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Abstract

More than 300 years ago, Antony van Leewenhoeck first described observing single-celled microorganisms, which he termed “animalcules,” 
examining his saliva under a microscope. Although the idea of the coexistence of microorganisms in our body is not new, we have only recently 
been able to investigate their ecological relationship to our body, with the development of high-throughput molecular techniques. The diverse 
microorganism communities residing in our guts are established and maintained by complex interactions among microorganisms and their 
host. Notably, their alteration has been implicated in influencing various diseases including neurological diseases. Alzheimer’s disease (AD) is 
the most common cause of dementia characterized by a progressive decline in memory and thinking severe enough to interfere with daily life. 
Despite the great progress in linking genetic risk factors with AD pathogenesis, treatments targeted at AD pathology and its modifiers have not 
yet resulted in a disease-modifying therapy. There is mounting evidence that the gut microbiota interacts with AD pathogenesis by disrupting 
neuroinflammation and metabolic homeostasis—the gut microbiota has gone from being the forgotten organ to a potential key player in the 
AD pathology.
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The resident microorganisms in our body, including bacteria, vir-
uses, archaea, and fungi, outnumber eukaryotic cells by as many 
as ten to one and their collective genome is estimated at 150 times 
larger than the human gene complement (1,2). However, because of 
their remarkably small size—typically 0.5–5.0 µm, which is about 
one tenth the size of eukaryotic cells, the microorganisms make up a 
small portion of human body mass (0.3%–3% of total body mass). 
Nevertheless, while establishing their colonies, these microbes per-
form various vital functions in our body, including releasing bio-
chemical byproducts (3).

Microbes live and act in ecological communities. Each will com-
municate with other microbes by exchanging genetic and molecular 
material, altering their collective behavior on a population-wide 
level in response to surrounding species or stimuli (eg, temperature 
and pH), and thereby remodeling the microbial composition of the 
community (4–6). Furthermore, community building within the host 
generates myriad products that modulate host physiology: extra-
cellular enzymes, toxins, antimicrobial compounds, inflammatory 

cytokines, and metabolites (7,8). Through dynamic microbe-microbe 
and microbe-host interactions, the diverse community of micro-
organisms—collectively called microbiota or microbiome with their 
genomic content—is not only established and maintained, but also 
contributes beneficial or pathological influences to host health.

Despite the remarkable richness and diversity of human micro-
biota and their close physiological association to the human host, 
their significance to human health and disease has long been over-
looked due to inadequate analytical methods. With recent genetic 
and metagenomic analysis tool development, more sophisticated 
microbiota profiling techniques facilitated the characterization of 
the structure of the microbiome and a better understanding of its 
contribution to human health. Recent advances in microbiology 
have characterized the functional interactions between microbiota 
and host. This “forgotten organ” is now considered not only as a 
key player in human homeostasis but also as direct/indirect causal 
agent in influencing various diseases such as allergy, irritable bowel 
syndrome, type 2 diabetes mellitus, obesity, and cancer (9).
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Recently, there has been immense excitement on the potential 
contribution of the microbiota in our gastrointestinal (GI) system 
to central nervous system (CNS) disease. The CNS and enteric ner-
vous system of the GI tract are tightly connected by hormones, 
neuromodulators, and neurotransmitters related to efferent/ af-
ferent nerves including the vagus nerve. As most (>95%) of the 
microbiota in our body are GI residents, these microbes are per-
fectly situated to react to and influence neuronal, humoral, meta-
bolic, or immune signaling underlying the gut-brain relationship. 
On the one hand, as an example, elevated levels of noradrenaline 
in the gut lumen (eg, by stress) can influence gene expression or 
abundance of some bacteria (10,11). On the other hand, mice 
grown in a germ-free (GF) environment demonstrate exaggerated 
stress responses and anxiety behaviors related to changes in the 
hypothalamic-pituitary-adrenal axis (12). Similarly, disruption of 
the maternal gut microbiome perturbs neurodevelopment of their 
offspring, which show autism-like behaviors that can be rescued by 
introducing the commensal bacteria species Lactobacillus reuteri 
(13,14). These studies emphasize this bidirectional relationship and 
support disruption of gut homeostasis as a potential risk factor in 
psychiatric or neurological disorders.

Considering that gut microbiota has immune regulatory func-
tions, it is not surprising that there have been attempts to find a 
link between gut microbiota and diseases classically classified as 
immune-mediated neurodegenerative disorders, such as multiple 
sclerosis. For example, the induction of experimental autoimmune 
encephalomyelitis, an animal model of multiple sclerosis, causes a 
less severe phenotype in GF mice compared to that of conventionally 
raised mice, perhaps by decreasing the pathogenic inflammatory re-
sponse, such as IL-17A-producing T cell activation (15,16). Recently, 
neuropathological relevance of the gut microbiota has been ex-
tended to progressive neurological disorders such as Parkinson’s 
disease, characterized histologically by loss of dopaminergic neurons 
in the substantia nigra and phenotypically by motor dysfunction 
such as slowness of movement, tremor, and stiffness. Sampson and 
colleagues used an α-synuclein over-expressing mouse model of 
Parkinson’s disease to study the relationship between parkinsonian 
motor dysfunction with gut microbiota. Notably, model mice treated 
with an antibiotic drug cocktail or raised in GF conditions had less 
severe motor deficits and brain pathology than untreated/normally 
raised mice (17).

Alzheimer’s disease (AD) is the most common neurodegenerative 
disorder and is primarily marked by global decline in cognitive 
function, including in episodic memory, executive functioning, and 
reasoning. Recently, there is growing interest in investigating the 
role of the microbiota in AD pathogenesis (Table 1). However, most 
studies investigating the contribution of the microbiota in AD patho-
genesis are correlational. The microbiota-host dynamic is immensely 
complex and is heavily influenced by various endogenous and ex-
ogenous factors. These have hindered investigation on precise bio-
logical causal pathways from specific microbes to AD pathology and 
neurodegeneration.

In this review, we present an outline of the gut microbiota-brain 
axis and summarize recent findings from both animals and humans 
on the potential involvement of the gut microbiota in AD pathogen-
esis. We hypothesize that an altered/unhealthy gut microbial com-
munity (dysbiosis by several factors; eg, genetic, diet, stress, age) can 
induce a peripheral inflammatory response that drives an altered 
neuroinflammatory response in the brain (Figure 1). Over decades, 
various factors may disrupt gut permeability and blood–brain bar-
rier (BBB) integrity that accelerate entry of circulating inflammatory 

agents and pathogens into the brain driving excessive activation 
of the brain’s innate cells (microglia). AD-related genetic risk fac-
tors may also contribute to the construction of a disease-associated 
microbiota (eg, the presence of ApoE4 alleles accompany reduced 
host-beneficial bacterial communities). Studies cited in this review 
are mostly based on bacterial 16S rRNA gene sequencing techniques. 
Therefore, from here, the terms “microbiota” or “microbiome” are 
referring to the bacterial community. Studies involving microbiota 
in other locations, such as nasal, skin, respiratory, are not discussed 
due to the lack of published data. There may be bidirectional com-
munications between gut microbiota and AD pathogenesis, but we 
will focus on the contribution of gut microbiota to AD pathology 
(ie, less known if the hallmarks of AD pathologies modulate the gut 
microbiota communities). Finally, we will discuss current gaps in 
knowledge as well as future directions of microbiota research in AD.

Gut Microbiome: Fundamentals and Functions

Most microorganisms in the gut are bacteria (18). In the general 
public view, bacteria have been perceived as harmful to our health, 
but modern bacteriology argues there exists a spectrum of “good” 
to “bad” bacterial types depending on their influence on the host. 
In fact, most gut microbiota are completely harmless (commensal) 
or beneficial (symbiont), and relatively few types of bacteria pose 
a modest degree of risk or disease (pathobiont) (19,20). Most of 
the time, as in the case of the diverse gut bacteria, “harmful” bac-
teria are suppressed, and we live in harmony and balance with our 
numerous gut bacteria (21,22). However, when the gut ecosystem 
undergoes abnormal changes, the pathobionts become overpopu-
lated, and the gut bacterial composition becomes unbalanced 
(dysbiosis). Then, this imbalance may grow to create a disease-
related microbiota community and coordinate inflammatory reac-
tions or toxin release.

It is estimated that around 1,000 different bacterial species exist 
in the human gut, and at least the same 10% of species are present 
in every individual (1,23). The human microbiota composition is es-
tablished in early development and is stably maintained over time in 
healthy individuals. Eighty percent of our gut microbiota are made 
up of the phyla Bacteroidetes and Firmicutes (24). Several other 
phyla are represented: including the Actinobacteria, Fusobacteria, 
and Verrucomicrobia. However, these phyla make up a small pro-
portion of the gut microbiota. Classically pathogenic species, such 
as Campylobacter jejuni, Salmonella enterica, Vibrio cholera and 
Escherichia coli, and Bacteroides fragilis, exist in low prevalence 
(~0.1%) (18,25). Firmicutes is the largest bacterial phylum in the gut 
microbiota and includes 200 genera: Ruminococcus, Clostridium, 
Eubacterium, Lactobacillus, Faecalibacterium, Roseburia, and 
Mycoplasma. Most of these bacteria have a Gram-positive cell 
wall structure with a thick peptidoglycan layer. On the other hand, 
Bacteroidetes have a Gram-negative cell wall structure. These bac-
teria include the genera Bacteroides, Prevotella, and Xylanibacter 
(26). Different from Gram-positive cell wall structure, Gram-
negative cell structure consists of an extra outer membrane outside 
the thin peptidoglycan layer, which makes bacteria less susceptible 
to antibiotics. Also, the outer membrane of Gram-negative bacteria 
contains lipopolysaccharide (LPS), which elicits a variety of im-
mune responses in the host animal in which the bacteria reside. The 
proportion of the two major phyla, Firmicutes and Bacteroidetes, 
are inversely related. It has been reported that the Firmicutes to 
Bacteroidetes ratio is correlated with obesity and other diseases, al-
though it is debatable if the ratio is a good indicator associated with 
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disease state because there is significant variability among healthy 
individuals (23,27–29).

The commensal gut microbiota has many diverse roles in 
regulating host function. Extensive research has focused on the 
immunoregulatory effect of the commensal gut microbiota on both 
the innate and adaptive immune systems (30). The commensal bac-
teria prevent the invasion of pathogenic bacteria or the overgrowth 
of pathobionts in the residing bacteria community. Commensals 
have been reported to release antibacterial peptides (eg, cathelicidin 
and C-type lectin) or lactic acid to regulate the gut pH level (3,31). 
Recent studies also support the idea that commensal gut micro-
biota contribute to maintaining the structure of the gut barrier. For 
example, commensals express the small proline-rich protein 2A 
(sprp 2A) and angiogenin3, which are associated with cell-to-cell 
adhesion processes and vasculature development (25,32,33). The 
immunoregulatory effects are not limited to local infection sites: dif-
fusion of microbial products or inflammasomes may lead to systemic 
distribution (34). The structural development of the immune system 
is also dependent on commensal bacteria. For example, mice raised 
in germ-free conditions have poorly developed intestinal lymphoid 
tissues (35). Also, in a separate study, GF mice had impairments in 

eliciting appropriate cytokine production accompanied by changes 
in various immune features: CD4+ T helper cells, FoxP3+, Tregs, B 
cells, Th17 cells, IgA, antimicrobial peptides, and MHC class II (16).

The diversity and composition of bacterial communities are im-
portant factors in maintaining immune homeostasis (34). For ex-
ample, as pathogens invade tissues in the GI tract, they may activate 
the IL-23 – IL-17 inflammatory cytokine axis to induce T-helper 17 
(Th17) cells, resulting in tissue inflammation and destruction during 
defense (36). However, an exaggerated immune response can induce 
Th17 cell over-proliferation that may promote autoimmune diseases, 
such as multiple sclerosis, arthritis, or inflammatory bowel disease. 
The IL-23 – IL-17 axis including Th17 cell activation can be sup-
pressed by IL-10 and IL-25 signaling. Some of these anti-inflamma-
tory cytokines are produced by species-specific bacterial signals (eg, 
polysaccharide A from B. fragilis), highlighting the importance of a 
diverse bacterial community in immune homeostasis (37).

Another critical function of the gut microbiota is assisting nu-
trient metabolic processes. Indigestible complex carbohydrates, such 
as cellulose fibers, are broken down into oligosaccharides by the bac-
teria in the GI tract. These are then converted to short-chain fatty 
acids (eg, butyrate, propionate, and acetate) that human cells can 

Table 1.  Evidence Supporting the Association of Gut Microbiota with AD Pathogenesis

Subject Method Main findings Reference

AD Human patientsSpecific microbial DNA qPCR Assay using fecal 
smaples.

Escherichia/Shigella (related to proinflammatory)↑; 
Eubacterium rectale (related to anti-inflammatory)↓

(62)

AD Human patients16S rRNA gene sequencing using fecal samples. Firmicutes↓; Bacteroidetes↑; Bifidobacterium↓ (61)
AD Human patients16S rRNA sequencing using AD brain tissues Bacterial population in the brain ↑ (98)
AD Human patientsProbiotic supplement Kynurenine:tryptophan ratio↑ (97)
AD Human patients16S rRNA gene sequencing using fecal samples. Bacteroides↓, Actinobacteria↑, 

Ruminococcus↑, Lachnospiraceae↓
(60)

APP/PS1 mice Life-long antibiotic treatment Aβ plaque↓; plaque-localized glial reactivity ↓ (69)
APP/PS1 mice Early postnatal antibiotic treatment Aβ plaque↓; plaque-localized glial reactivity ↓ (68)
APP/PS1 mice 16S rRNA sequencing using fecal samples 

(8–12 mo of age)
SCFA ↓; 
Microbiota composition and diversity were perturbed 
(eg, richness↑ at ~6 month; diversity↓ at ~12 month; Proteobacteria and 
Verrucomicrobia ↑)

(63)

APP/PS1 mice 16S rRNA sequencing using fecal samples 
(6 mo of age)

Microbiota diversity↓; Spatial memory ↓; 
Odoribacter and Helicobacter↑ (at the genus)

(64)

APP/PS1 mice Raising subjects in germ-free condition 
(8 mo of age)

Brain Aβ↓ (70)

APP/PS1 mice 16S rRNA sequencing using fecal samples 
(3–24 mo of age)

Firmicutes: Bacteroidetes ratio↑ with age; 
Proteobacteria↑ (genus Shutterella↑); Erysipelotrichaceae↑

(99)

3xTG-AD mice Oral treatment with SLAB51 probiotic 
formulation at 8 wk for 4 mo. 
(Behavioral test at 24-mo-old of age)

Aβ deposition↓ Cognitive decline↓ (96)

5xFAD mice 16S rRNA sequencing using fecal samples 
(6–18 wk of age)

Locomotion (=); food consumption (=); 
Aβ was found in the gut; trypsin ↓; 
Firmicutes: Bacteroidetes ratio↑; Clostridium leptum ↑

(65)

5xFAD mice GV-971 and Antibiotic treatment; 
Co-housing;

Firmicutes: Bacteroidetes ratio↑; 
Infiltrating Th1 cells & microglia activity ↑; 
Microglia activity ↓ with antibiotic drugs & GV-971

(78)

P301L mice 16S rRNA sequencing using fecal samples 
(1,3,6, and 10 mo of age)

Firmicutes: Bacteroidetes ratio ↓;  (67)

Rat Helicobacter pylori filtrate i.p. injection Aβ↑; Spatial memory ↓  (72)
Drosophila 
expressing Aβ42

Oral infection with Ecc15 Vacuolar degeneration ↑; 
Immune hemocyte in the brain ↑

 (77)

Note: AD = Alzheimer’s disease; APP = Amyloid precursor protein; APP/PS1 mice = Double transgenic mice expressing mutations in APP and PS1 genes; 
Aβ = Amyloid beta; Ecc15 = Erwinia carotovora carotovora 15; GV-971 = a seaweed-derived oligosaccharide; i.p. = Intraperitoneal; 3xTG-AD mice = Triple 
transgenic mice displaying both Aβ plaques and tau-containing neurofibrillary tangles; 5xFAD mice = Mice carrying five familial AD mutations in APP and PS1 
transgenes; P301L = Transgenic mice expressing a mutation in human tau that causes a form of tau-related frontotemporal dementia that develop neurofibrillary 
tangles; PS1 = Presenilin-1; SLAB51 = a probiotic formulation made of multiple live bacterial strains.
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absorb and use as an energy source (8). The gut bacteria are also 
involved in lipid/protein metabolic processes and in synthesizing 
vitamin K and vitamin B (25). In addition, recent studies have shown 
that the gut microbial enzymes are involved in bile acid and poly-
phenol related processes. We will further discuss the role of the gut 
microbiota in inflammation and metabolic homeostasis with AD 
pathology later in this review.

AD: Background and Key Risk Factors

AD is characterized by two distinct neuropathological hallmarks: 
extracellular deposition of amyloid plaques and intracellular neuro-
fibrillary tangle accumulation (38). Amyloid plaques are mainly 
composed of Aβ peptides that are derived from the single-pass 
transmembrane amyloid precursor protein (APP) after its sequential 
cleavage by β- and γ- secretases. Under normal conditions, after Aβ 
is generated and released to the extracellular space, it is monomeric 
and soluble with a half-life of hours. However, during aging and 
in particularly those who go on to develop AD, Aβ aggregates into 
different structures including oligomers, protofibrils, and fibrils that 
have a β-sheet structure and are associated with local toxicity. As Aβ 
deposits in amyloid plaques, cerebrospinal fluid Aβ 42 levels decrease 
likely due to sequestration of Aβ in amyloid plaques (39,40). Aβ 
deposits may disrupt synaptic and neuronal activity as well as cause 
focal cell damage associated with microglial and astrocytic activa-
tion, thereby resulting in localized oxidative stress and mitochon-
drial dysfunction (38,41). Importantly, through unclear mechanisms, 
Aβ deposition appears to drive further aggregation and spreading of 
tau pathology.

Neurofibrillary tangles are the other histopathological hall-
mark of AD. Neurofibrillary tangles are composed of hyper-
phosphorylated, aggregated forms of the tau protein. Tau is present 
predominantly in neurons and contributes to the formation and sta-
bilization of microtubules. Its excessive phosphorylation over time 
as well as other factors, leads to the detachment of tau from micro-
tubules. In this state, it can aggregate, resulting in the formation of 
filamentous neurofibrillary tangles inside neurons. Aggregated forms 
of tau are associated with interference in synaptic communication as 
well as neuronal death (42,43).

AD is classically divided into two categories. Early-onset familial 
Alzheimer’s disease (FAD) is inherited in an autosomal dominant 
fashion and manifests with cognitive decline beginning most com-
monly between age 30 and 60 depending on the gene mutation and 
family. FAD is caused by mutations in one of 3 genes APP, PSEN1, 
and PSEN2 genes (encoding amyloid precursor protein, presenilin 
1, and presenilin 2, respectively). Most of the mutations result in 
an increase in the relative level of more amyloidogenic species of 
Aβ such as Aβ 42 and Aβ 43. Mutations in these genes account for less 
than 1% of AD cases. Most AD cases are sporadic with relatively 
late onset typically after age 65, known as late-onset Alzheimer’s 
disease (LOAD). The largest known risk factors for LOAD are age 
and genetic factors, though it is likely there are several environ-
mental and other risks (44). The strongest genetic risk factor is the 
apolipoprotein E (APOE) gene, which has 3 common variants de-
noted ε2, 3, and 4 (APOE2/3/4) (45,46). Compared to the common 
ε3 variant, the presence of an APOE4 allele increases and APOE2 
decreases AD risk. One copy of APOE4 increases a person’s risk 
of developing the disease approximately 4-fold, and two copies of 
APOE4 increase the risk approximately 12-fold relative to individ-
uals who are APOE3/E3. One copy of APOE2 decreases risk by ~0.6 
relative to individuals who are APOE3/E3 (47). APOE is the most 

abundant apolipoprotein produced in the brain, mainly expressed 
in astrocytes but also in microglia under inflammatory conditions. 
Neurons produce little APOE but express receptors for ApoE, such 
as LDLR and LRP1 (48).

The involvement of innate immunity in AD is supported by the 
fact that other risk factors for LOAD associate with genes expressed 
exclusively or at high levels in microglia (eg, TREM2, CD33, other) 
(49,50). Also, a recent epigenomic analysis showed that AD genome-
wide association study (GWAS) loci are preferentially enriched in 
enhancer sequences associated with innate immune processes (51). 
Rare variants in the triggering receptor expressed on myeloid cells 
2 (TREM2) increase the risk of developing AD by two- to threefold 
(47). TREM2 is a cell-surface receptor that is expressed in mono-
nuclear phagocytes and microglia in the brain. Several lipids and 
lipid-associated ligands can activate TREM2. One such ligand is 
APOE, but whether APOE represents an important TREM2 ligand 
in vivo is not yet clear (52–54). Emerging evidence however sug-
gests that APOE and TREM2 somehow influence microglial activa-
tion under different conditions but how this occurs is not yet clear. 
Inflammatory responses mediated by the APOE-TREM2 pathway 
will be key to understanding different aspects of the brain’s innate 
immune response to AD pathology.

Whether innate immune activation in AD represents a 
neuroprotective or neurotoxic function is currently not clear. In fact, 
accumulating evidence argues that the innate immune response may 
differentially affect AD pathogenesis depending on disease stage 
(53). For example, microglial activation may be protective against 
AD pathology in early stages characterized by Aβ pathology via 
decreasing/clearing plaques and reducing neuritic dystrophy. On 
the other hand, in later stages of AD pathology with abundant tau 
pathology, a disease-associated microglial response may be dele-
terious by directly targeting injured neurons and by activating a 
toxic astrocyte response. In mouse models with Aβ deposition, gen-
etic activation of microglia via TREM2 signaling resulted in more 
compact Aβ plaques and a reduction in plaque-associated dystrophic 
neurites (55,56). In contrast, genetic ablation of APOE in a mouse 
model of tauopathy reduced glial activation which was associated 
with markedly decreased neurodegeneration (45). Despite progress 
in identifying substantial genetic risk factors and their functional 
link to neuroinflammation in AD pathology and progression, these 
risk-factor genes do not completely explain the etiology of LOAD. 
Specifically, inheriting these risk-factor genes does not definitely 
predict the development of AD (ie, some people who carry one or 
two APOE ɛ4 alleles never develop AD, and others can develop 
AD without APOE ɛ4 alleles). This suggests that other factors are 
involved that also disrupt the homeostatic orchestration of brain 
immunity and metabolism.

Although a vast literature in the field has focused on the role 
of CNS neuroinflammation and innate immunity in AD pathology, 
there is mounting interest in the contribution of the peripheral im-
mune system. Some studies have demonstrated the presence of blood-
derived leukocytes (eg, lymphocytes, monocytes, and neutrophils) in 
the brains of AD patients or animal models, suggesting possible in-
volvement of the adaptive immunity in AD pathogenesis (57–59). 
Baruch and colleagues showed that, in a mouse model with Aβ de-
position (5xFAD), transient suppression of regulatory T (Treg) cells 
using pharmacogenetic techniques led to a decrease in Aβ deposition 
(59). In a separate study, genetic ablation of adaptive immune cells, 
including T cells and B cells, in a mouse model with Aβ deposition, 
significantly accelerated amyloid pathogenesis. Interestingly, in the 
study, the authors observed that microglial morphology and brain 
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cytokine profiles were altered in the adaptive immune system defi-
cient mice with amyloid burden, suggesting that increased amyloid 
burden is related to the abnormal microglial activity. Taken together, 
these studies support a modulatory role for the peripheral adaptive 
immune system in influencing the CNS innate immune system and 
consequently AD pathogenesis (58). Given the intimate relationship 
between the immune system and gut microbes, we might suspect 
that the peripheral immune system may bridge the gut flora to AD 
pathogenesis.

Experimental Evidences in the Contribution of 
Gut Microbiota to AD

A limited, but growing, body of evidence from AD patients and 
mouse models suggest that gut microbiota perturbation occurs with 
AD and may influence certain aspects of AD pathology (Table 1). 
Analysis of the gut microbiota profile in AD patients shown a stark 
contrast with controls (60–62). For example, one study examining 
AD patients showed decreased microbiota richness with a decrease 
in the ratio of Firmicutes to Bacteroidetes (61). Another study re-
ported an increase in the ratio of Firmicutes to Bacteroidetes ac-
companied by decreased Bacteroidetes and similar Firmicutes 
abundance. Although these two studies support the interaction be-
tween gut microbiota and AD pathogenesis, the reason for the dis-
crepancy in the changed composition of gut microbiota between two 
studies is not clear. It might be due to the differences in method-
ology (eg, sample size, RNA sequencing area) and/or subjects (eg, 
lifestyle, dietary habits). Notably, the increased ratio of Firmicutes: 
Bacteroidetes has previously been observed in patients with type 
2 diabetes or obesity, implying gut dysbiosis as a common thread 
between pathology in other diseases (28). Proinflammatory related 
bacteria including Escherichia/Shigella are increased in AD cases, 
whereas anti-inflammatory related bacteria such as Eubacterium 
rectale are decreased (62) suggesting a possible link between the gut 
microbiome and neuroinflammation.

In a mouse model with Aβ deposition (APP/PS1), the microbiota 
richness was increased early in life, while the diversity was decreased 
with age (6–9  months) (63). In a separate study using the same 
animal model, the diversity of microbiota was also decreased with 
age (3–8 months) in the AD model, but not in wild-type mice (64). 
Moreover, reduced diversity was correlated with greater Aβ depos-
ition in the hippocampus and a decline in hippocampal-dependent 
spatial memory. Notably, the authors highlighted that the reduction 
of overall diversity was accompanied by elevations in certain bac-
terial populations, such as Odoribacter and Helicobacter. Another 
study using a different Aβ deposition mouse model (5xFAD) re-
ported an increased Firmicutes:Bacteroidetes ratio compared to 
wild-type mice at 9 weeks of age (65). Interestingly, in this study, Aβ 
peptide was found in gut tissue sections of 5xFAD mice, suggesting 
the possibility that, in this model, Aβ may also directly influence 
microbiota balance.

Altered microbiota composition is not always consistent among 
animal and human studies (eg, increased Firmicutes:Bacteroidetes 
ratio in 5xFAD vs decreased Firmicutes:Bacteroidetes ratio in AD 
patients). Perhaps, this is due to substantial differences in normative 
resident bacterial communities in each species, and/or divergence 
in genetic backgrounds inducing AD-like pathology in transgenic 
model systems (eg, differences in target promoter or differences in 
inducing different stages of AD stages, that is, tauopathy) (66). Until 
now, most animal-based studies in this field have focused on using 
amyloid-induced model systems. However, a recent study examined 

the diversity and composition of the gut microbiota in a tauopathy 
animal model (P301L). In the study, P301L mice had a decreased 
Firmicutes:Bacteroidetes ratio with age compared to wild-type con-
trols, the pattern of which is opposite to the finding from some 
studies using amyloid-induced models (67). Despite this inconsist-
ency, findings from these observational studies in AD-like animal 
models and AD patients strongly support gut dysbiosis influencing 
the pathogenesis of AD.

Several studies have attempted to demonstrate a causal link be-
tween microbiota perturbation on AD pathology using different 
manipulation strategies (eg, treating with antibiotics, germ-free 
conditions, rederiving normal microbiota, or introducing a spe-
cific pathogen). In one such study, Minter and colleagues treated an 
amyloid mouse model (APP/PS1 mice) with a cocktail of antibiotics 
during the early postnatal period. This resulted in long-term alter-
ations of gut microbiota composition as well as reduced Aβ depos-
ition in the hippocampus and in multiple cortical areas in APP/PS1 
mice. The authors also observed that glial reactivity surrounding Aβ 
deposition was reduced with the early postnatal antibiotic treatment 
(68,69). Consistently, APP/PS1 mice raised in germ-free conditions 
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Figure 1.  Hypothetical model illustrating impact of an altered gut microbiota 
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protecting the CNS from exposure to peripheral agents/molecules. Pathogens 
which do enter the CNS are scavenged by microglia. However, as pathobionts 
become dominant in the gut (dysbiosis), excessive proinflammatory cytokines 
and neurotoxic bacterial metabolites (eg, lipopolysaccharide) lead to disruption 
of gut permeability and blood–brain barrier integrity. This then accelerates 
entry of circulating inflammatory molecules and pathogens into the brain, 
resulting in excessive activation of innate immunity. In turn, inappropriate 
glial activity may worsen processes such as Aβ seeding and clearance or 
local effects of Aβ (a), or exacerbate tau-mediated neurodegeneration in 
later stages (b). AD  =  Alzheimer’s disease; CNS  =  Central nervous system.
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showed reduced Aβ deposition in the cortex and hippocampus and 
attenuated microglial activation compared to control mice. This re-
sult was reversed when the germ-free mice were recolonized with 
microbiota from conventionally raised animals (70). Taken to-
gether, these animal findings using germ-free conditions or antibiotic 
treatment support the notion that altering the gut microbiota in 
AD animal models induced changes in neuroinflammation and Aβ 
deposition.

At present, it remains unclear whether any single pathogen or 
assembly of pathogens is specifically involved in the microbiota 
influence on AD pathology. Some studies have tied cognitive de-
cline and AD risk with exposure to common pathogens including 
Cytomegalovirus, Herpes simplex virus type 1, Chlamydophila 
pneumonia, and Helicobacter pylori (71). Others have even probed 
whether a specific microbe can induce or accelerate AD pathology. 
For example, recent observational studies suggest that H. pylori are 
more abundant in AD patients or animal models of aspects of AD 
than in controls. This has been tested experimentally: Wang and 
colleagues injected rats with H.  pylori filtrate, which exacerbated 
Aβ 42 production in the hippocampus and spatial memory impair-
ment (72). In addition, increased levels of H. pylori antibodies have 
been detected both in plasma and cerebrospinal fluid of AD patients 
(64,73).

Linking Gut Microbiota and AD Pathogenesis

As we discussed above, accumulating data support the potential 
contribution of the gut microbiome to AD pathology, but there are 
still many unanswered questions: what microbiological pathways 
are actually involved in pathogenesis? How is the gut microbiome 
able to modulate AD pathogenesis in the brain that is located dis-
tally and protected by the BBB? These are fundamentally chal-
lenging questions to address because genetic and environmental 
risk factors can modulate various steps in microbiota–gut–brain 
communication, and vice versa (Figure 2). Therefore, it is conceiv-
able that such complex interplay may give rise to numerous pu-
tative pathways, for which several hypotheses have emerged over 
the years.

Various lines of reasoning argue that the immune system is the 
most likely bridge between the microbial community and AD patho-
genesis. Microbes of the gut have considerable influence on the 
peripheral immune system, making it an attractive putative bridge 
to AD pathogenesis. Cell components and metabolites from an al-
tered/unhealthy gut microbial community (dysbiosis caused by sev-
eral factors; eg, genetic, diet, stress, age) can modulate innate and 
adaptive immunity in the periphery and thereby influence CNS 
neuroinflammatory activity (34). For example, pathogen-associated 
substances in the GI tract may activate mast cells that travel to other 
tissues and release inflammatory mediators such as cytokines and 
chemokines, and reactive oxygen species (74). While this process 
may protect against pathogens, it may also influence cells in the 
CNS including astrocytes, microglia, and blood vessels in the brain. 
Chronic mast cell activation can cause excessive neuroinflammation 
and contribute to neurodegeneration. In addition, BBB permeability 
is sensitive to proinflammatory mediators and regulation by in-
nate immune cells including mast cells and microglia. Importantly, 
increased BBB permeability may facilitate brain infiltration of im-
mune cells or mediators and thereby accelerate neuroinflammation 
(53,58,59,75). Postmortem analyses of AD brains have consistently 
demonstrated BBB damage, and cases carrying the ApoE4 variant 
have marked pericyte injury. In mice, ApoE deficiency causes BBB 
leakage through a pathway connecting the lipoprotein receptor 
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Figure 2.  Schematic diagram of dysregulated gut-brain axis and its interaction 
with AD pathology. Arrows indicate the direction of the effect. Arrows with 
dashed lines indicate that no studies have explored this putative relationship 
yet in the AD—gut microbiome field. Multiple risk factors (top), such as genetic 
variants (eg, ApoE4 allele, which also can directly affect AD pathology and BBB 
permeability) and environmental factors (eg, aging, alcohol consumption, 
antibiotic drug treatment) lead to unbalanced gut microbiota composition 
(dysbiosis). This gut dysbiosis contributes to AD-pathology progression by 
generating inflammatory agents and bacterial metabolites that associate 
with increased intestinal barrier and BBB dysfunction. Some cytokines (eg, 
IL-17) and metabolites (eg, SCFA) can amplify the abundance of plasma T 
helper type 1 (Th1) cells, which invade the brain parenchyma. These promote 
neuroinflammation (ie, increase proinflammatory microglial abundance) and 
contribute to AD pathogenesis: amyloid-β (Aβ) deposition and neurofibrillary 
tangles (not investigated yet). Hypothetically the CNS-invading pathogens 
or toxic bacterial metabolites may directly cause or facilitate AD pathology. 
AD  =  Alzheimer’s disease; BBB  =  Blood–brain barrier; CNS  =  Central 
nervous system; LPS = Lipopolysaccharide; SCFA = Short-chain fatty acids.
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LRP1 with the CypA–nuclear factor-kB in pericytes. Notably, this 
signaling is suppressed in ApoE3, but not ApoE4 expressing mice 
(76).

It is known that peripheral infection (eg, respiratory infection by 
Bordetella pertussis) can promote T cell infiltration and stimulate 
neuroinflammation or Aβ deposition (71). Several recent studies have 
extended this role for infiltrating peripheral immune cells to bridge 
gut dysbiosis with Aβ-related pathogenesis. Wu and colleagues 
showed that, using a Drosophila model system of AD, oral infec-
tion with a nonpathogenic enterobacteria (Ecc15) resulted in a sig-
nificant increase of vacuolar degeneration compared to noninfected 
controls. They further demonstrated that immune hemocyte recruit-
ment into the brain may exacerbate this neurodegeneration (77). 
In an elegant study, Wang and colleagues used the 5xFAD model 
to report that shifts in gut microbiota track closely with changes 
in Aβ-related pathogenesis and increases of proinflammatory types 
of microglia. Intriguingly, these shifts were also tightly associated 
with the number and pattern of infiltrating proinflammatory T 
helper type 1 (Th1) cells in the brain (78). However, when the gut 
microbiota of 5xFAD mice was perturbed with antibiotic drugs, 
they exhibited fewer activated microglia and infiltrating Th1 cells. 
Collectively, these findings support the hypothesis that gut dysbiosis 
may stimulate the infiltration of peripheral immune cells into the 
brain and thereby contribute to Aβ-related pathogenesis through 
enhancing neuroinflammation (79).

A compromised BBB also opens the possibility for peripheral 
pathogens from multiple different organs to enter directly into the 
brain parenchyma and influence AD pathogenesis including Aβ for-
mation. Tying Aβ directly to infectious disease, recent studies offer 
a putative role for Aβ in protecting the CNS from invading micro-
organisms. In an animal model with Aβ deposition, viral infection 
in the brain by Herpesviridae dramatically accelerated Aβ depos-
ition which decreased viral spread (80). Similarly, it has been dem-
onstrated that CNS-invading fungi Candida albicans can increase 
Aβ deposition as well as attracting microglia to the site of infection, 
thereby promoting antimicrobial activity (81). Additionally, bac-
terial products such as LPS, derived from the outer membrane of 
Gram-negative bacteria, have been detected in brains of AD patients 
and appear to amplify Aβ deposition. For example, intraperitoneal 
LPS injection, but not saline injection, elevated Aβ 42 levels in the 
brain of wild-type mice (82,83). Studies in AD cases or some animal 
models of AD show that the abundance of the phylum Bacteroidetes, 
which mostly consists of Gram-negative bacteria, increases alongside 
pathological insult. Collectively, such studies suggest a potentially 
interesting relationship tying neuroinflammation or AD pathology 
with elevations in Bacteroidetes abundance and associated LPS. In 
addition, a leaky gut (ie, increased intestinal permeability) may con-
tribute to dysbiosis-related AD pathogenesis via increasing the trans-
location and systemic distribution of bacteria or bacterial-derived 
endotoxins. Examination of gut communities in AD subjects reveal 
reduced representation of the Bifidobacterium genus, which has a 
well-supported role in maintaining gut mucosal barrier properties. 
At present, studies directly examining the intestinal permeability in 
AD patients or model systems of AD are lacking. Similarly, the field 
would greatly benefit from studies assessing whether any correlation 
exists between intestinal permeability and genetic risk factors for AD 
including ApoE4 expression.

Further inspiration for putative pathways comes from the strong 
correlation between AD and metabolic disorders (eg, 80% of AD 
patients show impairment in glucose tolerance or have diabetes) 
(84). Specifically, certain bacterial metabolites may modulate or 

drive metabolic alterations in the host and could potentially influ-
ence AD pathogenesis. For example, the microbial-derived metab-
olite trimethylamine N-oxide (TMAO) can enter the brain and has 
been connected with AD. A recent study has reported that individ-
uals with AD dementia showed elevated TMAO levels in their CSF, 
and interestingly the CSF TMAO was more associated with CSF 
p-tau, but not Aβ levels (85). It has been reported that bacterially 
produced bile acids, which are associated with cholesterol metab-
olism and clearance, are dysregulated in the serum of AD patients. 
Bile acids are primarily synthesized in the liver, but secondary syn-
thesis by bacteria was elevated in AD patients beyond that of con-
trols (86). However, it is not clear how or whether these metabolites 
directly influence AD pathology or neurodegeneration. Perhaps, this 
secondary bile acid promotes BBB permeability or influences brain 
metabolism. Elevated TMAO levels have been also implicated in dia-
betes and insulin resistance, which are known to be risk factors for 
developing dementia (85,87).

Short-chain fatty acids (SCFAs) have well-characterized roles in 
lipid/protein metabolic process and appear to have a protective role 
against AD. This protection may occur by conferring energy to the 
brain or regulating microglial maturation and function (8,88). Recent 
studies have examined the gut microbiota composition of humans or 
animal model systems carrying different ApoE alleles. Interestingly, 
analysis of the gut microbiota of ApoE2, E3, or E4 carriers revealed 
a lower abundance of the SCFA-producing Ruminococcaceae bac-
teria in ApoE4 carriers (89). SCFAs (ie, butyrate) play also plays an 
important role in orchestrating the integrity of intestinal barrier. It is 
possible that ApoE4 carriers lacking SCFA-producing bacteria face 
greater vulnerability to intestinal barrier loss or intestinal perme-
ability. In addition, recent studies have elucidated the role of SCFAs 
in the modulation of the T cell fate through G-coupled protein re-
ceptor signaling (GPR41/GPR43) and epigenetic modifications, 
suggesting another possibility that microbial-SCFAs influence AD 
pathology through modulating peripheral inflammation (90,91).

The contribution of bacteria-derived amyloids to AD pathogen-
esis represents an interesting but still under-explored line of research. 
It has been reported that Escherichia coli produce extracellular 
amyloid fibers called curli, which also adopt a beta-sheet structure 
(92,93). The relationship between curli and brain Aβ amyloidosis 
and deposition is not clear. It is conceivable that amyloids like curli 
may propagate to the CNS via peripheral nerves (eg, vagus nerve), 
as recent studies demonstrated that α-synuclein protein, which also 
forms an “amyloid” in Parkinson’s disease, travels along the vagus 
nerve from the gut to the brain where it can seed CNS synuclein and 
spread in the brain (94,95). Notably, a common pathway between 
CsgA (a major structural subunit of curli), LPS, and Aβ is the activa-
tion of toll-like receptors that are expressed in microglial cells. Given 
that the digestive track is a robust source of bacterial products, 
chronic exposure to bacterial products could over-stimulate both the 
peripheral and central nervous system. Increased inflammation by 
other factors such as aging and stress could also potentially stimulate 
permeability of both the GI tract and the BBB. Together, these may 
facilitate greater access of inflammatory agents and pathogens to the 
brain, altering the immunological balance (Figure 2).

Conclusion and Future Perspectives

In summary, the gut microbiota is actively involved in various aspects 
of human physiology, and its malfunction is closely associated with 
human disease including AD. Myriad factors maintain and modulate 
a healthy gut microbiota throughout life, including aging processes, 
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dietary changes, and drug/alcohol consumption, among innumerable 
others. Excessive, chronic, or acute shifts in critical factors may drive 
a proinflammatory state to influence the CNS. Additionally, genetic 
risk factors (eg, the presence of an ApoE4 allele) may contribute or 
influence the presence of more disease-associated microbiota. Finally, 
pathogenic agents may achieve direct access to the brain through a 
compromised BBB.

Progress has been made in establishing a causal relationship 
between alterations of the gut microbiota and AD pathogenesis. 
However, current studies in animal model systems have largely fo-
cused on how alterations in the microbiota affect Aβ pathology. It 
is hypothesized that the innate immunity of the brain has varying 
influences and roles in AD pathogenesis depending on early versus 
late phases; likewise, the relationship between AD pathogenesis 
and the gut microbiota likely depends on disease stage. Therefore, 
further systematic investigations are necessary to characterize the 
contribution of gut microbiota to more diverse aspects of AD 
pathology including tauopathy and neurodegeneration, which 
highly impacts cognitive function (Figure 2). In addition, links be-
tween known AD key genetic risk factors (eg, APOE and TREM2) 
and gut microbiota will extend our understanding on how gut 
microbiota contribute to AD pathology. The gut microbiota likely 
contributes to AD risk via influencing numerous avenues: aging, 
diabetes, and sleep or circadian rhythm dysfunction. For this 
reason, there will remain an immense number of putative path-
ways by which the microbiota might directly or indirectly affect 
AD pathogenesis.

With the increased understanding of the relationship between 
microbiome disruption and AD pathogenesis, shifting the gut micro-
biota balance towards a state of eubiosis, a healthy and balanced 
state of gut microbiota composition, will be an interesting future 
direction. A general concept in this field is “a diverse microbiota is 
a healthy microbiota.” However, as we discussed above, this is not 
always true. For example, some studies showed increased bacterial 
richness in AD animal models or reduced amyloidosis alongside 
microbiota perturbation with antibiotic drugs (Table 1). A challen-
ging but clinically significant barrier is the need to reduce patho-
logical bacteria and increase beneficial bacteria, and recent testing 
in AD patients or animal models supports probiotics as a potential 
therapy. With the advent of new therapeutic tools, harnessing and 
manipulating the gut microbiota will represent an attractive and in-
novative strategy to counteract AD pathogenesis (96,97).
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