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Background: Thyroid hormones play a significant role in bone development and
maintenance, with triiodothyronine (T3) particularly being an important modulator of
osteoblast differentiation, proliferation, and maintenance. However, details of the
biological processes (BPs) and molecular pathways affected by T3 in osteoblasts
remain unclear.

Methods: To address this issue, primary cultures of human adipose-derived
mesenchymal stem cells were subjected to our previously established osteoinduction
protocol, and the resultant osteoblast-like cells were treated with 1 nm or 10 nm T3 for
72 h. RNA sequencing (RNA-Seq) was performed using the Illumina platform, and
differentially expressed genes (DEGs) were identified from the raw data using Kallisto
and DESeq2. Enrichment analysis of DEGs was performed against the Gene Ontology
Consortium database for BP terms using the R package clusterProfiler and protein
network analysis by STRING.

Results: Approximately 16,300 genes were analyzed by RNA-Seq, with 343 DEGs
regulated in the 1 nm T3 group and 467 upregulated in the 10 nm T3 group. Several
independent BP terms related to bone metabolism were significantly enriched, with a
number of genes shared among them (FGFR2, WNT5A, WNT3, ROR2, VEGFA, FBLN1,
S1PR1, PRKCZ, TGFB3, and OSR1 for 1nM T3; and FZD1, SMAD6, NOG, NEO1, and
ENG for 10 nm T3). An osteoblast-related search in the literature regarding this set of
genes suggests that both T3 doses are unfavorable for osteoblast development, mainly
hindering BMP and canonical and non-canonical WNT signaling.

Conclusions: Therefore, this study provides new directions toward the elucidation of the
mechanisms of T3 action on osteoblast metabolism, with potential future implications for
the treatment of endocrine-related bone pathologies.
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INTRODUCTION

The skeletal system undergoes intense metabolic activity,
maintaining a continuous process of bone remodeling through
the action of bone cells. Osteoblasts originate from mesenchymal
stem cells and are responsible for the synthesis of the bone
extracellular matrix, deposition and mineralization of new
bone, thereby promoting bone formation (Hadjidakis and
Androulakis, 2006; Cawthray et al., 2017). Additionally,
osteoblasts control bone remodeling by modulating
osteoclastogenesis and bone resorption by the osteoclasts
(Hadjidakis and Androulakis, 2006; Feng and McDonald,
2011; Boyce et al., 2012; Hayden et al., 2014).

Thyroid hormones (THs) act as regulators of the bone
remodeling process and influence formation of the skeletal
system (Hadjidakis and Androulakis, 2006; Boyce et al., 2012;
Cawthray et al., 2017). Osteoblasts are known to express nuclear
receptors for THs, namely, thyroid hormone receptor beta
(THRB) and alpha (THRA) (Abu et al., 1997; Kim and
Mohan, 2013). The THs triiodothyronine (T3) and thyroxine
(T4) are especially essential for bone development and
maintenance (Bassett et al., 2003; Straub, 2014), as changes in
their levels may affect bone metabolism and cause abnormalities,
such as changes in the bone mineral density (Waung et al., 2012;
Kim and Mohan, 2013; Wojcicka et al., 2013).

Although T3 in particular is known to play an important role
in osteoblastogenesis (Klaushofer et al., 1995; Waung et al., 2012;
Kim and Mohan, 2013; Wojcicka et al., 2013; Olímpio et al.,
2019), its exact biological and molecular mechanisms of action
have not been fully elucidated (Harvey et al., 2002; Waung et al.,
2012; Kim and Mohan, 2013; Pascual and Aranda, 2013).
Therefore, in this study, we aimed to evaluate the effects of
different T3 doses on gene expression in osteoblast-like cells,
differentiated from human adipose-derived mesenchymal stem
cells (hASCs), through a global transcriptome analysis, using
RNA sequencing (RNA-Seq) techniques. Overall, our data
provide innovative information that adds to existing
knowledge about bone development and will help toward
clarifying the role that T3 plays in the pathophysiological
mechanisms of bone diseases.

MATERIALS AND METHODS

Cell Culture
This study was approved by the Ethics Committee of the Botucatu
Medical School, São Paulo State University (UNESP; Approval
No.3216-2009). Primary cultures of the previously characterized
model of hASCs (Olimpio et al., 2018) from three donors were
provided by the Experimental Research Unit (Unipex) cell bank
of UNESP. The methods used to culture the hASCs and to induce
their differentiation into osteoblast-like cells were carried out as
previously described (for details, see Olimpio et al., 2018). In
brief, hASCs were isolated from subcutaneous adipose tissue
obtained from three patients undergoing abdominoplasty, up
to 50 years of age with normal erythrocyte sedimentation rate
(ESR). Subcutaneous adipose tissue samples were then submitted

to enzymatic digestion. The isolated hASCs were plated at a
density of 2 × 105 in a T25 flask, and grown in a complete
medium, defined as Dulbecco’s modified Eagle medium
(DMEM), containing 10% fetal bovine serum (FBS) with 1%
penicillin-streptomycin and 0.1% gentamicin (10 mg/ml;
Invitrogen). Upon reaching 70% confluency, cells were
trypsinized and transferred to a T75 flask for cell expansion.
All cell cultures were maintained at 37°C in a humidified
atmosphere with 5% CO2. For hASC differentiation into
osteoblasts, cells were kept in complete DMEM supplemented
with 0.1 μM dexamethasone (Sigma-Aldrich), 50 μM ascorbic
acid (Sigma-Aldrich), and 10 mm β-glycerophosphate (Sigma-
Aldrich) for 16 days. The resulting osteoblast-like cells were then
treated with either 1 nm or 10 nm T3 for 72 h. Osteoblast-like
cells grown in the absence of T3 were used as controls.

RNA Sequencing and Bioinformatics
Total RNA was extracted from the osteoblast-like cells using the
TRIzol reagent method (Invitrogen, Carlsbad, CA, United States).
The cDNA library preparation, RNA sequencing, and
bioinformatics analysis were carried out using previously
described methods (de Oliveira et al., 2020). DEGs were
classified as being upregulated or downregulated on the basis
of fold-change (FC) values > 1.5, with p < 0.05. The Gene
Ontology (GO) enrichment analysis for biological process (BP)
terms was performed with the clusterProfiler R package, using a
p-value-adjusted false discovery rate and a p-value of < 0.05. Pre-
analysis of the GO data was performed, and terms distant from
the area of interest were excluded. For the enriched GO terms
grouped by similarity (0.7) representation, interactive graphs and
TreeMaps were created using REVIGO (http://revigo.irb.hr/)
(Supek et al., 2011). DEGs were also analyzed with respect to
their protein-protein interactions (PPI) using STRING.
Interaction maps were generated considering the following
levels of evidence: homology, coexpression, experimentally
determined interactions, database-annotated interactions, and
text mining. Enriched GO terms were assessed by having an
FDR < 0.05.

RESULTS

Characterization of Osteoblast-Like Cells
The RNA-Seq analysis revealed the expression patterns of
16,296 genes in the two groups of T3-treated osteoblast-like
cells. Of the 10 most expressed genes from this data set, four
encoded bone markers: fibronectin 1 (FN1), osteonectin
(SPARC), and collagen type I alpha 1 and 2 chains
(COL1A1 and COL1A2). In agreement with other published
results, the presence of the nuclear receptors THRA and THRB
was also noted, with the former being more abundant in these
cells. Additionally, in a previous study conducted by our
research group (Olímpio et al., 2019), the presence of genes
encoding other bone markers was observed: osteocalcin and
alkaline phosphatase proteins, matrix proteins for bone
mineralization, and receptor activator of nuclear factor
kappa-B ligand (RANKL).
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Transcriptional Regulation by the T3
Treatments
Differential gene expression was analyzed between the T3-treated
and control (non-treated) groups (Figures 1, 2, and Supplementary
Material). For the 1 nM T3 group, 343 differentially expressed genes
(DEGs) were identified, of which 200 were upregulated (58%) and
143 were downregulated (42%). For the 10 nm T3 group, 467 DEGs
were identified, of which 272 genes were upregulated and 195 were
downregulated (also 58 and 42%, respectively). There was an overlap
of roughly 20% among genes regulated by both doses (Figure 3) and,
importantly, no gene was altered in opposite directions by one T3
dose compared to the other (not shown).

Gene Ontology Analysis—ClusterProfiler
For 1nM T3, eight and 56 GO biological process (BP) terms were
significantly enriched in the up- and down-regulated gene sets,
respectively; after manually filtering the terms, we found 11 terms
were relevant to the study, all enriched in the down-regulated
gene set (Table 1). For the 10 nm T3 group, 49 BP terms were
enriched for up-regulated genes, but none reached significance
for down-regulated genes. Among the significant terms, the
majority was related to embryonic development and none has
apparent relation to osteoblast biology; the complete
overrepresentation analysis results are presented in the
Supplementary Material. The REVIGO tool, which
summarizes GO terms on the basis of semantic similarity to

reduce redundancy, was used to simplify the results from 1 nmT3
treatment and to clarify the BPs affected (Supek et al., 2011); after
analyzing the BP terms with REVIGO, TreeMaps was used to
group 11 BP terms into six main terms for the downregulated
genes of the 1 nm T3 (Table 1). The main genes involved in the
enriched BP terms (Table 2) are examined in the Discussion.

Gene Ontology Analysis—STRING
As a second approach for identifying BPs associated with both T3
treatments, we performed PPI analysis using STRING, which is
complemented by a GO term enrichment analysis based on
predicted interactions (Figure 4 and Supplementary Material). In
accordance with ClusterProfiler results, several of the genes
downregulated by 1 nm T3 (see Table 2) were also associated
with enriched terms and showed interactions with each other at
the protein level (Figure 4). These genes enriched terms such as
positive regulation of Wnt signaling pathway (GO:0030177), wound
healing (GO:0042060) and chemotaxis (GO:0006935), for instance.
Interestingly, also for genes upregulated by 10 nm T3, PPI analysis
pointed to enriched terms related to osteoblast differentiation,
namely, negative regulation of pathway-restricted SMAD protein
phosphorylation (GO:0060394) and regulation of BMP signaling
pathway (GO:0030510), which will be discussed below.

DISCUSSION

Given our current knowledge about the importance of THs for
bone development and maintenance (Bochukova et al., 2012;
Waung et al., 2012), several in vitro studies have demonstrated
the effects of T3 on the expression of osteoblast markers and its
modulation of bone cell metabolism (Kim and Mohan, 2013;
Williams, 2013; Olímpio et al., 2019). However, the roles played
by T3 in osteoblast differentiation, proliferation, development
and bone formation remain unclear (Harvey et al., 2002).
Considering the importance of cellular models for the study of
osteoblasts, we applied an osteoinduction protocol for the
differentiation of hASCs, using the cocktail previously
established by our research group (Olimpio et al., 2018), and
then assessed the effects of 1 and 10 nm T3 doses on the global
transcriptome of osteoblast-like cells.

Our results confirm the responsiveness of hASC-derived
osteoblast-like cells to T3. Several osteoblast lineages have
been previously shown to respond to T3 (Klaushofer et al.,
1995; Harvey et al., 2002; Waung et al., 2012; Kim and
Mohan, 2013; Wojcicka et al., 2013; Olímpio et al., 2019), and
the present study likewise shows that T3 at both tested doses
affected genes related to bone metabolism, in BPs such as
mesenchymal cell proliferation and ossification, thus
confirming this human primary cell line as a suitable
experimental model. Overall, it was noticeable that both T3
doses had similar effects on a subset of the DEGs, but that was
not the case for the biological processes affected, which were
markedly different.

The osteoblast differentiation and maintenance processes can
be regulated by both mechanical and biochemical pathways

FIGURE 1 | Volcano plots representing gene expression log2 fold
change (FC; x axis) and p-value (y axis) for (A) 1 nm T3 and (B) 10 nm T3. Grey
dots represent genes with non-significant FC; up- and downregulated genes
are represented as red and blue dots, respectively.
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(Wittkowske et al., 2016), and here we show effects of T3 on the
latter. With regard to the 1 nm T3 effects, the downregulated
expression of several genes related to cell differentiation and

proliferation, chemotaxis, and ossification, found in this study is
in agreement with the decrease of mineralized matrix formation
found in our previous work (Olímpio et al., 2019). For this dose,

FIGURE 2 | Heatmaps showing the 20 most upregulated (upper half) and 20 most downregulated (lower half) genes for (A) 1 nm T3 and (B) 10 nm T3. Samples
(columns) and genes (rows) are hierarchically clustered by mean Euclidean distance.
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the genes involved, summarized in Table 2, are related to
osteoblast differentiation through the BMP and WNT
pathways, as discussed below.

Transforming growth factor beta (TGF-β) and members of its
superfamily, such as BMPs and growth/differentiation factors
(GDFs), exert their effects by activating the serine/threonine
kinases type I and II receptor complex, which initiates Smad-
dependent or -independent intracellular signaling. Smad-
dependent signaling involves the phosphorylation of R-Smads
(Smads 2/3 for TGF-β and Smads 1/5/8 for BMPs/GDFs), which
form complexes with Co-Smads (Smad4) that then translocate to
the nucleus to activate transcription factors. Smad-independent
signaling involves molecules of the mitogen-activated protein
kinase (MAPK) pathways, such as extracellular signal-regulated
kinases (ERKs), c-Jun N-terminal kinases (JNK), and p38. The
Smad-dependent BMP pathway is known to be regulated by the
inhibitory Smads (I-Smads) Smad 6 and 7, which act to suppress
the pathway (Blair et al., 2002; Huang et al., 2007; Yan et al., 2009;
Chen et al., 2012). Moreover, although the structure of Smad 9
(also known as Smad 8) matches that of an R-Smad, recent

FIGURE 3 | Venn diagrams summarizing similarities between 1 and 10 nm T3 expression profiles, relative to the Control group; (A), dowregulated genes, (B)
upregulated genes.

TABLE 1 | GO terms significantly enriched for genes downregulated after 1 nm T3 treatment, manually filtered for relevance to osteoblast biology. The 11 terms were
hierarchically grouped under six main terms (bold) using TreeMaps.

Description GO ID Gene count Gene ratio Bg ratio Adj. p-value

mesenchymal cell proliferation GO:0010463 4 4/105 44/18670 0,027
stem cell proliferation GO:0072089 5 5/105 120/18670 0,036
positive regulation of mesenchymal cell proliferation GO:0002053 3 3/105 25/18670 0,031

regulation of cell morphogenesis involved in differentiation GO:0010769 8 8/105 301/18670 0,031
cell fate commitment GO:0045165 7 7/105 271/18670 0,039

ossification GO:0001503 9 9/105 398/18670 0,031
cellular response to retinoic acid GO:0071300 4 4/105 69/18670 0,036
positive regulation of Wnt signaling pathway GO:0030177 6 6/105 179/18670 0,036
positive regulation of chemotaxis GO:0050921 5 5/105 135/18670 0,044

protein kinase C signaling GO:0070528 4 4/105 29/18670 0,022
peptidyl-tyrosine phosphorylation GO:0018108 9 9/105 363/18670 0,029

Gene count, number of differentially expressed (DE) genes associated with the GO term; gene ratio, associated genes/total DE genes; Bg ratio, number of associated genes/total
background genes (all genes annotated in the Gene Ontology Consortium database); Adj p-value, false discovery rate-adjusted p-value.

TABLE 2 | Main downregulated genes contributing to enriched GO terms, in the
1 nm T3 group.

FGFR2 fibroblast growth factor receptor 2
WNT5A Wnt family member 5A
WNT3 Wnt family member 3
ROR2 receptor tyrosine kinase like orphan receptor 2
VEGFA vascular endothelial growth factor A
FBLN1 fibulin 1
S1PR1 sphingosine-1-phosphate receptor 1
PRKCZ protein kinase C zeta
TGFB3 transforming growth factor beta 3
OSR1 oxidative stress responsive kinase 1
AREG amphiregulin
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studies have shown that its inhibition of the BMP pathway occurs
through mechanisms distinct from those of the I-Smads
(Tsukamoto et al., 2015; Salazar et al., 2016).

In this context, the products of the fibroblast growth factor
receptor 2 (FGF2R), sphingosine-1-phosphate receptor 1
(SP1R1), fibulin-1 (FBLN1), and oxidative stress responsive
kinase 1 (OSR1) genes, which were all downregulated by 1nM
T3, act synergistically on the BMP pathway to promote cell
differentiation and osteoblastic function. FGF2R increases the
expression of BMP receptor type 1B and, consequently, the effects
of BMP-2, which phosphorylates the R-Smads and induces the
activity of alkaline phosphatase (Singhatanadgit et al., 2006).
SP1R1 enhances the BMP-2-promoted phosphorylation of
ERK 1/2 and R-Smads (Sato et al., 2012). Fibulin-1, an
extracellular matrix glycoprotein encoded by the FBLN1 gene,
interacts physically with BMP-2 and is necessary for the
transcriptional activation of the osteogenic lineage marker
Osterix and alkaline phosphatase (Cooley et al., 2014). Finally,
the OSR1 gene encodes a serine/threonine protein kinase which

regulates downstream kinases and can increase the expression of
BMP-4 and RUNX2 (Karvande et al., 2018).

The downregulation of vascular endothelial growth factor A
(VEGFA) gene expression by 1 nm T3 also reinforces the
conclusion that this TH dose hampers cell differentiation and
proliferation, given that literature describes this gene product as
being the most abundant member of the VEGF family,
stimulating osteogenesis by participating in the final phases of
osteoblast differentiation, in addition to acting on cell migration
and proliferation (Yang et al., 2012; Hu andOlsen, 2016). It is also
known that BMPs can stimulate VEGF expression in osteoblasts,
promoting bone formation and angiogenesis during bone
development (Deckers et al., 2002; Zhang et al., 2009).

Aside from being part of the TGF-β family and associated with
the BMP pathway and bone formation, TGF-β3 has been
demonstrated in a few studies to be involved in bone
development as well (Chen et al., 2012; Wu et al., 2016). In this
study, it was downregulated by 1 nm T3 and was associated, for
instance, with the BP term ossification.

FIGURE 4 | Protein-protein interaction network among genes downregulated by 1nM T3, as predicted using STRING. Genes that are central to the network, such
as VEGFA, FGFR2 and TGFB3, are associated with biological processes enriched by this treatment, as shown in Table 2.
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As mentioned above, 1 nm T3 also regulated the WNT
canonical and non-canonical signaling pathways. The
canonical WNT pathway depends on the activity of β-catenin
as a transcription factor and plays an important role in bone
metabolism. The binding of WNT proteins to their
transmembrane receptor Frizzled and co-receptors lipoprotein
receptor-related proteins 5 and 6 (LRP5/6) inhibits the
degradation of β-catenin, which then accumulates in the
cytoplasm (Baron and Rawadi, 2007) and translocates to the
nucleus where it affects RUNX2 gene transcription and promotes
osteoblast differentiation and bone formation (Gaur et al., 2005;
Li et al., 2005). By contrast, the non-canonical WNT pathway is
independent of β-catenin and involves the activation of JNK
(cellular polarity pathway) or nuclear factor of activated T-cells
(NFAT) (Wnt/Ca2+ pathway) instead, either of which leads to
the transcriptional activation of osteoblastic target genes
(Enomoto et al., 2009; Gregory et al., 2010; Bretón-Romero
et al., 2016).

The WNT5A, WNT3, and tyrosine-protein kinase
transmembrane receptor ROR2 (ROR2) genes, which were
downregulated by 1nM T3, play important roles in bone
metabolism. WNT5A, a member of the WNT family of
soluble ligands, interacts with its receptor ROR2 on the cell
surface, triggering the non-canonical WNT cell polarity
pathway (WNT/JNK). By contrast, WNT3 activates the
canonical WNT pathway by binding to Frizzled and LRP5/6
(Gaur et al., 2005; Li et al., 2005). These genes are involved in
osteoblast differentiation and proliferation, bone mineralization,
and cell migration (Nishita et al., 2006; Enomoto et al., 2009;
Sebastian et al., 2017), as previously shown in the pre-osteoblastic
cell lines MC3T3 and SaOS-2, differentiated human
mesenchymal stem cells, and mouse bone cell cultures (Liu
et al., 2007a; Liu et al., 2007b).

The regulation of chemotaxis (via FGFR2, S1PR1, OSR1, and
VEGFA), WNT signaling pathways (via WNT5A,WNT3, ROR2),
and cellular responses to retinoic acid by 1 nm T3 are
corroborated by the literature for FGFR2 (Kim et al., 2007),
S1PR1 (Garnero, 2014), VEGFA (Yang et al., 2012; Hu and
Olsen, 2016), and the WNT pathway (Gaur et al., 2005; Li
et al., 2005) but not for OSR1. Moreover, although previous
studies have demonstrated that retinoic acid is involved in
osteogenic differentiation, proliferation, and mineralization
and is related to the BMP and WNT pathways (Blum and
Begemann, 2015; Draut et al., 2019; Roa et al., 2019), there are
no published studies on its role in osteoblast migration, which
could be a potential target for future study.

The PRKCZ gene, also downregulated by 1nM T3, encodes the
atypical protein kinase C-zeta (PKCζ) from the PKC family.
These proteins are described in the literature as being
associated with various cell types and cellular processes, with
recent studies showing their exact functions and associations with
several diseases (Gopalakrishna and Jaken, 2000; Kang, 2014).
However, there are as yet no studies describing the occurrence of
PKCζ in osteoblasts, albeit three studies on global data have
indicated its association with osteoporosis and osteosarcoma
diseases (Du et al., 2014; Zhang et al., 2019; Zhou et al., 2020).
Such data suggest that this molecule could be a potential

biomarker for bone tissue and bone-related pathologies and is
therefore worthy of further study.

In its turn, as shown by STRING Gene Ontology analysis,
10 nm T3 enriched the regulation of the BMP signaling pathway
(GO: 0030510) by upregulating suppressive genes, such as
SMAD6, NOG, NEO1, and ENG. This treatment enriched the
negative regulation of pathway-restricted SMAD protein
phosphorylation (GO:0060394), by increased expression of
SMAD6, NOG, and ENG. According to the literature, Smad 6,
NOG, and NEO1 inhibit the action of BMP. BMP acts by
phosphorylation of the Smad proteins and is known to be
regulated by the inhibitory Smads (I-Smads) Smad 6 and
Smad 7, which act to suppress the pathway. NOG is an
antagonist linker that binds to BMP receptors (Huang et al.,
2007; Chen et al., 2012) and is a critical regulator of BMP activity
during skeletogenesis and joint formation (Shi and Massagué,
2003). Neogenin 1, the protein encoded by NEO1, is a netrin
receptor, considered to be a suppressor of BMP signaling
(Abdullah et al., 2021). In addition, studies demonstrate that
neogenin acts as a receptor for BMPs, and the signal transduction
negatively regulates BMP-induced osteoblastic differentiation
(Hagihara et al., 2011).

On the other hand, ENG encodes a transmembrane
glycoprotein that operates as a co-receptor to the TGF-β
receptor family to activate the BMP pathway by as-yet-
unknown mechanisms and is involved in BMP-induced
osteogenic differentiation (Ishibashi et al., 2010; Wang et al.,
2014). Our results demonstrate that increased expression of the
ENG gene enriched the negative regulation of pathway-restricted
Smad protein phosphorylation. In this way, ENG could
participate in the inhibition of an I-Smad to favor the
osteogenic differentiation.

Additionaly, 10 nmT3 enhanced the expression of BMP/Smad
target genes such as the ID1 gene, which is usually upregulated
following BMP-induced osteogenic stimulation and its
transcription is downregulated by TGF-β (Kang et al., 2003).
The role of ID1 in osteoblast differentiation has not yet been
clarified. Previous studies showed that during osteogenesis, the
expression of ID1 is initially elevated to support the proliferation
of progenitor cells and then is downregulated during terminal
osteoblast differentiation (Peng et al., 2004), and overexpressing
ID1 can stimulate osteoclast differentiation (Yuen et al., 2010).

Therefore, our results suggest that 10 nm T3 affects bone
metabolism, by increasing the expression of genes that inhibit the
BMP pathway and possibly increasing osteoclastogenesis. These
results are in accordance with previous studies by our group and
others, in which 10 nMT3 induced the expression of RANKLmRNA
in (Miura et al., 2002; Olímpio et al., 2019) and the levels of OPG
mRNAand protein decreased, which can favor RANKLbinding to its
receptor, activating osteoclastogenesis, and has a negative effect on
net bone matrix formation. (Li et al., 2000; Olímpio et al., 2019).

It should be noted that other studies support a stimulating role for
T3 on osteoblast differentiation and bonemineralization. Two studies
(Boeloni et al., 2009; Cheng et al., 2016), foundT3 to increasemarkers
of osteoblast differentiation and ossification at doses similar to those
we used. However, in the study by Boeloni and co-workers,
maximum results were obtained with 10 pM T3, while most
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variables remained unchanged at 1 nm, which we consider to be
closer to a physiological dose based on previous studies (Saraiva
et al., 2008; Olímpio et al., 2019). Likewise, in two other studies
(Chen et al., 2020; Yi et al., 2020), a 100 nm T3 dose was used for
most experiments, which is well above our maximum 10 nm
dose. Perhaps more important, these two studies were
performed with cells from fetal origins, while we used
mesenchymal stem cells obtained from adult donors, which
could explain the different responses observed, since thyroid
hormones may play different roles in early development and
adulthood. Besides, all of these works used mouse or rat-derived
cells, while the present study employed cells from human origin.
These discrepancies underscore the need to address, in future
studies, whether context-dependent shifts in osteoblast response
to T3 indeed occur.

It has already been established that T3 stimulates the
expression of several differentiation markers (Klaushofer
et al., 1995; Varga et al., 1997; Harvey et al., 2002; Waung
et al., 2012; Kim and Mohan, 2013; Wojcicka et al., 2013). The
technique used in this study was not able to detect some of the
genes that are recognized to be expressed in fully differentiated
osteoblasts, such as SP7 (Osterix), TNFSF11 (RANKL), and BSP
(bone sialoprotein). However, in a previous study (Olimpio
et al., 2018), we had detected these genes by RT-qPCR,
demonstrating that the osteoinduction methodology used
ensures osteoblast-like differentiation. We believe that these
gene transcripts have remained below the detection limit of the
RNA-Seq technique. Nonetheless, to the best of our knowledge,
there are no published studies on the activity of T3 in
osteoblasts, making the present study an innovative and
unique presentation of the biological markers affected by
different doses of this TH. Considering that high doses of T3
can modify bone metabolism, causing abnormalities and
culminating in pathologies in vivo, and given the problems
encountered by patients with thyroid cancer receiving thyroid-
stimulating hormone suppression therapy post thyroidectomy
(Hannoush and Weiss, 2016).

Our findings on the signaling pathways potentially affected by
the two doses of T3 highlight some essential points T3 in
osteoblast-like cell metabolism: 1) Both doses of T3 appear to
negatively influence terminal cell differentiation by inhibiting
signaling pathways that are relevant to osteoblast development; 2)
The effects of 10 nm T3were likely due to BMP signaling pathway
inhibition through upregulation of the expression of inhibitory
genes; 3) The 1 nm T3 treatment also seems to affect the BMP

signaling pathway by inhibiting the synergistic expression of
genes in the pathway as well as inhibiting genes essential to
the canonical and non-canonical WNT signaling pathways; 4)
Both doses of T3 modulated genes related to cell migration and
chemotaxis, suggesting a previously unknown role of this TH in
these important biological functions; and 5) Several genes and
BPs that have been scarcely studied and described in osteoblasts
were revealed.
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