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Abstract

Background

Manual skull drilling is an old but in modern neurosurgery still established procedure which

can be applied quickly and universally in emergency situations. Electrical drilling requires

more complex equipment and is usually reserved to the Operating Room (OR). It also

seems desirable to apply an electrical drill for bedside usage but a suitable product does not

exist so far.

Method

Our experimental study using a manually and an electrically driven skull drill included a total

of 40 holes drilled into synthetic biomechanical sheets. Half of the holes were produced with

a prototype electrical drilling machine of the company Kaiser Technology and half of them

with a traditional manual drill. Different drilling parameters such as the geometry of the bore-

hole, the drilling forces and the drilling vibrations were captured during all experiments.

Results

The electrical drilling needed higher vertical force by the operators and a longer time to pen-

etrate the sheet. A reason was the relatively lower rotational speed provided by this particu-

lar drill. When drilling electrically the vibrations were substantially less which in turn led to a

more precise shape of the holes (revealed by observation via a microscope).

Conclusions

The electrification of bedside drilling can in principle enable emergency craniostomies to be

performed with greater ease and accuracy. The power of the electric drive, however, must

be at least equivalent to the power of the traditional manual drill. Otherwise, the vertical

forces exerted on the scull by the operator become inhibitive. The challenge is to combine

cost-efficiency and re-sterilizability of an electrically driven drilling machine which at the

same time is small and simple enough to qualify for emergency applications.
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Introduction

Skull drilling is a surgical procedure that has been practiced since prehistoric times [1, 2, 3, 4]. In

neurosurgery, the manual drilling technique survived to date [5, 6, 7]. Electrically driven drills are

suitable for the Operating Room (OR) since they either depend on a drilling shaft or are large bat-

tery drills [8]. The manual twist drill prevailed in emergency situations, first and foremost for

external ventricular drainage (EVD) application, because of several advantages: It is cheap, re-ster-

ilizable, rugged (concerning mechanical loads and environmental conditions), totally independent

from the OR with its electrical power supply [8] and has a compact size. On the contrary, the

main problem of manual drilling is that the skull may be penetrated in an uncontrolled and

abrupted way [9, 10, 11]. This may result in brain injury and intracerebral or acute epidural hema-

toma [10, 12, 13]. Some technical modifications to reduce these risks have been developed, for

instance a pre-adjustable distance holder [1] or a percutaneous needle which replaces the turning

drilling bit [14, 15]. But none of those devices has become widely accepted. Prediction and control

of thrust forces and torques as well as possibly an optimized drill design are typical tasks related to

mechanical engineering; see e.g. the publications [16, 17, 18]. This contribution tries to bridge the

gap between engineering work and every day´s neurosurgical practice. Our hypothesis is that elec-

trical drilling leads to significant advantages compared to manual drilling and that a well designed

electrical drilling machine should be able to replace the twist drill in modern neurosurgery even

in a bedside setting. The results of this study are thought to contribute to an improved list of speci-

fications for an advanced electric drill, based on sound experimental results utilizing a battery-

driven prototype drilling machine which was developed for bedside usage by Kaiser Technology,

and a traditional manual drill. The study was carried out in cooperation of the Department of

Neurosurgery, Knappschaftskrankenhaus Bochum and the Chair for Applied Mechanics, Depart-

ment Mechanical Engineering at the University of Siegen.

Material and methods

Experimental setup

Bone sheets. Experiments were performed utilizing synthetical biomechanical test speci-

mens having structural properties comparable to a human skull bone. Initially, a neurosurgeon

evaluated different designs and combinations in order to obtain a test specimen having struc-

tural properties as close as possible to a human skull bone. Each specimen is a combination of

different materials provided by Sawbone. Two layers of 2 mm short fiber filled epoxy sheets

and in between a 5 mm solid rigid polyurethane were glued together, resulting in 8 bicortical

blocks with a size of 130 x 40 x 9.5 mm. Each specimen accommodated 5 bore holes with a dis-

tance of 20 mm to each other as well as to the edges of the sheet (Fig 1A).

Load cell. For the drilling procedure each sample was clamped on a load cell (Kistler, type

9257) with three charge amplifiers Fa Kistler no. 5007 (crosstalking between x/y/z typical

<2%, max <5%) (Fig 1A). The load cell was fixed on a stiff table. The test specimen was placed

98 cm above the laboratory floor. The forces were recorded with a digital data acquisition sys-

tem type HBM Spider8 and a laptop.

Drill bits, drilling machines and triaxial acceleration sensor. Fig 2B depicts the instru-

mented drilling machines. The electrical drilling machine used was the Type Osron produced

by Kaiser Technology, with a pre-installed battery pack. The manual drill used was a tradi-

tional gear unit with crank handle. One turn of the crank generated two turns of the drill bit.

Two equivalent drill bits with a diameter of 4.5 mm were used for both drilling machines. The

maximal spindle speed was identified by analyzing the experimental data for the manual dril-

ling and measured with a speedometer for the electrical device (Table 1).

Investigations of manuallly versus electrically driven skull drilling
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Drilling procedure

Two neurosurgeons (AC first author and CB senior author) served as test persons and carried

out the drilling. One of them was female with 6 years of neurosurgical experience (AC); the

other was male with 18 years of neurosurgical experience (CB). Each test person produced 2 x

5 boreholes with the electrically driven drill (E1-E4), using one hand at the piston-handgrip,

and 2 x 5 boreholes with the manual twist drill with the crank (E5-E8), and using two hands.

After every series of 5 boreholes the test persons switched in order to minimize the bias

induced by possibly decreasing muscle strength.

Fig 1. Experimental setup. (A) Test specimen clamped on load cell (B) Manual and electric drilling machine (C) triaxial acceleration sensor attached to the

drilling machine (D) Force components resolved.

https://doi.org/10.1371/journal.pone.0215171.g001

Investigations of manuallly versus electrically driven skull drilling

PLOS ONE | https://doi.org/10.1371/journal.pone.0215171 April 18, 2019 3 / 11

https://doi.org/10.1371/journal.pone.0215171.g001
https://doi.org/10.1371/journal.pone.0215171


Statistical analysis

During the drilling the following parameters were collected: completeness/incompleteness of

material penetration by each single drilling procedure [%], duration of each drilling process

[s], maximum drilling force [N], time average of drilling force [N] in all three directions x, y

and z as well as maximum acceleration in the direction x,y and z. The accelerations in both

horizontal plains (x and y) were vectorially summarized.

Impulse [Ns] is a vector quantity which expresses the drive and the direction of an object. It

can also be described as the change in momentum which is equal to the integral of force with

respect to time (J = ʃF dt) in the force direction. In this project the term “impulse” is used as an

equivalent of the the forces applied over a period and allows the assessment of the overall expo-

sure to the patient. Considering for example an equal force level, a long term force causes a

higher impulse than a short term force.

The impulse in the x-, y- and z-direction and the total impulse were calculated from the

measured force data over time as

D p!ðtÞ ¼ J!ðtÞ ¼
R t

0
F!ðtÞdt

and

J!tot ¼ J!x þ J!y þ J!z

The motion of the drilling machines was measured with piezoelectric accelerometers. The

two horizontal directions were added vectorially. Acceleration was expressed as absolute value

from the maximum and the minimum data│a-max│ [m/s2].

Fig 2. Resulting boreholes. (A) Measuring angle deviation with the help of a set square (B) Typical borehole electric drilling (C) Typical borehole manual

drilling.

https://doi.org/10.1371/journal.pone.0215171.g002

Table 1. Spindle speed of drills.

Principal experiment Drill diameter [mm] Max. spindle speed [rpm] Frequency [Hz]

Electric drill, test person 1 4.5 165 2.75

Electric drill, test person 2 4.5 160 2.,67

manual drill, test person 1 4.5 420 7

manual drill, test person 2 4.5 480 8

Triaxial acceleration sensors, model PCB 356 A16 (Fig 1B, Fig 1C) were applied with glue to both drilling machines. Both sensors were connected to a coupler (type

Kistler 5134) and measured the vertical (z) and horizontal (x,y) acceleration during the drilling process (Fig 1D). This data was also recorded with the same data

acquisition system.

https://doi.org/10.1371/journal.pone.0215171.t001
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An ensemble of 5 drilling processes was used for averaging. The mean, the maximal and the

minimal value of the 20 electrical and the 20 manual drilling processes were determined as

well.

The constantly high frequent vibrations caused by the motor and the gearing inside the

electrical drilling machine was suppressed during the analyzing process by a 30 Hz lowpass fil-

ter to allow better comparison between the manual and the electrical drill.

Eventually, the following variables were determined: the diameter [mm] of each hole was

measured with the help of a ZEISS Axioscope 2 with Leica-Application-Suite-Software (Fig 2B,

Fig 2C). The angular deviation [˚] of each hole was estimated via a drill bit and a set square

(Fig 2A).

Results

Subjective evaluation of the drilling processes

Subjectively, a quick decrease in arm muscle strength could be observed in the electrical dril-

ling. Consequently, large force by the test person was needed to push the drill forward and to

maintain the drilling progress, especially into the first layer (short fiber filled epoxy sheet) of

the probes. The last layer (filled fiber sheet) of the sandwich structure was easier to penetrate

because the load cell provided a hard abutment. For the case of manual drilling, it felt much

easier to penetrate the artificial bone: Both hands were involved and it took a high frequency

of drilling turns but subjectively less muscle force.

Objective evaluation of the drilling processes

Parameters of the electrically driven drilling. The means of 4 x 5 drilling parameters are

listed in Table 2. The drillings numbered 1–5 and 11–15 were carried out by AC, the drillings

6–10 and 16–20 were carried out by CB (Table 2, Table 3).

Parameters of manually driven drilling. The means of 4 x 5 drilling parameters are listed

in Table 3. The drillings numbered 21–25 and 31–35 were carried out by AC, the drillings 26–

30 and 36–40 were carried out by CB (Table 4, Table 5).

Comparison of parameters between electrical and manual drilling

Effect on the penetration rate. The penetration rate was higher for the electrical drilling

with a total average of 90% in comparison to the manual drilling with a total average of 80%.

Effect on the drilling time. The mean time of producing a borehole was higher for the

electrical drilling in comparison to the manual drilling (Fig 3A).

Table 2. Parameters of electrical drilling, Part 1 (E+no = mean of 5 drilling procedures).

Experiment no. Penetration rate [%] Drilling time [s] Deviation in angles Force–mean [N]�� Force–max [N]��

xz yz x y z x y z

1–5 (E1) 60 58 1.7 1.4 2 0 60 7 6 84

6–10 (E2) 100 65 0.8 0.8 6 -5 68 12 9 86

11–15 (E3) 100 50 3.6 1,3 12 -5 98 21 15 132

16–20 (E4) 100 79 1.9 1.7 10 -9 77 19 18 123

max 100 163 5 4 18 5 116 25 22 142

mean 90 63 2 1.3 7 -5 76 15 12 106

min 69 26 0 0 -3 -13 44 3 3 65

https://doi.org/10.1371/journal.pone.0215171.t002
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Effect on the horizontal forces Fx and Fy and the vertical force Fz. Horizontally exerted

forces could be measured during each drilling procedure. However, these values did not vary

significantly between the electrical and the manual drilling. Even the forces in y-direction

showed slightly higher levels in the case of manual drilling, caused by the rotation of the crank.

A higher force in z-direction (“pressure”) was carried out by the operators in the electrical dril-

ling (Fig 3B, Fig 3C, Fig 3D).

Effect on the impulse. Analogue to the higher vertical force z a higher impulse was

needed in the electrical drilling to drive the machine through the bone sheet. It could also be

observed that the impulse grows up with the number of drilled holes in the case of electrical

drilling (Fig 4A).

Effect on the acceleration. It could be observed that the rotation of the manual crank led

to higher levels of acceleration in all directions. The manual drill was irregular, the curve

showed oscillations, especially in the xy-plane. The electrical drill caused less oscillation. The

curve was more steady-going (Fig 4B, Fig 4C).

Effect on the penetration force. The penetration force correlates to the force z in Fig 3C:

It was higher in the electrical drilling and represented the investment of pressure to maintain

the drilling process (Fig 4D).

Comparison of the created boreholes

Hole diameter. The diameter of the drilling holes was measured under a microscope. On

average, the electrical drilling holes showed a 1/10 mm smaller diameter than the manual dril-

ling holes (Fig 5A).

Table 3. Parameters of electrical drilling, Part 2 (E+no = mean of 5 drilling procedures).

Experiment no. Impulse (J = ʃF dt) [Ns] Total impulse [Ns] Acceleration

│a-max│ [m/s2]��

x y z p-tot� xy��� z

1–5 (E1) 131 -6 3610 3616 4.7 0.4

6–10 (E2) 377.2 -309.3 4410.0 4438 3.7 0.8

11–15 (E3) 502.2 -213.7 4548.8 4591 6.4 0.6

16–20 (E4) 593.2 -526.5 4326.2 4399 5.7 0.8

max 1042 190 9159 9266 7.9 3.3

mean 434 -294 434 4574 5.1 0.8

min -91 -939 -91 1525 2.4 0.1

�� values with 30 Hz lowpass filter

��� vector sum

https://doi.org/10.1371/journal.pone.0215171.t003

Table 4. Parameters of manual drilling, Part 1 (E+no = mean of 5 drilling procedures).

Experiment

no.

Penetration rate [%] Drilling time [s] Deviation in angles Force–mean [N]�� Force–max [N]��

xz yz x y z x y z

21–25 (E5) 80 56 1,9 0,8 -0,6 11,6 33,9 9,3 21,5 58,8

26–30 (E6) 100 27 1,2 2,4 0,9 5,1 43,4 17,2 18,1 89,3

30–35 (E7) 80 54 0,9 0,2 -5,5 14,4 44,4 14,3 28,1 83,7

35–40 (E8) 80 24 0,3 1,1 -0,4 8,8 58,3 17 24,2 114

max 100 70 4,0 5 2 18 71 22 34 123

mean 80 38 1,1 1,1 -1,4 10 45 14,5 23 86,5

min 60 15 0,0 0,0 -11 3 30 7 16 52

https://doi.org/10.1371/journal.pone.0215171.t004
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Angle deviation xz and yz. There are different observations concerning the angle devia-

tion but a clear trend is difficult to determine. Fig 5B and 5C show that the angle deviation in

the xz direction of the manual drilling decreases with the number of performed holes. The

electrical drilling rather shows an increasing angle deviation in the xz and yz direction (Fig

5B, Fig 5C).

Table 5. Parameters of manual drilling, Part 2 (E+no = mean of 5 drilling procedures).

Experiment no. Impulse (J = ʃF dt) [Ns] Total impulse [Ns] Acceleration

│a-max│ [m/s2]��

x y z p-total� xy��� z

21–25 (E5) -9,7 523 1490,7 1583 13,8 2,2

26–30 (E6) 27,3 138,4 1158 1167 23,8 3,5

30–35 (E7) -299,6 759,2 2352 2502 14,6 1,9

35–40 (E8) -5,7 210 1312,2 1330 24,4 4,5

max 116 921 2758 2916 32,7 8,7

mean -72 408 1578 1646 19,2 3,0

min -647 73 930 933 9,9 1,4

�� values with 30 Hz lowpass filter

��� vector amount

https://doi.org/10.1371/journal.pone.0215171.t005

Fig 3. Drilling parameters (I). (A) Drilling time (B) Drilling Force x-direction (C) Drilling Force y-direction (D) Drilling Force z-Direction.

https://doi.org/10.1371/journal.pone.0215171.g003
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Discussion

Subjective evaluation of the drilling process

The subjective evaluation of the drilling process lead to a surprising result: Both test persons

stated that a higher muscular effort was needed for electrical drilling with the particular proto-

type machine utilized. One explanation for this detection is that the electric drilling machine

could only produce a low spindle speed of 160 rpm. Recent research work [18] shows that the

Fig 4. Drilling paramaters (II). (A) Impulse (B) Acceleration xy-plane (C) Acceleration z-plane (D) Penetration force.

https://doi.org/10.1371/journal.pone.0215171.g004

Fig 5. Borehole geometry. (A) Hole diameter (B) Deviation angle xy-direction (C) Deviation angle xz-direction.

https://doi.org/10.1371/journal.pone.0215171.g005
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rotational speed has an effect on the force and torque in the sense that the force drops expo-

nentially with the rotational speed. Reversely, by increasing the voltage, the spindle speed can

be upgraded: By using 8 batteries instead of 6 our drilling machine runs with 215 rpm. How-

ever, an acceptable 325 rpm can only be generated with 14, 4 V—which comes up with 12 bat-

teries. (Of course, the electric motor must be modified for this increased power.) Subsequently

to our experiment, the used electric drilling machine and a second one of the same series were

disassambled into their components. The frequency analysis (PSD) of the two electric drilling

machines in the idle state pointed out that the behavior is not identical. Many excited frequen-

cies are similar but the amplitudes are different and especially in the z-direction peaks at differ-

ent frequencies could be observed. That leads to the assumption that the quality of

manufacture needs improvement. Taken these two results the present electric drilling machine

does not comply with the quality necessary for an easy, efficient, quick and trouble-free drilling

in a neurosurgical emergency situation.

Objective evaluation of the drilling process

The objective evaluation of the drilling process showed that the average vertical force z, the

penetration force and the impulse were higher in the electric drilling. These confirm the sub-

jective results described above. As a result of the low spindle speed, the drilling progress was

generated by much more vertical pressure of the operating person. Likewise, a higher impulse

was needed to drive the machine through the bone sheet. In contrast, the spindle speed of the

manual drill with its maximum of 420 respectively 480 rpm required a lower input of pressure

and impulse. It could be interesting to make corresponding measurements of vertical force

and impulse with a trephine from the OR which has a higher rotational speed.

The penetration rate was higher in the electric drilling. Maybe the neurosurgeons could not

control the manual drill as sensitive as the electric one because of the rotation of rge crank and

rge correlated movements which could be observed in the higher level of acceleration in the

xy- and z-direction (Fig 4B and 4C). A second reason may be the higher pressure and force,

respectively, in z-direction, which is necessary to make the holes with the electric machine

(Fig 3D).

Geometry of the resulting boreholes

The microscopic analyses of the resulting 40 boreholes showed that the electric drill leads to

more precise boreholes. In average, the holes had a smaller diameter. Furthermore, they were

rounder and showed little irregularities in their margins at last in the beginning of the experi-

ment (angle deviation yz). The effect abates in the course of the drilling series with less angle

deviation even in the manual holes. This speaks for a certain training effect in turning the

crank and conducting the drill simultaneously. But in summary, one can draw the conclusion

that the electric drilling machine, in spite of the weak power and manufacturing quality, can

be conducted and driven through the bone with less vibration and horizontal movement. The

curves showed higher short time fluctuations in the manual drilling procedures.

Limitations

Our experimental study has some limitations. Firstly, the biomechanical sheets do not include

the curvature of the skull surface which holds the risk of slipping with the drill bit. Secondly, in

a normal bedside or emergency room setting, there is no head fixation in a clamp and the

operator has to cope with movements of the patients head. Thus, the plane sheets which were

fixed into a clamping device depict a slightly idealized situation of drilling compared to real

Investigations of manuallly versus electrically driven skull drilling

PLOS ONE | https://doi.org/10.1371/journal.pone.0215171 April 18, 2019 9 / 11

https://doi.org/10.1371/journal.pone.0215171


clinical practice. Thirdly, the electric drilling machine is a prototype product which is not

applied in practice so far.

Our study neglects a comparison of the costs for the manual drill and the electric drill. But

in the present case the cost for a one way and a re-sterilizable machine has to be considered.

Conclusion

With regard to the emergency situation at the patient´s bedside, we can make the following

statements: An electrically driven drilling machine contributes to a more controlled drilling in

the sense that it generates less irregular movements in the xy direction and has a higher direct

penetration rate. The round drilling holes nearly come up with the diameter of the drilling bit.

This can help to achieve a precise trajectory for a ventricular catheter. In the manual drilling,

the action for the operator is more complex: Turning the crank with the right and conducting

the drilling machine with the left hand causes more lateral deviation of the drilling bit.

But the horizontal deviation and forces are only one limitation for a controlled drilling.

Vertical forces and penetration forces, respectively, can have a negative impact on the result as

well. If they are higher an increased risk of sudden penetration of the inner bone layer is the

logical consequence. Those parameters change inversely to the rotational speed. The problem

with the tested electric drill is its low rotational speed which requires higher vertical forces and

impulse to maintain the drive of the drilling bit through the bone.

For neurosurgical emergency skull drilling, an electric drilling seems desirable because of

the advantages identified in this study. However, it remains a challenge for manufacturers to

combine the mechanical requirements with cost-efficiency and re-sterilizability. To the knowl-

edge of the authors such drilling machines do not exist so far.
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