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Abstract. The levels of type X collagen in mineraliz- 
ing normal chicken epiphyses and nonmineralizing 
rachitic chicken tibial epiphyses were measured and 
compared. Qualitative immunoperoxidase studies with 
anti-chick type X collagen monoclonal antibodies on 
sections from normal and rachitic cartilage demon- 
strated that the type X collagen levels in rachitic 
growth plates are reduced. Northern hybridization of 
mRNA and biosynthetic studies have confirmed that 
type X collagen synthesis in rickets is also decreased. 
In hypocalcemic rickets, the level of type X collagen 

mRNA is reduced by 80% whereas the level of type X 
collagen mRNA is only reduced by 50% in normocal- 
cemic rickets. These observations provide additional 
evidence that type X collagen is involved in the pro- 
cess of cartilage mineralization and also suggest that 
the partial recovery of type X collagen synthesis in 
normocalcemic rickets may be related to the elevated 
plasma concentration of calcium. Calcium concentra- 
tion may therefore play an important role in the con- 
trol of type X collagen synthesis. 

ONGITUDINAL growth of long bones is governed by ac- 
tivities of cells located within the epiphyseal carti- 
lage. During development of the growth plate, chon- 

drocytes in the epiphysis undergo a continuum of cell pro- 
liferation, maturation, and hypertrophy (Stocum et al., 1979). 
Finally, cells in the distal hypertrophic zone degenerate and 
the matrix becomes mineralized with the concurrent inva- 
sions of blood vessels and bone marrow. Chondrocytes within 
these different zones show varied cell morphologies and bio- 
chemical activities, as exemplified by the differences in the 
composition of their respective extracellular matrices. Bio- 
chemical analyses of cartilage matrices in recent years have 
revealed a high degree of collagen heterogeneity. To date, 
five genetically distinct collagen types have been shown to 
be associated with the epiphyseal cartilage, namely collagen 
types II, VI, IX, X, and XI (Grant et al., 1988). 

Among these molecules, type X collagen is of particular 
interest since it is synthesised exclusively by hypertrophic 
chondrocytes in the part of the growth plate destined for ma- 
trix mineralization (Schmid and Linsenmayer, 1983, 1985; 
Kielty et al., 1984, 1985; Kwan et al., 1986a). Although this 
molecule has been characterized extensively in recent years 
(Kielty et al., 1985; Schmid et al., 1984; Kwan et al., 1986b; 
Ninomiya et al., 1986), the exact functional role of type X 
collagen remains to be defined. However, its temporal and 
spatial appearance within the cartilaginous matrix of grow- 
ing epiphyses suggest its possible involvement in processes 
that lead to matrix mineralization during endochondral bone 
formation (Habuchi et al., 1985). Additional evidence for 
the association between type X collagen and endochondral 

ossification has been presented in a recent publication show- 
ing the synthesis of type X collagen in mineralizing fracture 
callus (Grant et al., 1987). 

Vitamin D deficiency results in a failure of the mineraliza- 
tion process. In chickens with vitamin D-deficiency rickets, 
the epiphyseal growth plates of long bones are abnormally 
wide due mainly to an enlargement of the zone of chondro- 
cyte proliferation and maturation. If the hypocalcemia that 
is also present in these rachitic chickens is normalized by in- 
creasing the calcium content in the diet, the width of this 
zone is similar to that found in vitamin D-replete chickens 
of similar age, but the zone of chondrocyte hypertrophy and 
degeneration is enlarged. It is within this latter zone that car- 
tilage normally calcifies and is then replaced by mineraliz- 
ing osteoid, but histological and microradiographic studies 
showed this process to be defective in both normocalcemic 
and hypocalcemic vitamin D-deficient chickens (Jande and 
Dickson, 1980). These animal models provided a convenient 
approach to investigate the relationship between vitamin D 
status and synthesis of type X collagen. 

Mater ia ls  a n d  M e t h o d s  

Production of  Chickens with 
Hypocalcemic and Normocalcemic Rickets 
(HCR and NCR,  Respectively) I 

1-d-old Golden Comet cockerels (Sappa Ltd., Bury, St. Edmunds, UK) 

1. Abbreviations usedin thispaper: HCR, hypocalcemic rickets; NCR, nor- 
mocalcemic rickets. 
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were divided into three groups. One group was induced to develop HCR 
by maintenance on a rachitogenic diet (vitamin D-deficient diet containing 
1.2% [wt/wt] Ca ++ and 0.7% [wt/wt] phosphate). To produce NCR, birds 
were fed the rachitogenic diet for 3 wk, but after the first week their diet 
was supplemented with 1% (wt/wt) CaCO3 for 7 d followed by 3% (wt/wt) 
CaCO3 throughout the third week. The third group was given cholecal- 
ciferol (Z5/~g in 0.5 ml of arachis oil) orally twice each week in addition 
to the vitamin D-deficient diet and was defined as the control group. The 
birds were maintained for 3 wk and then anesthetized, bled by cardiac punc- 
ture, and killed by chloroform overdose. Serum levels of calcium, phospho- 
rus, and alkaline phosphatase were analyzed using methods described else- 
where (Jande and Dickson, 1980). 

Preparation of Monoclonal Antibodies to Chicken 
Type X Collagen 

Chicken type X collagen was isolated and purified from chondrocyte culture 
media as previously described (Kielty et al., 1985). BALB/c mice (8-12 wk 
old) were each injected intraperitoneally with either 200 t~l of native chick 
type X collagen in complete Freund's adjuvant (Sigma Chemical Co. Ltd., 
Poole, UK) or 200 ~1 of alum precipitate suspension containing 50 ~g of 
type X collagen and 2 × 109 killed BorteUa pertussis organisms (Bur- 
roughs Wellcome & Co., London, UK). The mice were allowed to rest for 
3 wk after the initial immunization and were then reinjected intraperi- 
toneally with 25 ~g of type X collagen in incomplete Freund's adjuvant (200 
pl). First, tail bleed and antibody titer determinations were performed 2 wk 
after the second injection. Mice showing positive responses to the immuni- 
zation procedures were reinjected and rested for 4 wk before the final 
booster injection (25 t~g of type X collagen in PBS) was administered. After 
3 d, spleen cells were taken from these mice and mixed with myeloma x63- 
Ag8.653 in a spleen-to-myeloma ratio of5:l  (Kearney et al., 1979). Fusion 
was achieved by adding to the mixed cell pellet 1 ml of 45% (wt/vol) poly- 
ethlene glycol (PEG 1500; BDH Chemicals Ltd., Poole, UK) in serum-free 
RPMI-1640 medium (Flow Laboratories, Rickmansworth, UK) containing 
5% (vol/vol) DMSO. Hybridomas were selected by the hypoxanthine/ 
aminopterin/thymidine selection method. Positive hybridomas were ex- 
panded, cloned, and subcloned by limiting dilution as described elsewhere 
(Galfre et al., 1977; L~Wborg, 1982; Goding, 1980). Antibody specificities 
were assessed by ELISA with (a) purified or pepsinized chicken type X col- 
lagen; (b) chicken collagen types I, II, IX, and XI; and (c) bovine fibronec- 
tin. Mouse ascites fluid was prepared by intraperitoneal injection of 106 
hybridoma cells into adjuvant-primed BALB/c mice. Antibodies were pre- 
cipitated twice from the collected ascites fluid by ammonium sulphate 
precipitation at 50% saturation. Monoclonal antibodies purified from hy- 
bridoma cell lines MC7 and MB6 were used in immunolocalization studies. 

lmmunohistochemistry 

The proximal tibial epiphyses were removed from freshly killed chickens 
and fixed in half-strength Karnovsky's fixative at 4°C for 16 h. Fixed tissues 
were dehydrated through a series of graded alcohol solutions and embedded 
in paraffin wax for sectioning. Dewaxed sections (5-7/~m thick) were treated 
with bovine testicular hyaluronidase (1 t~g/ml in 0.05 M sodium acetate 
buffer, pH 5, with 25 mM NaCI) at room temperature for 60 rain in a moist 
chamber. Treated sections were washed and incubated for I h with monoclo- 
nai antibodies MC7 and MB6, washed with PBS, and then stained with 
peroxidase-conjugated anti-mouse IgG for 60-90 min. Sections were im- 
mersed in 0.2 mg/ml 3,3'-diaminobenzidine tetrahydrochloride containing 
0.05% (vol/vol) H202 in PBS. Nuclei were counterstained with hema- 
toxylin. 

RNA Preparation 

Total RNA was extracted from freshly dissected whole epiphyses or from 
different cartilage zones by the guanidinium isothiocyanate/cesium chloride 
method (Maniatis et al., 1982). Tissue fragments were homogenized with 
a homogenizer (Polytron Ultra-Turrax T25; IKA-Labortechnik, Janke & 
Kunkel GmbH & Co., Staufen, FRG) in 4 M guanidinium isothiocyanate 
(Fluka Chemicals Ltd., Glossop, UK) containing 5 mM sodium citrate, 
0.1 M #-mercaptoethanol, and 0.5% Sarkosyl. Tissue debris were removed 
from the homogenate by centrifugation for 5 min at 1,000 g. Solid cesium 
chloride (1 g/2.5 ml) was added to the clarified homogenates which were 
then layered on top of a 2.5-ml CsCI cushion consisting of 5.7 M CsCI in 
0.1 M EDTA. The RNA was pelleted by centrifugation for 12 h at 100,000 g 
(at 200C) in a rotor (Ti50; Beckman Instruments, Inc., Fullerton, CA). The 
RNA pellet was resuspended in 10 mM Tris-HCl, pH 7.4, containing 5 mM 
EDTA and 1% SDS and digested with 50/~g of proteinase K (Gibco Labora- 
tories, Paisley, Scotland) at 64"C for 1 h to remove any contaminating pro- 
tein and proteoglycan. The digest was extracted once with a 1:1 mixture of 
phenol/chloroform. RNA was precipitated over 16 h after the addition to the 
aqueous phase of 0.1 vol of 3 M sodium acetate, pH 5.2, and 2.2 vol of etha- 
nol at -20°C. RNA was recovered by cantrifugation, washed with 70% eth- 
anol, and dried under vacuum before dissolving in diethyl-pyrocarbonate- 
treated water. Integrity of the isolated RNA was assessed by the presence 
of discrete 28s and 18s ribosomal RNA bands after electrophoresis in 
formaldehyde-containing agarose gels (Boot-Handford et al., 1987). 

Northern Blot and Hybridization Analyses 

Heat-denatured RNA (10 i~g/sample) was electrophoresed on a 1% (wt/vol) 
agarose gel containing formaldehyde (2.2 M) followed by capillary blotting 
onto a nitrocellulose filter using a vacuum blotting apparatus (Vacugene; 
LKB Instruments, Inc., Gaithersburg, MD). The filter was air dried, baked 
under vacuum at 80"C for 2 h, and prehybridized for 6 h at 370C in 50% 
formamide, 4× SSC buffer, 1 mg/ml sheared salmon sperm DNA, lx  Den- 
hardt's solution (Boot-Handford et al., 1987), and 0.1% SDS. Hybridiza- 
tions with heat-denatured 32p-labeled chicken type X collagen eDNA 
(clone pYN 3116 kindly donated by Dr. B. R. Olsen, Harvard Medical 
School, Cambridge, MA) was carried out at T/°C for 16-24 h in prehybrid- 
ization solution. 32p-labeled eDNA probe was prepared by nick translating 
whole plasmids using the nick translation kit from Boohringer Mannbeim 
Biochemicals (Lewes, UK). 

Fluorograms were obtained by exposing the filters to x-ray film (XAR; 
Eastman Kodak Co., Rochester, NY) in the presence of intensifying screens 
at -80°C. The intensities of hands were assessed by absorhance per micro- 
gram of total RNA from densitometric scanning of the fluorograms. 

Organ Cultures 

Isolated epiphyseal cartilage was dissected into proliferative and hyper- 
trophic zones. The distinct delineation of cartilage zones within the epi- 
physes of these 3-wk-old chickens allowed easy dissection without the need 
of visual aids. The regions corresponding to the border between prolifera- 
tive and hypertrophic cartilage was discarded to avoid cross-contamination 
of cell populations. The cartilage zones were cultured in serum-free modi- 
fied Biggers' medium (Dickson and Maher, 1985) containing 20 #Ci/ml 
3H-proline, 150/~g/ml ascorbate, 100 ttg/ml ~-aminopropionitrile for ei- 
ther 2 or 12 h. At the end of incubation, labeled proteins from the culture 
medium were isolated by ammonium sulphate precipitation at 80% satura- 
tion. Labeled proteins from tissues were extracted with 50 mM Tris-HCl, 
pH 7.4, containing 4 M guanidinium chloride followed by extraction with 
0.5 M acetic acid containing 1 mg/ml pepsin. Extracted polypeptides were 

Table I. Biochemical Analyses of Plasma Levels of Calcium, Phosphate, and Alkaline Phosphatase Activities of 
Chickens in Each Different Diet Group* 

Diet Group Vitamin D Body Alkaline Inorganic 
group size status weight Calcium phosphatase phosphate 

g mg/lO0 ml U/IO0 ml mg/lO0 ml 

Control 17 + 264.8 _+ 7 11.03 + 0.13 10.42 5= 1.6 6.45 -1- 0.44 
HCR 17 - 155.5 5= 6.8 6.85 5 :0 .44  142.3 + 13.9 6.14 + 0.57 
NCR 18 - 218.8 + 7.2 10.95 + 0.48 75.04 + 10.5 1.85 + 0.21 

* Values shown are expressed as mean + SEM. 
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Figure 1. Montage of light micrographs of longitudinal sections through (,4) normal (control), (B) HCR, and (C) NCR chicken distal tibial 
epiphyses. Tissues were fixed in half-strength Karnovsky fixative, embedded in paraffin, sectioned, and stained for mineral deposits with 
yon Kossa stain. Note that the hypertrophic cartilage of the control epiphysis is extensively mineralized as shown by the heavy yon Kossa 
staining (arrowheads) in the zones of hypertrophy and degeneration (Hy). The zones of chondrocyte proliferation and maturation are labeled 
(Pro). Nuclei were counterstained with hematoxylin. Cartilage matrix was stained with toluidine blue. Bar, 600/zm. 

analyzed by SDS-PAGE (Laemmli, 1970) and fluorography as previously 
described (Kielty et al., 1985). 

Resu l t s  

Histology 

Chickens raised on the vitamin D-deficient diet and given 
vi tamin D3 supplements (control group) showed no evi- 
dence of bony abnormalities as judged by growth plate histol- 
ogy (Fig. 1) and serum biochemistry (Table I). Those birds 
raised on the unsupplemented vitamin D-deficient diet ex- 

hibited classical symptoms of HCR (HCR group): subnor- 
mal body weight, elevated serum alkaline phosphatase, and 
low serum calcium. Chickens raised on the calcium-supple- 
mented vitamin D-deficient diet (NCR group) had body 
weights and serum alkaline phosphatase levels that were in- 
termediate between the other groups; serum calcium levels 
were similar to those in normal chickens, but the birds were 
markedly hypophosphatemic (Table I). The proximal tibio- 
tarsal growth plates were abnormally wide in the HCR and 
NCR chickens. The extended width of the epiphyseal plate 
in HCR chickens was the result of the increase in the zone 
of proliferation and maturation which comprised ,050% of 
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Figure 2. Determination of specificity of monoclonal antibodies de- 
rived from hybridoma lines MC7 and MB6. (A) ELISA of ascites 
fluid containing monoclonal antibody MC7 with coating of native 
type X collagen (m), pepsinised type X collagen (D), chick type I 
and II collagen mixture in a hl ratio (o), type IX collagen (A), 
type XI collagen (A), and fibronectin ( , ) .  Concentrations of anti- 
gens are ,x,1 #g/well. The reactivity of normal mouse serum against 
native type X collagen is also indicated (o). (B) ELISA of ascites 
fluid containing monoclonal antibody MB6 with the same coatings. 

the entire epiphyseal plate. In this zone, the cells exhibited 
an irregular distribution, which may be due to changes in the 
content and/or the composition of the extracellular matrix. 
In the NCR group, the width of the proliferative zone was 
not noticeably different from the control group, and the pro- 
liferating chondrocytes were arranged regularly in normal 
stacks. However, the zone of hypertrophy and degeneration 
was much wider than either the control or HCR group. In 
both NCR and HCR chickens, the cartilage matrix in the 
hypertrophic zone was poorly mineralized as shown by the 
low intensities of von Kossa staining (Fig. 1, B and C). 

Immunolocalization of g~pe X Collagen 
Changes in matrix composition with respect to the levels of 
type X collagen in rachitic cartilage were investigated by im- 

munoperoxidase localization with monoclonal antibodies to 
chicken type X collagen. Monoclonal antibodies from hy- 
bridoma clones MC7 and MB6 were purified and screened 
by ELISA. These antibodies were shown to belong to the 
IgG, subtype, and their reactivities against type X procolla- 
gen and pepsinized type X collagen indicated that they both 
recognize epitopes within the triple-helical domain (Fig. 2). 
This observation has been confirmed by electronmicroscopic 
visualization of the antibody-antigen complexes after rotary 
shadowing (Kwan, A. P. L., manuscript in preparation). Fig. 
3 shows micrographs of cartilage sections from normal and 
rachitic cartilage which have been treated with monoclonal 
antibody MC7. In normal, control chickens, intracellular 
type X collagen reactivity is observed from the beginning of 
the hypertrophic zone, and the intensity of the signal gradu- 
ally increases upon progression to the lower hypertrophic 
zone. Matrix localization of type X collagen is observed only 
in the zone of ossifying cartilage (Fig. 3, A and B). Immuno- 
peroxidase activities in rachitic epiphyses (HCR and NCR) 
were found to be very weak, and only faint cytosolic reactiv- 
ity is detectable in the zone of hypertrophic chondrocytes. 
However, a slightly higher occurrence of cell-associated im- 
munoperoxidase activity can be seen in sections of NCR 
chick epiphyseal plates (Fig. 3, E and F). Identical results 
were observed when monoclonal antibody MB6 was used 
(results not shown). These observations clearly demonstrate 
a change in the organization of the extracellular matrix in 
vitamin D-deficiency rickets. To assess whether the decreased 
levels of type X in rachitic epiphyseal plates could be attrib- 
uted to decreased synthesis or the inability of rachitic carti- 
lage matrix to accumulate this collagen, the following ex- 
periments were undertaken. 

Analysis of Steady-State mRNA Levels 
The steady-state levels of type X collagen mRNA from each 
group of chickens were assessed to confirm that the expres- 
sion of type X collagen in vivo is affected by the lack of vita- 
min D in the diet. Northern analyses of chicken type X colla- 
gen mRNA from the whole epiphyses are shown in Fig. 4. 
These fluorograms indicate that the levels of the type X colla- 
gen mRNA in both HCR and NCR were diminished. Densito- 
metric scanning of tracks of the fluorograms provided quan- 
titation of the relative amounts of type X collagen mRNA in 
the epiphyses of these chickens. In three separate experi- 
ments, marked differences in the levels of type X collagen 
mRNA between control, HCR, and NCR chickens were con- 
sistently observed. In chickens with HCR, the steady-state 
level of type X collagen mRNA, expressed as units of mRNA 
per microgram of total RNA, extracted from the epiphyses 
is reduced to 18-20% of the value obtained from normal, 
control chickens, and the result corresponds well with the 
decrease in antigen-antibody reactivity on sections of rachitic 
epiphyses. The level of type X collagen mRNA in the NCR 
group is ,,o45 % of the control level, which is consistent with 
the intermediate level of antibody reactivity on histological 
sections (Fig. 3). 

Organ Culture Studies 
Hypertrophic cartilage was cultured in the presence of 
[3H]proline, and newly synthesized collagenous polypep- 
tides from the culture media and tissue extracts (see Mate- 
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Figure 3. Immunoperoxidase 
localization of type X collagen 
in normal and rachitic chicken 
epiphyseal plates. Light micro- 
graphs of paraffin sections (7 
/tm) pretreated with bovine 
testicular hyaluronidase and 
stained with monoclonal anti- 
bodies MC7 followed by stain- 
ing with peroxidase-conjugated 
anti-mouse IgG. (,4) Photomi- 
crograph of control epiphysis 
with peroxidase reactivity lo- 
calized to the cytoplasm of the 
upper hypertrophic chondro- 
cytes. (B) Strong immunoper- 
oxidase reactivity is present in 
the lower hypertrophic zone of 
control epiphysis where miner- 
alization has taken place. (C 
and D) Micrographs of sections 
from rachitic (HCR) epiphyses; 
only very weak peroxidase re- 
activity can be detected in the 
corresponding regions of ra- 
chitic epiphysis. (E and F) Mi- 
crographs of sections of NCR 
epiphysis showing intermedi- 
ate peroxidase reactivity in 
these sections. Identical stain- 
ing patterns were observed 
with monoclonal antibody 
MB6. Bar, 100 #m. 
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Figure 4. Northern analysis of total 
RNA from normal and rachitic 
chicken tibial ephiphyses. Total RNA 
(10 t~g), extracted from pooled epi- 
physes, was electrophoresed in a 
formaldehyde-containing agarose 
gel, blotted, hybridized with 32p_ 
labeled chicken type X collagen 
cDNA pYN3116, washed, and ex- 
posed to x-ray film under the condi- 
tions described in Materials and 
Methods. Samples were (lane 1) 
RNA extracted from control epi- 
physes; (lane 2) RNA extracted from 
HCR epiphyses; and (lane 3) RNA 
from NCR epiphyses. The positions 
of the 28s and 18s ribosomal RNA 
bands are indicated. 

with the reduction of type X collagen immunoreactivity and 
reduced levels of type X collagen mRNA reported above. 

However, when protocols involving prolonged incubation 
were adopted, considerable changes in the biosynthetic be- 
havior of the normal and rachitic epiphyses were observed 
(Fig. 5). After 12 h of incubation, the distribution of extract- 
able pH]proline counts in the culture medium, guanidinium 
chloride, and pepsin extracts were found to be *40,  50, and 
10%, respectively. In contrast to the 2-h incubations, where 
type X collagen synthesis was much lower than in the con- 
trois, after 12 h in culture, type X collagen synthesis was con- 
sistently higher in the rachitic cartilage cultures. After 12 h 
in culture, type X collagen accounted for ,'~45 % of the col- 
lagenous molecules synthesized in controls, whereas the 
values obtained for HCR and NCR cultures had increased to 
~60  and 70%, respectively. 

rials and Methods) of the explants were analyzed by SDS- 
PAGE. The major [3H]proline-labeled polypeptides isolated 
from various fractions of control, HCR, and NCR cultures 
were the ot chains of collagen types II, I, and X (Fig. 5). In 
short-term organ cultures (incubation for 2 h), the percen- 
tages of the total extractable and nondiffusible radioactivity 
in the culture medium, 4 M guanidinium chloride, and pep- 
sin extracts were ,'~15, 75, and 10%, respectively. Relative 
proportions of type X collagen polypeptides were assessed 
by densitometric scanning of the tluorograms after SDS- 
PAGE. In the cultures from control cartilages, type X col- 
lagen synthesis accounted for ~60% of the collagenous 
molecules recovered in the three extracts. In HCR and NCR 
cultures these figures were reduced to ,x,20 and 40 %, respec- 
tively. Duplicate organ culture experiments yielded similar 
results, showing a marked reduction of type X collagen syn- 
thesis by rachitic cartilage: an observation that is consistent 

Discus s ion  

In this investigation of the relationship between mineraliza- 
tion and type X collagen expression in vivo, studies have been 
conducted with rachitic chickens fed on a vitamin D-de- 
ficient diet or the same diet supplemented with high levels 
of calcium. The findings reported here (a) of reduced im- 
munohistochemical staining for type X collagen in rachitic 
hypertrophic cartilage, (b) of reduced synthesis of type X 
collagen by short-term cultures of explants from rachitic tis- 
sues, and (c) of reduced levels of extractable type X procolla- 
gen mRNA are all consistent with the hypothesis that the 
production of type X collagen is reduced in the vitamin 
D-deficient chickens. On the basis of the immunohistochem- 
ical studies, it was concluded that there was a decreased 
deposition of type X collagen in the matrix of rachitic birds. 
However, these results from immunoperoxidase localization 
studies contrast with the work of Reginato et al. 0988), who 

Figure 5. SDS-PAGE (8%) of proteins extracted 
from the short-term (2-h) and long-term (12-h) 
chicken epiphysis organ cultures. (.4) Fluoro- 
gram of [3H]proline-labeled collagenous poly- 
peptides isolated from culture medium of 2- and 
12-h (lanes 1-3 and 4-6, respectively) organ 
cultures of hypertrophic cartilages dissected 
from control (lanes I and 4), HCR (lanes 2 and 
5), and NCR (lanes 3 and 6) chickens. All 
samples were subjected to limited pepsin diges- 
tion at 4°C for 16 h before electrophoresis. (B) 
Fiuorogram of [3H]proline-labeled collage- 
nous polypeptides extracted from tissues in 
organ cultures by 4 M guanidinium chloride. 
Lanes 1 and 4 are of extracts from control hy- 
pertrophic cartilage in 2- and 12-h cultures, 
respectively. Lanes 2 and 5 show extracts from 
HCR hypertrophic cartilage from 2- and 12-h 
cultures, respectively. Lanes 3 and 6 show ex- 
tracts from NCR hypertrophic cartilage from 
2- and 12-h cultures, respectively. The label otl 
was used to show the position of or(I) and 
cd(II) chains of type I and type II collagens, 
respectively. The positions of the ~2(I) and 
oil(X), 59,000 Mr, and al(X)p, 45,000 M,, are 
also shown. 
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report the increased presence of type X collagen in rachitic 
cartilage on the basis of type X collagen extractability from 
tissues. In analogous experiments in this laboratory, using 
4 M guanidinium chloride and pepsin as extractants, no con- 
clusive evidence was produced in support of the claim that 
type X collagen deposition increased in rachitic epiphyses 
(Kwan, A. P. L., and M. E. Grant, unpublished observa- 
tions). An alternative approach was therefore adopted to in- 
vestigate the capacity of normal and rachitic epiphyses to 
synthesize type X collagen. Decreased levels of type X colla- 
gen mRNA in HCR and NCR epiphyses were demonstrated 
by Northern hybridization techniques (Fig. 4), and these 
findings support the notion that type X collagen synthesis in 
rachitic cartilage is diminished. Although it can be argued 
that variations in the levels of type X collagen mRNA are the 
result of the differences in the dimensions of the proliferative 
and hypertrophic zones, two lines of evidence have indicated 
that these results reflect a genuine decrease in type X colla- 
gen gene expression in vitamin D-deficient chickens. First, 
the type X collagen mRNA level in epiphyses of NCR chick- 
ens showed a >50% reduction despite the highly elongated 
hypertrophic zone. Second, when mRNA isolated specifical- 
ly from hypertrophic cartilage was analyzed, type X collagen 
mRNA content of HCR chickens was found to be reduced 
by 80% and a similar reduction in type X collagen expres- 
sion in NCR hypertrophic cartilage was also observed (result 
not shown). 

Organ culture experiments were conducted to study the 
biosynthetic behavior of normal and rachitic epiphyses in 
vitro. In the 2-h organ cultures, the amounts of type X colla- 
gen synthesized by HCR and NCR hypertrophic cartilage 
were shown to be lower than in the control tissues, an obser- 
vation that is consistent with the results from the im- 
munoperoxidase localization and mRNA experiments. How- 
ever, markedly different results were obtained in the 
long-term (12-h) incubations, where the synthesis of type X 
collagen by rachitic cartilage increased dramatically during 
the prolonged incubation (Fig. 5). The differences in the 
results between the two organ culture systems can be ex- 
plained if the biosynthesis of type X collagen is suppressed 
in vivo. The abnormally high level of type X collagen synthe- 
sis after the tissues had been in culture for >10-12 h may be 
caused by either the removal of such suppression or activa- 
tion of type X collagen synthesis. Additional studies are be- 
ing undertaken to investigate the nature of such suppression 
of type X collagen synthesis in rachitic cartilage and also to 
identify the possible factor(s) responsible for the induction 
of type X collagen synthesis. 

Mechanisms by which vitamin D acts on skeletal tissues 
are not clearly understood, although collagen synthesis by 
cartilage and bone in explant cultures can be affected directly 
by vitamin D metabolites (Dickson and Maher, 1985). Since 
the primary function of vitamin D is the stimulation of the 
absorption of calcium through intestinal epithelial ceils, the 
change in type X collagen synthesis in rickets may be a sec- 
ondary effect related to calcium homeostasis, and changes in 
the local calcium concentration in the epiphyses may play an 
important role in the control of type X collagen gene expres- 
sion. This effect of calcium on type X synthesis may also ex- 
plain the higher levels of type X collagen synthesis in NCR 
chickens, which have been fed on a diet supplemented with 
very high levels of calcium carbonate. However, the inter- 

mediate levels of type X collagen in the NCR chicken epi- 
physes also suggest that calcium may be only one of the fac- 
tors affecting type X synthesis since the levels of type X 
collagen in NCR chickens are still below control levels. 

Type X collagen has been shown to be a product of hyper- 
trophic chondrocytes, and studies conducted with chick em- 
bryo chondrocytes in culture have demonstrated that type X 
collagen synthesis is markedly influenced by a number of 
factors including matrix macromolecules (Gibson et al., 
1982, 1983; Bates et al., 1987; Thomas and Grant, 1988), 
the levels of exogenous calcium and phosphate (Grant et al., 
1988), and, particularly, calcium-/3-glycerophosphate, a sub- 
strate used in the study of mineralization in vitro (Morris and 
Balian, 1985; Thomas, J. T., and M. E. Grant, unpublished 
observations). Although many studies have shown that type 
X collagen is synthesized when endochondral ossification 
occurs (Kwan et al., 1986a; Grant et al., 1987), no direct 
evidence for a relationship between type X collagen synthe- 
sis and matrix mineralization has been reported. Since type 
X collagen synthesis has been shown to precede matrix min- 
eralization, it is therefore possible that the poor degree of 
mineralization in HCR and NCR epiphyses is the conse- 
quence of the low level of type X collagen, which has a puta- 
tive role of providing a permissive matrix for deposition of 
minerals in calcifying cartilage (Schmid and Linsenmayer, 
1985; Gibson and Flint, 1985). The findings in this report 
further substantiate the importance of type X collagen in ma- 
trix mineralization, and the control of type X gene expres- 
sion may be an important key to the understanding of the pro- 
cess of cartilage mineralization. 
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