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Abstract: The formation of neuron networks is a process of fundamental importance for under-
standing the development of the nervous system and for creating biomimetic devices for tissue
engineering and neural repair. The basic process that controls the network formation is the growth of
an axon from the cell body and its extension towards target neurons. Axonal growth is directed by
environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical
and geometrical properties of the growth substrate. Despite significant recent progress, the steering
of the growing axon remains poorly understood. In this paper, we develop a model of axonal motility,
which incorporates substrate-geometry sensing. We combine experimental data with theoretical
analysis to measure the parameters that describe axonal growth on micropatterned surfaces: diffusion
(cell motility) coefficients, speed and angular distributions, and cell-substrate interactions. Exper-
iments performed on neurons treated with inhibitors for microtubules (Taxol) and actin filaments
(Y-27632) indicate that cytoskeletal dynamics play a critical role in the steering mechanism. Our
results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism,
in which geometrical patterns impart high traction forces to the growth cone. These results have
important implications for bioengineering novel substrates to guide neuronal growth and promote
nerve repair.

Keywords: neuron; axonal growth; neuron networks; neural repair; tissue engineering; stochas-
tic processes

1. Introduction

Neurons are the basic cells that make up the nervous system. During their growth,
neurons extend two types of processes: axons and dendrites, which navigate to other
neurons and form complex neuronal networks that transmit electrical signals throughout
the body. The extension of the axon is guided by its growth cone, a motile unit located
at the distal tip of the axon that navigates through the surrounding environment using
electrical, chemical, mechanical, and geometrical cues [1–4]. The dynamics of the growth
cone is controlled by a flexible ensemble of actin and microtubule filaments that form the
neuron cytoskeleton [1–7].

Previous research has identified many of the molecular pathways responsible for intercel-
lular signaling in the formation of neuronal networks [1–7]. It is now well-established that the
biomechanical properties of neurons are an integral part of their functional behavior and play an
essential role in normal brain development. For example, it is known that the growing axon is
capable of detecting a large variety of biochemical, mechanical, and topographical cues within
the growth environment and of directing its growth over relatively long distances (hundreds
of microns) with great precision [1–8]. To understand how neurons grow axons and dendrites
and wire up the nervous system, we need to understand how they respond to external physical
stimuli.

Much of the research into how geometric and mechanical cues affect neuronal growth has
been performed in vitro on an ensemble of neurons grown on substrates where the geometry

Biomimetics 2021, 6, 41. https://doi.org/10.3390/biomimetics6020041 https://www.mdpi.com/journal/biomimetics

https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://doi.org/10.3390/biomimetics6020041
https://doi.org/10.3390/biomimetics6020041
https://doi.org/10.3390/biomimetics6020041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomimetics6020041
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics6020041?type=check_update&version=2


Biomimetics 2021, 6, 41 2 of 14

can be controlled. These studies have shown that neurons grown on substrates with periodic
geometrical features develop different growth patterns when compared to neurons grown on
surfaces lacking a periodic geometry. Such differences include populations of axons that are
significantly longer and that tend to align their growth with preferred spatial directions [9–16].

The ability to control and direct neuronal growth in vitro has important consequences
for exploiting bioinspired designs for applications in tissue engineering, neural repair, and
in vitro–in vivo device interfaces. A major goal in neural tissue engineering is to create
controlled biologically inspired environments that promote axonal growth and reproduce
the physiological conditions found in vivo [3,5,9–11,15,17,18]. However, there are still major
challenges with respect to the ability to control and direct neuronal growth. For example,
despite recent advances, there are still key unanswered questions about the mechanisms
that control neuron biomechanical responses, as well as about the details of cell-substrate
interactions, such as the synergy or antagonism between various external cues. Furthermore,
most of the previous work on studying neuronal growth in vitro has focused on qualitative
or semi-quantitative models to describe the influence of geometrical or mechanical cues on
the formation of the neuronal network. A detailed characterization of the basic mechanisms
that underlie the growth cone response to physical cues is still missing.

In our previous work, we have shown that axonal growth on surfaces with controlled
geometries arises as the result of an interplay between deterministic and stochastic components of
growth cone motility [10,15,16,19,20]. Deterministic influences include, for example, the presence
of preferred directions of growth along specific geometric patterns on substrates, while stochastic
components come from the effects of polymerization of cytoskeletal elements (actin filaments and
microtubules), neuron signaling, low concentration biomolecule detection, biochemical reactions
within the neuron, and the formation of lamellipodia and filopodia [1,2,7,21]. The resultant
growth cannot be predicted for individual neurons due to this stochastic-deterministic interplay,
however, the growth dynamics for populations of neurons can be modeled by probability
functions that satisfy a set of well-defined stochastic differential equations, such as Langevin
and Fokker–Planck equations [10,15,19,20,22–29]. In previous work, we have shown that axonal
dynamics on uniform glass surfaces is described by an Ornstein-Uhlenbeck (OU) process, defined
by a linear Langevin equation and stochastic white noise [19,20]. We have also reported that
neurons cultured on poly-D-lysine coated polydimethylsiloxane (PDMS) substrates with periodic
parallel ridge micropatterns of spatial periodicity d (henceforth referred to as the pattern spatial
period) grow axons parallel to the surface patterns. We have studied axonal growth as a function
of time on these micropatterned surfaces and found that axonal alignment increases as a function
of time [16]. The axonal dynamics are described by non-linear Langevin equations, involving
quadratic velocity terms and non-zero coefficients for the angular orientation of the growing
axon [20]. In another paper, we have used the Langevin and Fokker–Planck equations to
quantify axonal growth on surfaces with ratchet-like topography (asymmetric tilted nanorod:
nano-ppx surfaces) [10]. We have shown that the axonal growth is aligned with a preferred
spatial direction as a result of a “deterministic torque” that drives the axons to directions
determined by the substrate geometry. We have also measured the angular distributions and the
coefficients of diffusion and angular drift on these substrates [10]. Our results provide a detailed
analysis of axonal growth on substrates with different geometrical patterns by measuring speed
and acceleration distributions as a function of substrate geometry [20], axonal alignment as
a function of time [16], as well as axonal angular distributions, angular drift, and diffusion
coefficients [10,16,20]. However, a comprehensive model of the growth dynamics on these
substrates, which takes into account the mechanisms of axonal alignment and cell-surface
interactions, is still missing.

In this paper, we develop a discrete quantitative model of growth cone motility that
incorporates the neuron’s ability to sense the substrate geometry. We demonstrate that the
motion of axons on surfaces with micropatterned periodic geometrical patterns is governed
by a feedback control mechanism that leads to axonal alignment on these surfaces. This
theoretical model fully accounts for the experimental data measured on ensembles of axons,
including speed distributions and angular alignment. Furthermore, our experiments show



Biomimetics 2021, 6, 41 3 of 14

that the inhibition of cytoskeletal dynamics by treatment of neurons with Taxol (inhibitor
of microtubules) and Y-27632 (inhibitor of myosin II and actin dynamics) results in a
significant decrease in the axonal alignment by altering the feedback loop mechanism of
the neuron. Our results demonstrate that axonal dynamics are controlled by a contact–
guidance mechanism, which stems from cellular feedback imparted by the high-curvature
geometrical features of the growth substrate. This work provides new insights for creating
biomimetic systems that emulate neuronal growth in vivo, and it has a significant impact
on designing new platforms for guiding the growth and regeneration of neurons.

2. Materials and Methods

The cells used in this work are cortical neurons obtained from embryonic day 18 rats.
For cell dissociation and culture, we have used established protocols presented in our
previous work [10,15,16,19,20,30–32]. In our previous work, we have performed immunos-
taining experiments that show high neuron cell purity in these cultures [30]. Cortical
neurons were cultured on micropatterned polydimethylsiloxane (PDMS) substrates coated
with poly-D-lysine (PDL). The cells were cultured at a surface density of 4000 cells/cm2.
We have previously reported that neurons cultured at relatively low densities (in the range
3000–7000 cells/cm2) are optimal for studying axonal growth on surfaces with different
mechanical, geometrical, and biochemical properties [10,15,16,19,20,30–32].

The periodic micropatterns on PDMS surfaces are made of parallel ridges separated
by troughs. Each surface is characterized by a different value of the pattern spatial period
d, defined as the distance between two neighboring ridges (Figure 1a). To make these
periodic patterns, we used a simple fabrication method based on imprinting diffraction
grids with different grating constants onto PDMS substrates (Supplementary Materials
and [33]). The direction of the pattern is shown in Figure 1 by the parallel bright stripes
(ridges) and by the parallel dark stripes (troughs).
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Figure 1. (a) Atomic Force Microscope (AFM) topographic image of a PDL coated PDMS patterned surface.
The image shows that the micropatterns are periodic in the x-direction with the spatial period d = 4 µm and
have a constant depth of approximately 0.5 µm. (b) Coordinate system and the definition of the angular
coordinate θ. The x-axis is defined as the axis perpendicular to the direction of the PDMS patterns.

The micropatterned surfaces were spin-coated with a PDL (Sigma-Aldrich, St. Louis,
MO, USA) solution of concentration 0.1 mg/mL. Both growth surfaces and the neuronal cells
were imaged using an MFP3D atomic force microscope (AFM) equipped with a BioHeater
closed fluid cell and an inverted Nikon Eclipse Ti optical microscope (Micro Video Instruments,
Avon, MA, USA). All surfaces were imaged with the AFM (a total of 12 different images).
All neuronal cells have been imaged using fluorescence microscopy (a total of 18 images).
Fluorescence images were acquired using a standard Fluorescein isothiocyanate -FITC filter:
excitation: 495 nm and emission: 521 nm (details on acquiring the fluorescence images are
provided in the Supplementary Materials and [33]). For the experiments on chemically modified
cells, we have treated the neurons with either: (1) Taxol (10 µM concentration) or (2) the chemical
compound Y-27632 (10µM concentration), which have been added to the neuron growth medium
at the time of plating (Supplementary Materials). Previous work has shown that a concentration
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of 10 µM of Taxol is very effective in suppressing the microtubule dynamics [10,21,30] and that
10 µM of Y-27632 is very efficient in disrupting actin polymerization and the formation of actin
bundles, thus reducing traction forces between the neurons and the growth substrates [31].

Data Analysis

Growth cone position, axonal length, and angular distributions have been measured and
quantified using ImageJ (National Institute of Health). The displacement of the growth cone
was obtained by measuring the change in the center of the growth cone position. To measure
the growth cone velocities, the samples were imaged using fluorescence microscopy every
∆t = 5 min for a total period of 1 h per sample. The 5 min time interval between measure-

ments was chosen such that the typical displacement ∆
→
L of the growth cone in this interval

satisfies two requirements: (a) is larger than the experimental precision of our measurement

(~0.1 µm) [19,20]; (b) the ratio ∆
→
L/∆t accurately approximates the instantaneous velocity

→
V

of the growth cone. The speed of the growth cone is defined as the magnitude of the velocity

vector: V(t) = |
→
V(t)|, and the growth angle θ(t) is measured with respect to the x-axis (growth

angle and the x-axis are defined in Figure 1b).
Experimental data (Figure 2 and Figure S1) shows that over a distance of ~20 µm, the

axons can be approximated by straight line segments, with a high degree of accuracy. There-
fore, to obtain the angular distributions for the growth angle θ (Figure 3 and Figure S2),
we have tracked all axons using ImageJ and then partitioned them into segments of 20 µm
in length, following the same procedure outlined in our previous work [16,20]. Next, we
have recorded the angle that each segment makes with the x-axis (the schematic is shown
in Figure 1b). The total range [0, 2π] of growth angles was divided into 18 intervals of
equal size ∆θ0 = π/9 (Figure 3). To obtain the speed distributions (Figure 4 and Figure S3),
the range of growth cone speeds at each time point was divided into 15 intervals of equal

size |∆
→
V0|.
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Figure 2. Fluorescence (Tubulin Tracker Green) images showing examples of axonal growth for cortical
neurons cultured on PDL-coated PDMS surfaces with periodic micropatterns. (a,b) Examples of growth
for untreated cortical neurons grown on PDMS substrates with pattern spatial period: d = 3 µm in (a),
and d = 5 µm in (b). (c,d) Examples of axonal growth for cortical neurons treated with Taxol, a chemical
compound that inhibits the microtubule’s dynamics. The pattern spatial period is d = 3 µm in (c), and
d = 5 µm in (d). The main structural components of a neuronal cell are labeled in (c). Cortical neurons
typically grow in a long process (the axon) and several minor processes (dendrites). The axon is identified
by its morphology, and the growth cone is identified as the tip of the axon. The angular coordinate θ used
in this paper is defined in (c). The directions corresponding to θ = 0, π/2, π, and 3π/2 are shown in (d).
All angles are measured with respect to the x-axis, defined as the axis perpendicular to the direction of the
PDMS patterns (see Figure 1b). All images are captured 36 h after neuron plating. The scale bar shown in
(c) is the same for all images.
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Figure 3. Examples of normalized experimental angular distributions for axonal growth for neurons
cultured on micropatterned PDMS surfaces with different pattern spatial periods d. The vertical axis
(labeled normalized frequency) represents the ratio between the number of axonal segments growing in a
given direction and the total number, N, of axon segments. Each axonal segment is 20 µm in length (see
Section 2 on Data Analysis). All distributions show data collected at t = 36 h after neuron plating. The
continuous red curves in each figure are the predictions of the theoretical model discussed in Section 4.
(a) Angular distribution obtained for n = 1240 different axon segments (350 axons) for untreated neurons
cultured on surfaces with d = 3 µm (corresponding to Figure 2a). (b) Angular distribution obtained for
n = 1158 (324 axons) different axon segments for untreated neurons cultured on surfaces with d = 5 µm
(corresponding to Figure 2b). The data shows that the axons display strong directional alignment along the
surface patterns (peaks at θ = π/2 and θ = 3π/2), with a high degree of alignment given by the sharpness
of the distributions. (c) Angular distribution obtained for n = 1093 different axon segments for neurons
treated with Taxol and cultured on surfaces with d = 3 µm (corresponding to Figure 2c). (d) Angular
distribution obtained for n = 845 different axon segments for neurons treated with Taxol and cultured on
surfaces with d = 5 µm (corresponding to Figure 2d). The neurons treated with Taxol show a significant
decrease in the degree of alignment with the surface patterns compared to the untreated cells.

3. Experimental Results

Cortical neurons are cultured on PDL-coated PDMS surfaces with parallel micropat-
terns (periodic parallel ridges separated by troughs). The surfaces differ by the value
of the pattern spatial period d, defined as the distance between two neighboring ridges
(Figure 1a). We analyze the growth of both untreated and chemically modified neuronal
cells on surfaces with spatial periods in the range d = 1 to 6 µm (in increments of 1 µm).

Figure 2a,b show examples of images of axonal growth for untreated neurons cultured
on PDL-coated PDMS micropatterned surfaces with pattern spatial period: d = 3 (Figure 2a),
and d = 5 µm (Figure 2b). We have previously demonstrated that axons of untreated neurons
display maximum alignment along PDMS patterns for surfaces where the pattern spatial
period d matches the linear dimension of the growth cone l, where l is in the range 2 to
6 µm [20]. The experimental data shown in Figure 2a,b is in agreement with our previous
findings. Examples of the corresponding axonal normalized angular distributions are
shown, respectively, in Figure 3a,b.
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Figure 4. Examples of normalized speed distributions for growth cones measured on micropatterned
PDMS surfaces with different pattern spatial period d. All distributions show data collected at
t = 36 h after neuron plating. The continuous red curves in each figure are data fits with the
theoretical model discussed in Section 4. (a) Speed distribution for n = 452 different growth cones
measured for untreated neurons cultured on surfaces with d = 3 µm. (b) Speed distribution for
n = 488 different growth cones measured for untreated neurons cultured on surfaces with d = 5 µm.
(c) Speed distribution for n = 416 different growth cones measured for Taxol treated neurons cultured
on surfaces with d = 3 µm. (d) Speed distribution for n = 395 different growth cones measured for
Taxol treated neurons cultured on surfaces with d = 5 µm.

To further investigate the axonal dynamics on PDMS surfaces with periodic micropat-
terns, we measure the angular and speed distributions for neurons treated with chemical
compounds known to inhibit the dynamics of the cell cytoskeleton. Figure 2c,d shows ex-
amples of axonal growth for neurons treated with 10 µM of Taxol and cultured on surfaces
with pattern spatial period d = 3 (Figure 2c), and d = 5 µm (Figure 2d). Figure S1 in the
Supplementary Materials shows similar images obtained for neurons treated with 10 µM
of Y-27632. All images for untreated, as well as chemically modified neurons, are captured
at t = 36 h after cell plating.

Taxol is a chemical compound that is commonly used to inhibit the normal func-
tioning of the cytoskeleton due to the disruption of microtubule dynamics [10,21,30].
Y-27632 is a chemical compound known to inhibit the formation of actin bundles and the
reorganization of actin-based structures during neuronal growth [31,34]. Both of these
compounds have been shown to be effective at the concentration of 10 µM used in our
experiments [10,21,30,31,34]. The corresponding normalized angular distributions for ax-
onal growth of Taxol modified neurons are shown in Figure 3c,d. Examples of growth
images, as well as axonal angular and speed distributions for neurons treated with Y-27632,
are shown in Figures S1 and S2 in the Supplementary Materials. The neurons treated
with either Taxol or Y-27632 show a dramatic decrease in the degree of alignment with the
surface patterns compared to the unmodified cells (Figures 2 and 3, Figures S1 and S2). The
data show that while the axonal directionality is greatly reduced by the chemical treatment,
the treated neurons still grow long axons and form cell–cell connections (Figure 2c,d and
Figure S1). These results demonstrate that the disruption of the cytoskeletal dynamics for
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chemically treated neurons affects only the degree of alignment with the surface pattern,
leaving the navigation of the growth cone and axonal outgrowth uninhibited.

Figure 4 (as well as Figure S3 in the Supplementary Materials) shows that the speed
distributions for both untreated and chemically modified growth cones are close to Gaus-
sian distributions. This is indeed expected for culture times t = 36 h after cell plating, as
shown in our previous work [16].

4. Theoretical Model for Axonal Dynamics

Axonal dynamics on the PDMS substrates is characterized by both deterministic and
stochastic components [10,16,19,20,23]. The angular motion of axons on patterned PDMS
surfaces is described by the growth angle θ defined in Figures 1 and 2. In our previous
work, we have shown that the probability distribution p(θ, t) for the growth angle satisfies
the following Fokker–Planck equation [16]:

∂

∂t
p(θ, t) =

∂

∂θ
[−γθ · cos θ(t)·p(θ, t)] + Dθ ·

∂2

∂θ2 p(θ, t) (1)

where Dθ represents the effective angular diffusion (cell motility) coefficient,
and γθ · cos θ(t) corresponds to a “deterministic torque” representing the tendency of
the growth cone to align with the preferred growth direction imposed by the surface
geometry [16]. The stationary solution of Equation (1) is given by [16]:

p(θ) = A· exp
(

γθ

Dθ
·|sin (θ)|

)
(2)

where A is a normalization constant obtained from the normalization condition:∫ 2π

0
p(θ)·dθ = 1

The absolute value |sin θ| in Equation (2) reflects the symmetry of the growth around
the x-axis: the angular distributions centered at θ = π/2 and θ = 3π/2 are symmetric
with respect to the directions θ = π and θ = 0 (Figure 3). This is a consequence of the
fact that there is no preferred direction along the PDMS pattern (Figures 1 and 2), and it
applies to all types of micropatterned PDMS surfaces and for both untreated and chemically
modified neurons. We also note that the deterministic torque has a maximum value if the
growth cone moves perpendicular to the surface patterns (θ = 0 or θ = π), in which case the
cell-surface interaction tends to align the axon with the surface pattern. The torque is zero
for an axon moving along the micropattern.

The speed distribution p(V, t) of axonal growth is given by [16]:

∂

∂V
p(V, t) =

∂

∂V
[γs·(V −Vs)·p(V, t)] +

σ2

2
· ∂2

∂θ2 p(V, t) (3)

where γs is the constant damping coefficient of the corresponding Langevin equation
(γs = 1/τ where τ is the characteristic decay time), Vs is the average stationary speed of
the neuron population, and σ is noise strength for an uncorrelated Wiener process with
Gaussian white noise [16,28,29]. Equation (3) has the following stationary solution [16]:

p(V) = B· exp
(
−γs

σ2 ·(V −Vs)
2
)

(4)

where B is a normalization constant obtained from the normalization condition:∫ ∞

0
p(V)·dV = 1
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The model described by the Equations (1)–(4) predicts that the overall motion for
the axons has two components: (a) a uniform drift along the directions of the PDMS mi-
cropattern (i.e., along the y-axis in Figure 1b), and a random walk around these equilibrium
positions. This is indeed what is observed experimentally. At the beginning, the growth
cone dynamics resemble a Brownian motion, resulting in a slow increase in the mean
growth cone position along the x-axis. As time progresses, the axon exhibits a feedback
control, which steers the axonal motion along the micropatterned parallel PDMS lines
(Figures 1 and 2). Furthermore, in the absence of the micropatterns, the motion for the
growth cones reduces to a regular diffusion (Ornstein–Uhlenbeck) process characterized
by an exponential decay of the autocorrelation functions with a characteristic time τ = 1

γθ
,

axonal mean square length that increases linearly with time, and velocity distributions that
approach Gaussian functions [28,29]. In our previous work, we have shown that this is
indeed the case for axonal growth on PDL coated glass and PDMS surfaces characterized
by large pattern spatial periods: d > 9 µm [16,20].

We use Equations (1)–(4) to fit the normalized experimental angular and speed dis-
tributions for each type of surface and cell (untreated or chemically modified) consid-
ered in our experiments (fits to the data are represented by the continuous red curves
in Figures 3 and 4, Figures S2 and S3). For the case of untreated neurons, the theoreti-
cal model fits the experimental data for the angular probability distributions with the
following values of the deterministic torque: γθ = (0.16± 0.02) h−1 (for growth on sur-
faces with d = 3 µm, Figure 3a), and: γθ = (0.18± 0.03) h−1 (for growth on surfaces
with d = 5 µm, Figure 3b). Similarly, for neurons treated with Taxol, we obtain from the
data fit: γθ = (0.11± 0.02) h−1 (for growth on surfaces with d = 3 µm, Figure 3c), and:
γθ = (0.13± 0.03) h−1 (for growth on surfaces with d = 5 µm, Figure 3d). Values obtained
for neurons treated with Y-27632 are shown in Table S1 in the Supplementary Materials.
Table S1 also presents a summary of the values for the growth parameters obtained from
the comparison between the theoretical model and the experimental data for different
cells and substrates. We note that the values for the growth parameters decrease upon the
chemical treatment of the neuron.

We use the solutions for the probability distributions given by the theoretical model
presented above to simulate axonal growth trajectories, as well as axonal speed and
angular distributions. The simulations are performed using the values for the angu-
lar diffusion coefficient and deterministic torque obtained from the fit to the experi-
mental data (Figures 3 and 4, Figures S2 and S3, and Table S1) with no additional ad-
justable parameters (see Supplementary Materials for simulation details). Figure 5 shows
examples of simulation results for untreated (Figure 5a,b) and Taxol-treated neurons
(Figure 5c,d). Similar simulations obtained for neurons treated with Y-27632 are shown in
Figure S4 in the Supplementary Materials.

We emphasize that the angular distributions and speed distributions obtained from
these simulations match the experimental data for untreated, Taxol treated, and Y-27632
treated neurons without the introduction of any additional parameters. For example, the
simulated axon trajectories in Figure 5a,b reproduce the high degree of alignment observed
experimentally for untreated neurons grown on surfaces with d = 3 or d = 5 µm (Figure 2a,b
and Figure 3a,b). Figure 5c,d and Figure S4 show simulated growth trajectories with an
intermediate degree of alignment (similar to the data measured on Taxol and Y-27632
treated neurons in Figure 2c,d and Figure 3c,d, Figures S1 and S2).
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Figure 5. Examples of simulated neuronal growth for: untreated (a,b); and Taxol-treated (c,d)
neurons. The simulations are performed using the values of the growth parameters obtained from
the fit of the experimental data with Equations (2) and (4) (see main text). The pattern spatial periods
correspond to the data shown in Figures 3 and 4: d = 3 µm for (a,c), and d = 5 µm for (b,d).

5. Feedback Mechanism for Axonal Growth

The theoretical model and the simulations presented in the previous section imply
that the axonal motion on surfaces with periodic geometries exhibits a simple closed-
loop “automatic controller” behavior: the growth cone detects the geometrical cues on
the surface and tends to align its motion along certain preferred directions that maxi-
mize the cell-surface interactions. In general, feedback control means that the system is
steered towards a target behavior using information that is retrieved from the environment
through continuous measurements. This is a powerful technique for describing the dy-
namical properties of many types of physical and biological systems, including particle
trapping [35–37], optical tweezers [38–40], neuron firing [41,42], and cellular
dynamics [43–45].

To further investigate the automatic controller model, we measure the variation of the
deterministic torque (γθ) (control parameter) with the pattern spatial period (d) (external
stimulus). Figure 6 shows the variation of the experimentally measured values for γθ

with d, for untreated neurons (red squares), as well as for neurons treated with Taxol
(black squares) and Y-27632 (green squares). As shown in references [43–45] on work
performed for galvanotaxis and chemotaxis dose-response curves for the motion of human
granulocytes and keratinocytes, the automatic controller model leads to the following
dependence for the variation of the control parameter with the external stimulus:

γθ ≈
I1(β·d)
I2(β·d) (5)

where I1 and I0 are the modified Bessel functions of the first kind, and β is a parameter
with dimensions of inverse length. The dotted curves in Figure 6 represent fits to the data
with the predictions of the closed-loop feedback model given by Equation (5).
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Figure 6. Variation of the deterministic torque (γθ) (control parameter) with the pattern spatial period
(d) (external stimulus) for axonal growth on micropatterned PDMS substrates. The red squares
represent the values for γθ obtained from the fit to experimental data for untreated neurons. The
black squares correspond to the experimental data obtained for neurons treated with Taxol, while the
green squares correspond to the data measured for neurons treated with Y-27632. Error bars indicate
the standard error of the mean for each data set. The dotted curves represent the fit of the data points
with Equation (5). The graph shows that data points in this range are fitted by the feedback control
model for the following values of the parameters: β = (1.2± 0.4) µm−1 for untreated neurons,
β = (0.6± 0.3) µm−1 for neurons treated with Taxol, and β = (0.4± 0.3) µm−1 for neurons treated
with Y-27632.

The data in Figure 6 demonstrate that axonal dynamics on micropatterned PDMS
surfaces is described by a simple automatic controller model with a linear response, when
the pattern spatial period is in the range d = 1–6 µm, which is when d matches the linear
dimension of the growth cone: d ≈ l. This conclusion applies to both untreated cells
and cells treated with Taxol and Y-27632. In all these cases, the pattern spatial period
(d) plays the role of an effective external (geometric) stimulus that determines the axonal
alignment, similar to the electric field in the case of galvanotaxis of human granulocytes and
keratinocytes [22,43], or the concentration gradient in the case of cellular chemotaxis [44].
Furthermore, Figure 6 demonstrates that the response of the automatic controller is affected
by the inhibition of cytoskeletal dynamics: the actual response (measured by the coefficient
β) is different for the untreated and chemically treated cells (see the caption in Figure 6,
and Table S1 in the Supplementary Materials).

6. Discussion

It is well-known that neurons respond to a variety of external cues (biochemical,
mechanical, geometrical) while wiring up the nervous system in vivo [1,2,4–7]. In many
cases, these cues consist of periodic geometrical patterns with dimensions in the order of a
few microns [2,4,5]. Our studies show that growth substrates containing micropatterned
periodic features promote axonal growth along the direction of the pattern. The range
for the micropattern spatial periods in our experiments (d = 1–6 µm) is relevant both for
neuronal growth in vivo, as well as, for many proposed biomimetic implants for nerve
regeneration [9,14]. Our experiments show that neurons grown on PDMS substrates display
a significant increase in the overall axonal length and a high degree of alignment when the
pattern spatial period (d) matches the linear dimension of the growth cone: d ≈ l.

In this paper we demonstrate that the dynamics of the growth cones on surfaces
with micropatterned periodic features are described by Fokker–Planck equations that
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capture all the characteristics of axonal growth for untreated and chemically modified
neurons, including diffusion (cell motility) coefficients, angular, and speed distributions
(Figures 1–5 and Figures S1–S3). Furthermore, this model implies a simple closed-loop “au-
tomatic controller” model for axonal motion: the growth cone detects geometrical features
on the substrate and orients its motion in the directions that maximize the interaction be-
tween the axon and the substrate. Models based on the theory of automatic controllers have
been successfully used by other groups to characterize the galvanotaxis (motion in external
electric fields) of human granulocytes and keratinocytes [22,43], as well as the chemotactic
response of bacteria and of various types of virus modified cells [44,45]. Our results show
that the closed-loop feedback control underlies the mechanism of axonal alignment on
micropatterned PDMS substrates. This behavior is displayed by both untreated and chemi-
cally modified neurons, as shown in Figure 6. In this figure, each data set (for untreated,
Taxol, and Y-27632 treated cells) is fitted with a unique parameter β, which demonstrates a
linear response characteristic to a proportional controller: the response is proportional to
the signal received from the guidance cue [43,44]. The coefficients β obtained from the data
fit (Figure 6 and Table S1) measure the neuronal responses to periodic geometrical cues
and play a similar role to the galvanotaxis and chemotaxis coefficients used to describe
the cellular motion in external electric fields or chemical gradients [22,43–45]. Within this
model, the growth cone behaves similarly to a “device” that senses geometrical cues, and
as a result, generates traction forces that align the axon with the surface pattern.

These results support our previous findings that neurons follow geometrical patterns
through a contact–guidance mechanism [10,20]. Contact guidance is the ability of cells
to change their motion in response to geometrical cues present in the surrounding envi-
ronment. This behavior has been observed for several types of cells, including neurons,
fibroblasts, and tumor cells [10,14,20,46]. Previous work [14,46–48] has shown that growth
cones develop several different types of curvature sensing proteins (such as amphipathic
helices and bin-amphiphysin-rvs (BAR)-domains) that act as sensors of geometrical cues
and are involved in the generation of traction forces. Moreover, the degree of directional
alignment of cellular motion is increasing with the increase in the density of curvature
sensing proteins [47,48]. In our experiments, the growth cone filopodia and lamellipodia
wrap around the ridges of the PDMS micropatterns [16], which results in a minimal contact
area with the surface, and thus a maximum density of curvature sensing proteins. Conse-
quently, high-curvature geometrical features such as ridges on PDMS substrates will impart
higher forces to the focal contacts of filopodia wrapped over these features, compared
to the low-curvature patterns. This means that the contact guidance mechanism leads to
an increase in the traction force along the direction of the surface pattern (defined as the
y-direction in Figure 1b), which ultimately results in the observed directional alignment of
axons on these surfaces.

Both microtubules and actin filaments inside the growth cone act as stiff load-bearing
structures that generate traction forces [1,2,4]. Inhibition of microtubule or actin dynamics
will therefore result in a decrease in cell-substrate interactions. Our experiments demon-
strate that disruption of the cytoskeletal dynamics for cells treated with Taxol (inhibitor of
microtubule dynamics) and Y-27632 (disruption of actin filaments) results in a decrease
in the degree of alignment and a reduction in cell-substrate interactions (Figure 2c,d,
Figures S1 and S2). Furthermore, the smaller values of the parameter β for the chemically
treated neurons imply a less effective guidance mechanism for these cells compared to the
untreated ones. Thus, the results obtained in the case of chemically treated neurons show
an alteration of the automatic controller responsible for the directional motion of axons.
These experimental results are in agreement with the predictions of the contact guidance
mechanisms discussed above.

The automatic controller model presented in this paper could be further extended
to account for the explicit dependence of the growth parameters on the mechanical and
biochemical guidance cues, such as changes in the stiffness of the growth substrate or
external chemical gradients. This approach could provide significant insight into the
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neuronal response to external stimuli without the need to incorporate all the molecular
steps involved. The model discussed here could also be applied to other types of cells to
give new insight into the nature of cellular motility. In future experiments, the staining
neurons with specific markers will allow us to identify the morphological components of
the growth cone (lamellipodia, filopodia) and the distribution of cytoskeletal components
(actin filaments, microtubules) inside the cell. These experiments will also involve the
measurement of both cell-surface coupling forces using traction force microscopy and
the density of cell surface receptors and curvature sensing proteins using high-resolution
fluorescence techniques. In principle, these future investigations will enable researchers to
quantify the influence of environmental cues (geometrical, mechanical, biochemical) on
cellular dynamics and to relate the observed cell motility behavior to cellular processes,
such as cytoskeletal dynamics, cell-surface interactions, and signal transduction.

7. Conclusions

In this paper, we have performed a detailed experimental and theoretical analysis of
axonal growth on micropatterned PDMS surfaces. We have demonstrated that the axonal
dynamics on these surfaces are described by a theoretical model based on the motion of a
closed-loop automatic controller in a substrate with periodic geometrical features. We have
used this model to measure the growth parameters that characterize the axonal motion.
Our results show that the dynamics of the growth cone are regulated by a contact–guidance
mechanism, which stems from cellular feedback in an external periodic geometry: the
growth cone responds to geometrical cues by rotating and aligning its motion along the
surface micropatterns. The general model presented here could be applied to describe
the dynamics of other types of cells in different environments, including external electric
fields, substrates with various mechanical properties, and biomolecular cues with different
concentration gradients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomimetics6020041/s1, Figure S1: Examples of axonal growth for neurons treated with
Y-27632, Figure S2: Examples of normalized angular distributions for neurons treated with Y-27632,
Figure S3: Examples of normalized speed distributions for neurons treated with Y-27632, Figure S4:
Examples of simulated axonal growth for neurons treated with Y-27632, Table S1: Summary of the
values for the growth parameters of untreated and chemically modified neuronal cells.
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