similarly, the remaining four projections – MEC,

VHC, PFC and RSC – all were enriched with the BA (Figure 7I–X; p<0.001 via N = 1000 Monte-Carlo

simulations). These projections furthermore exhibited spatially restricted regions reminiscent of BA

subpopulation marker gene expression (Figure 7—figure supplement 1; p<0.001 via N = 1000

Monte-Carlo simulations when comparing to cell-to-cell distances expected by random selection of

BA neurons). Thus, spatial heterogeneity was present for each BLA projection examined, consistent

with organizational rules observed at a transcriptomic level.

Figure 4 continued

simulations for 800 training cells. (D) t-SNE illustration of fine-scale clustering within the LA, with number of enriched genes shown for each

subpopulation. (E) Expression of example marker genes for the two subpopulations of LA neurons. Note high gene-to-gene variation in expression for

marker genes associated with each subpopulation. Inset numerical values denote maximum CPM value across all cells. (F) Expression of functionally

relevant genes that are enriched in each LA subpopulation. (G,H,I) As in (D,E), but for subpopulations of the BA.
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Figure 5. Graded spatial variation, within the LA and BA, of subpopulation-enriched marker genes. (A) Representative ISH images for selected LA

subpopulation-enriched genes. Scale bar: 500 mm. Insets show t-SNE visualization of scRNA-seq data for each gene. (B) Locations of segmented cells

for pairs of genes for each LA subpopulation across anterior, intermediate, and posterior sections. For reference, locations of cells are superimposed on

the location of excitatory (Slc17a7-expressing) neurons within the BLA. (C,D) As in (A,B), except for pairs of enriched genes for BA subpopulations.
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Figure 6. Multiplexed FISH simultaneously maps discrete and continuous heterogeneity. (A) Overview of mFISH in the anterior amygdala.

Scale bar: 400 mm. (B) As in (A), but for intermediate amygdala. Inset provides representative expansion, scale bar: 20 mm. (C) As in (B), but for posterior

amygdala. (D) Overview of discrete heterogeneity in the BLA, obtained by assessing relative expression of Negr1 and Cplx1 across cells. (E) Histogram

of phenotype identities for (D). (F) Illustration of gene-expression correlations for all cells, relative to the Negr1 phenotype seed cell highlighted in

magenta. (G) Correlations computed and averaged across space, relative to the magenta seed cell shown in (F). Magenta and green points represent

other cells within the posterior BLA with a binarized discrete cell-type identity. Blue and orange lines indicate binned average correlation across all cells

at 100 mm spacing for the same and opposite phenotypes. (H,I) As in (F,G), but for a Cplx1 phenotype seed cell. (J) As in (G,I), but pooling and

analyzing averages across all cells in the BLA. Blue and orange lines illustrate mean correlations to other cells of the same and opposite phenotypes,

respectively, with spread about mean indicating one standard deviation.

Figure 6 continued on next page
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Discrete morphological differences across the LA-BA axis
Finally, we leveraged our previous assays to see whether differences within cellular properties could

be observed across the LA-BA axis. In particular, we considered whether there is a difference in cell-

body size across the LA-BA border. Identifying such differences is important, as cell-body size can

strongly shape passive electronic properties, the influence of active channels in the membrane, and

biophysical processes that are shaped by surface area-to-volume ratios (Dayan and Abbott, 2001).

To begin, we examined cell-body area in our projection level dataset (N = 3–5 mice per injection

site, 12–82 cells/mouse). In doing so, we identified a precipitous decline in the cell body size of

ACX-projecting neurons, relative to projections from the VHC, MEC, PFC, NAC and RSC (p<0.005

via Mann-Whitney U test; Figure 8A,B). Of note, this drop covaried with the LA vs. BA projection

site of these neurons. For pairwise comparisons within the BA (VHC, MEC, PFC, NAC, RSC), we saw

no statistical differences in cell-body size (p>0.05 via Mann-Whitney U test for all pairwise within-BA

comparisons).

The previous results are shaped by the particular projections we examined, and thus, we next

sought to take a complementary unbiased approach to survey cell-body area of LA vs. BA neurons.

From our mFISH experiments (Figure 6), we extracted channels that corresponded to markers of

excitatory neurons (Slc17a7), LA neurons (Negr1), and BA neurons (Cplx1) (Figure 8C). Leveraging

the fact that dense Slc17a7 expression effectively acted as a cell-body fill, we examined cell-body

areas of Slc17a7-expressing neurons that were either Negr1-expressing or Cplx1-expressing (see

Materials and methods) (Figure 8D). In doing so, we again recapitulated a marked difference in cell

body size between LA and BA excitatory neurons (p<2.2�10�16 via Mann-Whitney U Test,

Figure 8E), further underscoring that a discrete cell-body size difference exists between LA and BA

excitatory neurons.

Discussion

LA and BA as distinct entities
Frequently, the LA and BA are grouped together as elements of the basolateral amygdala complex

(BLA). This aggregation is typically due to a lack of a clear cytoarchitectonic boundary between the

two nuclei in most experimental settings (e.g. DAPI counterstain). As this LA-BA divide can be chal-

lenging to practically identify, this may also suggest that the LA and BA can be functionally aggre-

gated. However, given that the amygdala is frequently referenced as a brain region that is relatively

arbitrarily named in both structure and function (Swanson and Petrovich, 1998), such a BLA gross

aggregation may conceal important underlying heterogeneity.

Indeed, a collection of disparate evidence illustrates specific features that divide the LA and BA.

Classically, the LA and BA have been partitioned with respect to histochemical stains (e.g. acetylcho-

linesterase) and the orientation of fibers (LeDoux, 2007). There is a variety of work that shows LA

and BA also exhibit differences in gene expression (Zirlinger et al., 2001), morphology (McDo-

nald, 1984; Sah et al., 2003), and behavioral recruitment (Beyeler et al., 2018; Herry et al., 2008).

Although these results argue for differences between the LA and BA, their disparate and multimodal

nature make it challenging to assess the overall degree of separability between the LA and BA. It is

also challenging to assess whether such heterogeneity emerges from continuous or discrete differen-

ces across the two nuclei.

An advantage of our transcriptomics-based analyses is that it allows complete quantification of a

given feature; that is, quantified expression of every gene in the genome. Leveraging this complete

approach, our work revealed hundreds of differentially expressed genes between the LA and BA,

producing discrete separation between the two nuclei in both gene-expression space and

Figure 6 continued

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Individual mFISH marker-gene expression in the BLA.

Figure supplement 2. Clustering of mFISH excitatory neurons.

Figure supplement 3. Interneuron subtypes resolved by scRNA-seq and chromogenic ISH.
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Figure 7. BLA projection neurons show spatially discrete and continuous cellular variation. (A) Atlas schematic showing retrograde viral injection site for

the ACX (modified from Paxinos and Franklin, 2004). (B) Representative maximum intensity projections of labeled cells within the BLA. Scale bar: 500

mm. The boundary of the BLA is shown (solid line) along with the division between the lateral and basal sub-regions (dashed line) (C). Locations of all

virally labeled cells along the A/P axis of the BLA (left to right). For reference, virally labeled cells (black) are superimposed over the position of

Figure 7 continued on next page
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geographical space (Figures 2, 3 and 6). In addition to this degree of differential expression being

numerically large, many of these genes were also central to neuronal structure and function, thus

suggesting that higher order structural and functional differences should be apparent within the

BLA. This prediction was embodied by both differences in projection targets (Figure 7) and cell-

body size (Figure 8). Taken in concert with previous findings, this work argues that excitatory neu-

rons of the BA vs. LA should be considered as intrinsically distinct entities (summary: Figure 9).

Graded spatial heterogeneity and functional implications
Our work here revealed pronounced graded transcriptomic variability in LA and BA excitatory neu-

rons (Figure 4). In principle, discrete separation of BA subtypes may emerge with sampling addi-

tional cells; however, high-depth scRNA-seq data requires relatively few cells to resolve discrete

subtypes (Figure 2C; Figure 2—figure supplement 2; Figure 6—figure supplement 3;

Cembrowski et al., 2018b; Erwin et al., 2020). Thus, this graded transcriptomic identity seems to

be a bona fide feature within the LA and BA.

Consistent with this, complementary techniques showed spatial gradients of marker-gene expres-

sion (Figure 6). Such a spatial arrangement is not necessarily expected a priori; indeed, there is evi-

dence in many other brain regions wherein prominent graded transcriptomic heterogeneity does not

have a spatial correlate (Harris et al., 2018; Stanley et al., 2020). The finding of a spatial covariate

of this gene-expression heterogeneity is important, as it facilitates histological cross-validation of

scRNA-seq data (Figures 5 and 6). Moreover, it provides a ‘Rosetta stone’ for registering and com-

paring our work to previous spatially resolved structural and function characterizations

(Cembrowski and Spruston, 2019).

In atlas parcellations of the BLA, both the BA and LA are frequently partitioned into subnuclei,

with the LA divided into the dorsolateral, ventrolateral, and ventromedial domains, and the BA

divided into anterior and posterior domains. Although such discrete parcellations are provided to

emphasize differences between these geographic regions, a body of evidence suggests that the het-

erogeneity underlying these subnuclei divisions may be spatially graded rather than discrete. For

example, dendritic morphologies change gradually across subnuclei (McDonald, 1984; Sah et al.,

2003), both the BA and LA have continua in firing patterns (Sah et al., 2003), and topographical

gradients of connectivity are present across the BLA (Beyeler et al., 2018). Similar functional corre-

lates, although typically sampled at a relatively coarser resolution in space, are also present within

the BA along the anterior-posterior axis (Bergstrom et al., 2013; Goosens and Maren, 2001;

Kim et al., 2016).

What are the potential functional advantages of such graded heterogeneity? One such answer

may be found when considering this organization with respect to the computational demands

required of the BLA. In particular, this brain region subserves neuronal and behavioural responses to

fear, anxiety, and reward (Baxter and Murray, 2002; Janak and Tye, 2015; Maren and Quirk,

2004). In all these settings, graded neural representations are likely important for ensuring graded

behavioral responses, and having a continuum in BA and LA cell-type identity could facilitate popula-

tion-level coding of graded neural representations and responses. Indeed, such an organizational

scheme is consistent with postulated graded representations within the BLA populations

(Kyriazi et al., 2018), and thus such graded identity may allow cell-type variability to help match the

space of necessary computations.

Figure 7 continued

excitatory neurons (Slc17a7-expressing cells), with cells colored to illustrate LA (magenta) and BA (green) per atlas definitions. (D) Percentage of total

labeled cells located within the LA and BA, depicted as mean ± SEM. Grey lines indicate range of values within 95% confidence intervals for the

expected number of cells in the LA and BA, via Monte Carlo simulations of random selection of excitatory neurons. E-X. As in (A–D), except for the

NAC (E–H), PFC (I–L), VHC (M–P), MEC (Q–T) and RSC (U–X) injection sites.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Spatial cellular gradients of projection neurons are present in the BLA and differ based on projection site.
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Figure 8. LA and BA neurons vary by morphology. (A) Representative images of labeled cells projecting to the

ACX, NAC, PFC, VHC, MEC, and RSC. Scale bars: 25 mm. (B) The cell-body area of virally labeled cells for each

projection site, depicted as mean ± SEM. (C) Top row: overview of mFISH signals for Slc17a7, Negr1, and Cplx1 in

the intermediate BLA. Scale bars: 300 mm. Middle, bottom rows: expansions for the LA and BA, respectively. Scale

bars: 40 mm. (D) Left: Cell-body area of Slc17a7-expressing cells segmented from (C). Middle, right: Cell-body area

Figure 8 continued on next page
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Cell-type classification: transcriptomics vs other methodologies
As our findings here leverage transcriptomics for cell-type classification, it is important to make the

distinction between transcriptomically defined cell types relative to cell types defined by other crite-

ria (Zeng and Sanes, 2017). Of particular note to the graded transcriptomic identity found here,

cells that have a continuous gene-expression identity may nonetheless be functionally distinct in

ways that are not predicted solely by transcriptomic organization (Kim et al., 2020). One such exam-

ple of this is a gene-expression threshold needed for associated protein products and function,

which can effectively impose a higher-order discrete phenotype (Cembrowski and Menon, 2018).

Thus, although transcriptomic cell-type identities constrain and inform higher order classification, a

perfect correspondence between transcriptomic and higher-order identities is not a necessity.

Figure 8 continued

of Slc17a7-expressing cells that also express Negr1 or Cplx1, respectively. (E) Cell-body area for Slc17a7-

expressing cells that also express Negr1 (magenta) or Cplx1 (green), depicted as mean ± SEM.

Table 1. List of image series used from the Allen Mouse Brain Atlas.

Gene Figure Image series

Kcng1 2-S2C 77340480

Negr1 2-S2F, 3D 692

Cplx1 2-S2I, 3F, 6-S1D 67752308

Strip2 2-S2L 72283809

Zbtb20 2-S2O 79568020

Slc17a7 3B 70436317

Ddit4l 3D 71836878

Lynx1 3F 655

Gad1 3-S1B 79556706

Slc32a1 3-S1B 72081554

Cpne8 3-S1E 73520974

Gpr88 3-S1E 79567811

Rspo2 3-S1H 71016632

Cdh9 3-S1H 72472764

Rorb 5B 79556597

Myl4 5B 72129251

Cdh13 5B 79490066

Otof 5B 73788043

Prss23 5E 70634118

S100b 5E 79591593

Nnat 5E 77887874

Slc24A2 5E 71924238

Adamts2 5E 71924385

Etv1 5E 72119595

Bdnf 5E 79587720

Nr4a2 5E 732

Slc6a1 6-S1D 79591685

Tshz1 6-S1D 72129289

Meis2 6-S1D 1231
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This point has particular relevance for consid-

eration of within-BA differences, wherein pub-

lished work argues for the discrete separation

within the BA nucleus. Here, magnocellular and

parvocellular populations have been proposed

(Alheid, 2003). Putative markers for these populations, Ppp1r1b and Rspo2, have been identified

from bulk microarray analysis and associated with different behavioral recruitment and function

(Kim et al., 2016). Within our scRNA-seq data, Ppp1r1b and Rspo2 are enriched in opposite ends of

the BA transcriptomic spectrum and do not conform to discrete subtypes. Thus, Ppp1r1b and Rspo2

populations may reflect graded subtypes at a transcriptomic level, with biological nonlinearities pro-

ducing apparently step-wise differences in high-order function and behavior.

Implications for circuit manipulations
In previous work, projections from the LA and BA have been associated with different long-range

targets (Beyeler et al., 2018; Hoover and Vertes, 2007; McGarry and Carter, 2017; Reppucci and

Petrovich, 2016; Senn et al., 2014; Tsukano et al., 2019; Yang et al., 2016). At a finer spatial scale

within the BA, gradients that vary upon projection site have also been reported (Beyeler et al.,

2018; McGarry and Carter, 2017). Our study, revealing discrete and continuous differences in cell-

type identity (Figures 2–6) that differentially map onto these long-range targets (Figure 7), shows

that neurons comprising these projections encompass an intrinsically diverse collection of cells.

As long-range projections are frequently leveraged for BLA circuit-specific manipulations, our

work here emphasizes that care should be taken to avoid confounds when comparing manipulations

of different circuits. In particular, prominent heterogeneity within the BLA excitatory neuron popula-

tion indicates that manipulations of different circuits target BLA neurons that can vary in intrinsic

properties. In principle, such heterogeneity may make manipulation efficacy inherently variable

between projections, especially for methodologies that rely on intrinsic properties of neurons to

exert effects (e.g. DREADDs: Roth, 2016). A means of circumventing such limitations, and comple-

menting existing circuit-specific manipulations, lies in examining intrinsic activity of the BLA across

space agnostic to projection target. Such an approach leverages the spatial heterogeneity identified

Video 1. Overview of mFISH marker gene expression

in the posterior BLA.

https://elifesciences.org/articles/59003#video1

Figure 9. Summary of heterogeneity within the

basolateral amygdala. Examples of spatially variable

gene-expression, circuit, and cellular properties of

excitatory neurons in the basolateral amygdala, as

resolved in this study.
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in our study, and will help to identify how spatial gene-expression differences map onto functional

variability. In combination within circuit-specific manipulations, this work will provide an important

understanding of how intrinsic- and circuit-level operations interact to evoke the wide array of BLA-

associated phenotypes (Janak and Tye, 2015).

Informing and interpreting future experiments
Our work here has revealed the spatial transcriptomic organization of excitatory neurons in the BLA.

For future studies, this spatial framework can effectively act as a ‘Rosetta Stone’, wherein different

spatially resolved experimental modalities can be compared and integrated. In addition to this cor-

relative work, our work here also reveals genes that can be leveraged to access and manipulate BLA

cells (e.g. via transgenic mice), as well as molecular targets that can be manipulated to causally relate

specific gene-expression products to computation and function (e.g. via CRISPR-Cas). Thus, our find-

ings here will help to inform a broad range of observational and interventional experiments in future

work.

To facilitate the continued use of our data, we have hosted our scRNA-seq data online in conjunc-

tion with analysis and visualization tools (http://scrnaseq.janelia.org/amygdala). This web portal will

help guide further exploration and hypothesis generation from these complex data, with associated

tools allowing this analysis to be conducted in a straightforward and intuitive fashion. The combina-

tion of this accessibility and utility will help further exploration of cellular and molecular heterogene-

ity of the BLA, and how this heterogeneity relates to computation, function, and behavior.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based reagent

Cplx1 ISH
probe

Advanced Cell
Diagnostics

482531-C3 Two-color
FISH

Sequence-
based reagent

Gad1 ISH
probe

Advanced Cell
Diagnostics

400951-C2 Two-color FISH

Sequence-based reagent Nr4a2 ISH
probe

Advanced Cell
Diagnostics

423351-T1 Multiplexed FISH

Sequence-based reagent Otof ISH
probe

Advanced Cell
Diagnostics

485671-T2 Multiplexed FISH

Sequence-based reagent Cdh13
ISH probe

Advanced Cell
Diagnostics

443251-T3 Multiplexed FISH

Sequence-based reagent Rorb ISH
probe

Advanced Cell
Diagnostics

444271-T4 Multiplexed FISH

Sequence-based reagent Adamts2
ISH probe

Advanced Cell
Diagnostics

806371-T5 Multiplexed FISH

Sequence-based reagent Prss23
ISH probe

Advanced Cell
Diagnostics

447921-T6 Multiplexed FISH

Sequence-based reagent Bdnf
ISH probe

Advanced Cell
Diagnostics

424821-T7 Multiplexed FISH

Sequence-based reagent Slc5a5 ISH probe Advanced Cell
Diagnostics

487721-T8 Multiplexed FISH

Sequence-based reagent Slc17a7 ISH probe Advanced Cell
Diagnostics

416631-T9 Multiplexed FISH

Sequence-based reagent Nnat ISH probe Advanced Cell
Diagnostics

432631-T10 Multiplexed FISH

Sequence-based reagent Negr1 ISH probe Advanced Cell
Diagnostics

806361-T11 Multiplexed FISH

Sequence-based reagent Cplx1 ISH probe Advanced Cell
Diagnostics

482531-T12 Multiplexed FISH

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

R https://www.r-
project.org

SCR_001905 -

Software,
algorithm

Seurat https://satijalab.
org/seurat/

RRID:SCR_007322 -

Software,
algorithm

Fiji https://imagej.
net/Fiji

RRID:SCR_002285 -

Software, algorithm Prism https://www.
graphpad.
com/scientific-
software/prism/

RRID:SCR_002798 -

Other AAV-SL1-
CAG-tdT

Janelia Viral
Core

- -

Other AAV-SL1-
CAG-GFP

Janelia Viral
Core

- -

Strain, strain
background Mus musculus

Penk-cre Janelia
Research
Campus

- -

Experimental procedures were approved by the Animal Care Committee at the University of Brit-

ish Columbia and the Institutional Animal Care and Use Committee at the Janelia Research Campus.

Single-cell RNA sequencing data acquisition and analysis
The single-cell RNA-seq dataset (5.9 ± 1.2 thousand expressed genes/cell from 123 ± 65 thousand

reads/cell, mean ± SD) was generated according to a previously published protocol

(Cembrowski et al., 2018a; Cembrowski et al., 2018b). To capture individual neurons from the

basolateral amygdala (BLA), brain sections were obtained from five mature (�8 weeks of age) male

C57BL/6 mice. Three of these mice were WT, whereas the remaining two two mice were double-

transgenic Penk2-cre x Ai14 mice (Madisen et al., 2010), used to leverage tdTomato expression to

visually identify the BLA to facilitate complete microdissection (Oh et al., 2014). Cells extracted

from both genetic backgrounds clustered together, indicating no effect of genetic background nor

incomplete microdissection of BLA in WT mice. In all cases, the BLA was microdissected and dissoci-

ated, with manual purification (Hempel et al., 2007) used to capture cells and place into eight-well

strips. For all datasets, library preparation, sequencing, and initial count-based quantification

(Dobin et al., 2013; Trapnell et al., 2009) was performed according to previous methods

(Cembrowski et al., 2018a). No blinding or randomization was used for the construction or analysis

of this dataset. No a priori sample size was determined for the number of animals or cells to use;

note that previous methods have indicated that several hundred cells from a single animal is suffi-

cient to resolve heterogeneity within excitatory neuronal cell types (Cembrowski et al., 2018a;

Cembrowski et al., 2018b). Raw and processed scRNA-seq datasets have been deposited in the

National Center for Biotechnology Information (NCBI) Gene Expression Omnibus under GEO:

GSE148866.

Computational analysis was performed in R (RRID:SCR_001905) (R Development Core Team,

2008) using a combination of Seurat (RRID:SCR_007322) (Satija et al., 2015) and custom scripts

(Cembrowski et al., 2018a). Cells with <10,000 total counts were excluded from analysis (n = 69 of

1370 initial cells). For all remaining cells, counts were converted to Counts Per Million (CPM) for sub-

sequent analysis. Putative non-neuronal cells (n = 19) were eliminated from the dataset by rejecting

cells that exhibited CPM < 250 for Snap25, a pan-neuronal marker. For examining excitatory neurons

(Figures 2–5), interneurons (n = 51) were eliminated from the dataset by rejecting cells that exhib-

ited CPM > 100 for Gad1, an interneuron marker. Variable genes (n = 108) used for PCA were

obtained with Seurat via FindVariableGenes(mean.function = ExpMean, dispersion.

function = LogVMR, x.low.cutoff = 0.125, x.high.cutoff = 3, y.cutoff = 1). Clusters were obtained

with Seurat via FindClusters(reduction.type = ‘pca’, dims. use = 1:10), using resolution = 0.2 to

obtain two coarse discrete clusters and resolution = 0.8 to examine finer-scale heterogeneity. For
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examining interneurons (Figure 6—figure supplement 3), 51 interneurons were retained (via

CPM > 100 for Gad1), and variable genes and clusters were obtained via x.low.cutoff = 0.0125, x.

high.cutoff = 3, y.cutoff = 3, resolution = 1, and dims. use = 1:2 parameters. In all cases, subpopula-

tion-specific enriched genes obeying pADJ < 0.05 were obtained with Seurat via FindMarkers(),

where is the pADJ is the adjusted p-value from Seurat based on Bonferroni correction. Functionally

relevant differentially expressed genes were obtained using FindMarkers(), allowing for both cluster-

specific enriched and depleted genes obeying pADJ < 0.05. t-SNE visualization van der Maaten and

Hinton, 2008 used perplexity = 30 (interneuron analysis: 20), with 1000 iterations (sufficient for con-

vergence) on the default seed. Qualitatively similar results were obtained for other seed values.

UMAP visualization (Becht et al., 2019) was obtained via the R UMAP package, using default param-

eters, performed on the scaled Seurat dataset with highly variable genes. In total, this approach and

associated parameters provided discrete clusters that were consistent with dimensionally reduced

visualizations and robust to downsampling, and predicted organizations that were validated by com-

plementary histological methodologies (Cembrowski and Spruston, 2017).

When plotting gene expression using t-SNE, color ranges from white (zero expression) to red

(maximal expression), plotted logarithmically, with the maximum CPM value across all cells provided

as an inset. For random forest classification (ClassifyCells() in Seurat), random subsets of graph-

based clustered cells were taken (n = 50, 100, 200, 400, or 800 cells; n = 100 random subsets for

each number of cells), and used to predict the cluster identities of the remaining cells in the dataset.

To compare our work to a recently published scRNA-seq dataset (Zeisel et al., 2018), we down-

loaded the ‘TEGLU22 (Excitatory neurons, amygdala)’ dataset from this publication (14,897 total

cells). A minimum of 500 total counts was required to initially retain 13,826 total cells from this data-

set (1.2 ± 0.7 thousand genes expressed/cell). Interneurons and non-neuronal cells were excluded

via the same thresholds used in our scRNA-seq data, and excitatory neurons were further selected

for by requiring CPM > 100 for the excitatory neuronal marker Slc17a7 for these remaining cells,

resulting in 1975 total cells used for analysis. Subsequent analysis and visualization, including extrac-

tion of variable genes and clusters, was performed identically to our in-house dataset.

Chromogenic in situ hybridization
All chromogenic ISH images were obtained from the publicly available Allen Mouse Brain Atlas

(AMBA) (Lein et al., 2007). At least one coronal section was selected for analysis within each of the

anterior (�0.82 to �0.94 from bregma), intermediate (�1.34 to �1.70 from bregma) and posterior

(�1.82 to �2.06 from bregma) regions of the BLA. To facilitate segmentation of expressing cells,

images were processed with a gaussian blur filter, binarized with a manually determined intensity

threshold, and adjacent cells separated with a watershed function. The locations of segmented cells

between 100–400 mm2 were then measured within the BLA.

To spatially register cells to a common orientation, the BLA within each image was traced using

six points, and then rotated and translated onto a BLA template using a procrustes transformation in

R without scaling (Beyeler et al., 2018). The transformation was then applied to the location of seg-

mented cells for the respective image, and then segmented cells were plotted relative to the dorsal-

most point of the template. In a minority of cases, a small translation of segmented cells (typi-

cally <200 mm) was subsequently performed manually if the procrustes translation misaligned BLA

borders. The number of cells within different sub-regions of the BLA were obtained after transforma-

tion of segmented cells. Sub-regional boundaries were created for each of the anterior, intermediate

or posterior BLA templates, and analyses of all images within a respective BLA anterior-to-posterior

region used the same sub-regional boundaries.

Fluorescent in situ hybridization
Two-color fluorescent ISH was performed according to previous protocols (Cembrowski et al.,

2016), with extensions for multiplexed approaches (described below). All probes were purchased

from Advanced Cell Diagnostics (Hayward, CA) and were as follows: Cplx1 (482531-C3) and Gad1

(400951-C2) for two-color FISH, and Nr4a2 (423351-T1), Otof (485671-T2), Cdh13 (443251-T3), Rorb

(444271-T4), Adamts2 (806371-T5), Prss23 (447921-T6), Bdnf (424821-T7), Slc5a5 (487721-T8),

Slc17a7 (416631-T9), Nnat (432631-T10), Negr1 (806361-T11), and Cplx1 (482531-T12) for 12-chan-

nel multiplexed FISH.
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For multiplexed FISH, 12 probes with unique detection tails were hybridized to tissue and subse-

quently amplified. Cleavable fluorophores specifically targeting probes 1–4 were then added, the tis-

sue stained for DAPI, and coverslipped with ProLong Gold antifade mounting medium. Within 1–2

days, tissue was imaged with a Leica SP8 confocal microscope with a 63x objective. After this first

round of imaging, the coverslip was removed by soaking slides in 20x SSC, and the fluorophores

cleaved via two consecutive incubations in a 10% TCEP cleaving solution. Cleavable fluorophores

specific to probes 5–8 were then added, and the tissue was coverslipped and imaged. This same

procedure was then repeated for probes 9–12. Each round of imaging visualized DAPI in the 405

channel, and the subsequent four probes in either Alexa 488, ATTO 550, ATTO 647N, or Alexa 750.

After the three rounds of imaging to visualize probes 1–4 (round 1), 5–8 (round 2), and 9–12

(round 3), respectively, the images were computationally analyzed via registration, segmentation

and quantification from in-house code in Fiji (Schindelin et al., 2012) (RRID:SCR_002285). The regis-

tration code aligned the three rounds of imaging in X, Y, and Z coordinates by taking the maximum

projections of the DAPI signal from each round, and via a fast Fourier transform (FFT), identified off-

sets and translated the DAPI and probe signals from the second round in X and Y. To align in the

Z-axis, a slice through the original DAPI stacks was taken and coordinates for translation in Z were

once again identified via FFT offset. These steps were repeated to align the third round to the first.

Segmentation involved taking the maximum projection of the DAPI signal for the first round and

manually thresholding to select nuclei from background. Fiji’s Watershed algorithm was run to sepa-

rate any overlapping cells and then ROIs were selected using the Analyze Particles Fiji function. ROIs

with an area less than 40 mm (typically reflecting partial cells) or greater than 200 mm (typically

reflecting multiple abutting cells) were discarded, and the remaining ROIs dilated by a value of 5 mm

to encompass the entire soma. Finally, quantification involved thresholding each of the 12 probe

images to separate signal from background. Signals in the 750 channel (Rorb, Slc5a5, Cplx1) were

quantified after applying a smoothing filter to reduce background. Using the ROIs selected from

segmentation, the number of expressing pixels for each probe were summed and normalized by the

total pixel area of the cell, producing values of counts per area (CPA).

The final dataset constituted three sections (anterior, intermediate, and posterior) from one WT

mouse, with analysis of segmented, quantified cells proceeding as follows. First, non-excitatory neu-

rons were removed by requiring Slc17a7 expression (threshold = 0.004 CPA). Cell-to-cell correlations

were calculated as Pearson coefficients. For binary Cplx1 vs. Negr1 phenotyping, based upon the

strongly bimodal structure of Cplx1 vs. Negr1 expression (Figure 6E), a winner-take-all strategy was

used to assign each excitatory neuron to either Cplx1 or Negr1 phenotypes by identifying the gene

with greater expression. Excitatory neurons that expressed neither gene were excluded from any

phenotype-associated analysis (n = 364 cells). For computing cell area, maximum projection images

of Slc17a7 from anterior, intermediate, and posterior sections were segmented in Fiji, similarly to

DAPI. However, prior to thresholding a Gaussian blur filter was applied, but no watershed algorithm

was used to prevent incorrect segmentation of cells due to the punctate in situ signal. ROIs with an

area less than 75 mm2 or greater than 450 mm2 were discarded, and both Negr1 and Cplx1 signals

then underwent quantification via the same approach mentioned previously. Clustering analysis

pooled data from the anterior, intermediate, and posterior BLA sections. This aggregate data set

was normalized such that CPA values for each cell added to equal 1. Hierarchical clustering of nor-

malized data was performed in R, with a Euclidean distance metric and Ward’s D2 clustering

method. t-SNE (perplexity = 35) was used to visualize the data in dimensionally reduced space, with

resultant plots colored according to section position or cluster identity.

Viral tracing experiments and analysis
Mice underwent stereotaxic surgery, wherein either AAV-SL1-CAG-GFP or AAV-SL1-CAG-tdT was

injected into a given region with known afferent input from the BLA; namely, the prefrontal cortex

(A/P 1.7, M/L 0.60, D/V �2.3), nucleus accumbens (1.34, 1.0,–5.2), ventral hippocampus (�3.55,

3.25,–4.00), auditory cortex (�2.5, 4.5,–2.0), medial entorhinal cortex (�4.6, 3.3,–2.6) or retrosplenial

cortex (�1.5, 0.5,–0.5). Dorsal/ventral coordinates were measured from the skull at site of injection

(PFC, NAC, VHC), or from the pial surface (MEC, RSC). At each site, 100 nL of virus was injected

over 2 min, and the needle remained at the injection site for 3 min post-injection. During surgery,

mice were placed under isoflurane anesthesia, and received a local injection of bupivicane along the

incision site. The day of surgery, and 2 days following surgery, mice received daily injections of
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Metacam for post-operative care. Mice were perfused (10 mL of PBS, followed by 50 mL of 4% PFA)

and brains extracted 5–9 days following surgery to permit sufficient expression of GFP or tdT.

Brains were cryoprotected in 30% sucrose in PBS for at least 48 hr, and sectioned at either 20 mm

or 100 mm using a cryostat. Sections were mounted onto glass slides and either stored at �80˚C until

use (20 mm sections), or were processed the following day (100 mm sections). Sections were counter-

stained with DAPI (1:1000) for 10 min, and coverslipped with PVA-Dabco mounting medium. The

location and size of viral-labeled cell bodies was determined manually. As with chromogenic in situ

hybridization, locations of labeled cells were translated onto a common BLA template. For the PFC,

MEC, ACX and VHC, the location of 28–168 cells were measured per animal. For the NAC, the loca-

tion of 260–469 cells were measured per animal, given a higher density of virally labelled cells com-

pared to the other injection sites. For the RSC, 12–32 cells were measured per animal, given a lower

number of virally labeled cells compared to other injection sites.

To establish a null model to compute statistically enriched projections from LA or BA, we used

Slc17a7 (excitatory) neurons from LA and BA to establish chance estimates. For a given projection,

N cells were selected at random, where N denotes the total number of cells from experimental data

(summed across animals for a given projection). This random selection was repeated 1000 times,

and the mean and 95% confidence intervals were calculated across iterations. Projections were

denoted as statistically enriched if the empirically observed number fell outside of the 95% confi-

dence interval.

Fluorescence imaging
All mFISH histological images were acquired with a 63x objective on a SP8 white light laser confocal

microscope (Leica Microsystems, Concord, Ontario, Canada), with z-stacks with step size of 0.35 mm

were acquired for each round of imaging. Due to the large number of channels (12), final images are

shown by overlaying each channel in order from highest to lowest expression rather than by merging

channels, with all images shown depicting maximum intensity projections of the original stacks. Sin-

gle-channel aligned mFISH images are available at https://figshare.com/projects/BLA_heterogene-

ity/87476. All other histological images were acquired using a 20x objective on an LSM 880 confocal

microscope (Carl Zeiss Microscopy, Jena, Germany). Single optical sections or maximum intensity

projections are shown, with the relevant regions tiled in X and Y dimensions as needed. In some

cases, channels were postprocessed in Fiji (Schindelin et al., 2012), with brightness adjustments

applied to the entire image and/or pseudocoloring.

Statistical conventions
Central tendency and error bars denote mean ± SEM respectively, unless otherwise stated. Associ-

ated statistical parameters are reported within text or figure legends. Correlations were measured

via Pearson correlation coefficients, and statistical significance was determined via unpaired Mann-

Whitney U tests, unless otherwise stated. Statistical significance is denoted as follows: ns: p�0.05; *:

p<0.05, **: p<0.01, ***: p<0.001.
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Beyeler A, Chang CJ, Silvestre M, Lévêque C, Namburi P, Wildes CP, Tye KM. 2018. Organization of Valence-
Encoding and Projection-Defined neurons in the basolateral amygdala. Cell Reports 22:905–918. DOI: https://
doi.org/10.1016/j.celrep.2017.12.097, PMID: 29386133

Beyeler A, Dabrowska J. 2020. Chapter 3 - Neuronal diversity of the amygdala and the bed nucleus of the stria
terminalis. In: Urban J. H, Rosenkranz J. A (Eds). Handbook of Amygdala Structure and Function. Elsevier. p.
63–100.

Burgos-Robles A, Kimchi EY, Izadmehr EM, Porzenheim MJ, Ramos-Guasp WA, Nieh EH, Felix-Ortiz AC,
Namburi P, Leppla CA, Presbrey KN, Anandalingam KK, Pagan-Rivera PA, Anahtar M, Beyeler A, Tye KM.
2017. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment.
Nature Neuroscience 20:824–835. DOI: https://doi.org/10.1038/nn.4553, PMID: 28436980

Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N. 2016. Spatial Gene-Expression
gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89:351–368. DOI: https://doi.
org/10.1016/j.neuron.2015.12.013, PMID: 26777276

Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, Bas E, Spruston N. 2018a.
Dissociable structural and functional hippocampal outputs via distinct subiculum cell classes. Cell 173:1280–
1292. DOI: https://doi.org/10.1016/j.cell.2018.03.031

Cembrowski MS, Wang L, Lemire AL, Copeland M, DiLisio SF, Clements J, Spruston N. 2018b. The subiculum is
a patchwork of discrete subregions. eLife 7:e37701. DOI: https://doi.org/10.7554/eLife.37701, PMID: 30375971

Cembrowski MS. 2019. Single-cell transcriptomics as a framework and roadmap for understanding the brain.
Journal of Neuroscience Methods 326:108353. DOI: https://doi.org/10.1016/j.jneumeth.2019.108353,
PMID: 31351971

Cembrowski MS, Menon V. 2018. Continuous variation within cell types of the nervous system. Trends in
Neurosciences 41:337–348. DOI: https://doi.org/10.1016/j.tins.2018.02.010, PMID: 29576429

Cembrowski MS, Spruston N. 2017. Integrating results across methodologies is essential for producing robust
neuronal taxonomies. Neuron 94:747–751. DOI: https://doi.org/10.1016/j.neuron.2017.04.023

Cembrowski MS, Spruston N. 2019. Heterogeneity within classical cell types is the rule: lessons from
hippocampal pyramidal neurons. Nature Reviews Neuroscience 20:193–204. DOI: https://doi.org/10.1038/
s41583-019-0125-5, PMID: 30778192

Daviu N, Bruchas MR, Moghaddam B, Sandi C, Beyeler A. 2019. Neurobiological links between stress and
anxiety. Neurobiology of Stress 11:100191. DOI: https://doi.org/10.1016/j.ynstr.2019.100191, PMID: 31467945

Dayan P, Abbott LF. 2001. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural
Systems. Cambridge: Massachusetts Institute of Technology Press.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. DOI: https://doi.org/10.1093/bioinformatics/
bts635, PMID: 23104886

Economo MN, Viswanathan S, Tasic B, Bas E, Winnubst J, Menon V, Graybuck LT, Nguyen TN, Smith KA, Yao Z,
Wang L, Gerfen CR, Chandrashekar J, Zeng H, Looger LL, Svoboda K. 2018. Distinct descending motor cortex
pathways and their roles in movement. Nature 563:79–84. DOI: https://doi.org/10.1038/s41586-018-0642-9,
PMID: 30382200

O’Leary et al. eLife 2020;9:e59003. DOI: https://doi.org/10.7554/eLife.59003 24 of 27

Tools and resources Neuroscience

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148866
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148866
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148866
https://doi.org/10.6084/m9.figshare.c.5108165
https://doi.org/10.6084/m9.figshare.c.5108165
https://doi.org/10.1111/j.1749-6632.2003.tb07082.x
http://www.ncbi.nlm.nih.gov/pubmed/12724159
https://doi.org/10.1016/j.neuron.2017.12.035
https://doi.org/10.1016/j.neuron.2017.12.035
https://doi.org/10.1038/nrn875
https://doi.org/10.1038/nrn875
http://www.ncbi.nlm.nih.gov/pubmed/12094212
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1007/s00429-012-0478-2
https://doi.org/10.1007/s00429-012-0478-2
http://www.ncbi.nlm.nih.gov/pubmed/23179863
https://doi.org/10.1016/j.neuron.2016.03.004
http://www.ncbi.nlm.nih.gov/pubmed/27041499
https://doi.org/10.1016/j.celrep.2017.12.097
https://doi.org/10.1016/j.celrep.2017.12.097
http://www.ncbi.nlm.nih.gov/pubmed/29386133
https://doi.org/10.1038/nn.4553
http://www.ncbi.nlm.nih.gov/pubmed/28436980
https://doi.org/10.1016/j.neuron.2015.12.013
https://doi.org/10.1016/j.neuron.2015.12.013
http://www.ncbi.nlm.nih.gov/pubmed/26777276
https://doi.org/10.1016/j.cell.2018.03.031
https://doi.org/10.7554/eLife.37701
http://www.ncbi.nlm.nih.gov/pubmed/30375971
https://doi.org/10.1016/j.jneumeth.2019.108353
http://www.ncbi.nlm.nih.gov/pubmed/31351971
https://doi.org/10.1016/j.tins.2018.02.010
http://www.ncbi.nlm.nih.gov/pubmed/29576429
https://doi.org/10.1016/j.neuron.2017.04.023
https://doi.org/10.1038/s41583-019-0125-5
https://doi.org/10.1038/s41583-019-0125-5
http://www.ncbi.nlm.nih.gov/pubmed/30778192
https://doi.org/10.1016/j.ynstr.2019.100191
http://www.ncbi.nlm.nih.gov/pubmed/31467945
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.1038/s41586-018-0642-9
http://www.ncbi.nlm.nih.gov/pubmed/30382200
https://doi.org/10.7554/eLife.59003


Erwin SR, Sun W, Copeland M, Lindo S, Spruston N, Cembrowski MS. 2020. A sparse, spatially biased subtype of
mature granule cell dominates recruitment in Hippocampal-Associated behaviors. Cell Reports 31:107551.
DOI: https://doi.org/10.1016/j.celrep.2020.107551, PMID: 32348756

Fanselow MS, LeDoux JE. 1999. Why we think plasticity underlying pavlovian fear conditioning occurs in the
basolateral amygdala. Neuron 23:229–232. DOI: https://doi.org/10.1016/S0896-6273(00)80775-8, PMID: 103
99930

Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. 2013. BLA to vHPC inputs modulate anxiety-
related behaviors. Neuron 79:658–664. DOI: https://doi.org/10.1016/j.neuron.2013.06.016, PMID: 23972595

Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM. 2016. Bidirectional modulation of anxiety-
related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321:197–
209. DOI: https://doi.org/10.1016/j.neuroscience.2015.07.041, PMID: 26204817

Felix-Ortiz AC, Tye KM. 2014. Amygdala inputs to the ventral Hippocampus bidirectionally modulate social
behavior. Journal of Neuroscience 34:586–595. DOI: https://doi.org/10.1523/JNEUROSCI.4257-13.2014,
PMID: 24403157

Goosens KA, Maren S. 2001. Contextual and auditory fear conditioning are mediated by the lateral, basal, and
central amygdaloid nuclei in rats. Learning & Memory 8:148–155. DOI: https://doi.org/10.1101/lm.37601,
PMID: 11390634

Harris KD, Hochgerner H, Skene NG, Magno L, Katona L, Bengtsson Gonzales C, Somogyi P, Kessaris N,
Linnarsson S, Hjerling-Leffler J. 2018. Classes and continua of hippocampal CA1 inhibitory neurons revealed by
single-cell transcriptomics. PLOS Biology 16:e2006387. DOI: https://doi.org/10.1371/journal.pbio.2006387,
PMID: 29912866

Hempel CM, Sugino K, Nelson SB. 2007. A manual method for the purification of fluorescently labeled neurons
from the mammalian brain. Nature Protocols 2:2924–2929. DOI: https://doi.org/10.1038/nprot.2007.416,
PMID: 18007629
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