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Abstract. Identification of drug combinations that could be effective in Alzheimer’s disease treatment is made difficult by the
sheer number of possible combinations. This analysis identifies as potentially therapeutic those drug combinations that rank
highest when their efficacy is determined jointly from two independent data sources. Estimates of the efficacy of the same
drug combinations were derived from a clinical dataset on cognitively impaired elderly participants and from pre-clinical
data, in the form of a computational model of neuroinflammation. Linear regression was used to show that the two sets of
estimates were correlated, and to rule out confounds. The ten highest ranking, jointly determined drug combinations most
frequently consisted of COX2 inhibitors and aspirin, along with various antihypertensive medications. Ten combinations of
from five to nine drugs, and the three-drug combination of a COX2 inhibitor, aspirin, and a calcium-channel blocker, are
discussed as candidates for consideration in future pre-clinical and clinical studies.

Keywords: Combination therapy, computational modeling, data mining, deep learning, machine learning, microglia, neural
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INTRODUCTION

Interest in polypharmacological approaches to the
treatment of complex, multifactorial disorders is
growing (e.g., [1]). Specific multi-target or multi-
drug treatments for Alzheimer’s disease (AD) have
already been suggested [2–6]. Combinations of
approved, repurposed drugs could be more effec-
tive than single drugs in the treatment of AD, but
determining which of the many possible combi-
nations to use remains a challenge. The approach
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taken here is to combine clinical and pre-clinical
data by correlating estimates of the epidemiologi-
cal benefit of specific drug combinations, derived
from a database containing clinical data on cogni-
tively impaired elderly participants, with predictions
on their efficacy derived from a computational model
of the biological mechanisms underlying a key com-
ponent of AD pathophysiology.

Access to the database was provided by the
Rush Alzheimer’s Disease Center (RADC database;
https://www.radc.rush.edu/). RADC data was gener-
ated through the Religious Orders Study and Rush
Memory and Aging Project [7]. The computational
model was created on the basis of experimental data
(mainly from cell culture but also from animals
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in vivo) as published in the literature on microglia
(MG model). Microglia mediate neuroinflamma-
tion, which is widely accepted as a key contributor
to neurodegeneration and the resulting cognitive
decline associated with AD [8–13]. Because esti-
mates of drug combination benefit based on the
RADC database (human clinical data) are completely
unrelated to, and independent from, the predictions
of drug combination efficacy derived from the MG
model (experimental data from cell culture or ani-
mals), a positive correlation between RADC database
benefit and MG model efficacy would indicate drug
combinations of potential value in treating AD. The
analysis presented here integrates clinical and pre-
clinical data and identifies novel combinations of
widely prescribed drugs that stand as promising can-
didates for further pre-clinical or clinical evaluation.

METHODS

Model structure and parameterization

The microglia model (MG model) is essentially
a computational model of a cell, which can also be
thought of as a model of many cells having exactly
the same structure and function. Inputs impinging
on the cell activate its receptors, which activate
cell-signaling pathways, which activate transcription
factors, which alter the cell’s expression of the pro-
teins that the cell secretes and which can activate
the cell’s own receptors, thus closing many positive
and negative feedback loops. In the microglia model
specifically, the secreted proteins are cytokines and
other immunological factors that mediate the brain’s
immune response and can affect neurons and astro-
cytes but can also affect microglia themselves, via
autocrine (one cell) or paracrine (many cells) feed-
back loops.

A highly simplified diagram of the microglia
model is shown in Supplementary Figure 1. The
full microglia model is composed of 146 elements
(units) that represent many of the receptors, signal-
ing molecules, transcription factors, immunological
factors (mainly cytokines), and some cellular pro-
cesses (e.g., phagocytosis) that together determine
the response of microglia to various inputs. A full list
of model elements and abbreviations is provided in
Supplementary Table 1. The model receives 90 inputs
that represent endogenous or exogenous receptor lig-
ands and also drugs and other compounds that bind
receptors or that target other molecular entities (e.g.,
enzymes or transcription factors). All of the drugs and

other compounds included in the model are listed in
Supplementary Table 2.

The structure of the model incorporates the known
interconnections between its elements as described in
the literature (for reviews, see [14, 15–19]). The MG
model is an extension of previous models of microglia
[20, 21], which had fewer elements (∼100). The MG
model takes the form of a recurrent network of nonlin-
ear units whose activations are bounded sigmoidally
in the range [0, 1], to represent the bounds on the acti-
vations (or concentrations, expression levels, etc.) of
biological entities. The parameters of the model are
the strengths (or weights) of the connections between
model elements, and they are optimized by training
the model using a machine-learning algorithm, which
is specifically a recurrent neural network learning
algorithm [22, 23]. A description of the parameter
optimization procedure is provided in Supplementary
Text 1.

The microglia model is trained using input/desired-
output patterns that are derived from the results of in
vitro (mainly) and in vivo experiments on microglia
as described in the literature. Owing to the wide
variety of experimental conditions, and to the semi-
quantitative nature of biological assays (e.g., ELISA),
the inputs were assigned binary values (1 present;
0 absent), while the desired outputs were assigned
integer values in the range [3, 7] where 3 is low,
7 is high, and 5 is baseline. A highly simplified
input/desired-output table is shown in Supplemen-
tary Table 3. The full input/desired-output table has
179 entries. The previous microglia models not only
had fewer elements (∼100), but also had far fewer
input/desired-output training patterns (∼20). Due to
the structure built into the previous models based on
known connectivity, it was possible to tune a small
number of parameters by hand to produce agreement
between the model and the small number of training
patterns. The recurrent network learning algorithm
was needed to set current MG model parameters so
that actual model output matched the desired out-
put over the expanded set of training patterns. The
connection weights are randomized prior to training
using the recurrent network algorithm, and during
training the input/desired-output patters are presented
many times and in random order (Supplementary
Text 1).

Though expanded relative to previous microglia
models, the input/desired-output patterns used to
train the MG model are nevertheless few relative
to the very large numbers of patterns usually used
to train neural networks via machine learning (Sup-
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plementary Text 1). However, most neural networks
are largely unstructured in that each unit connects to
many other units according to the same, broad con-
nectivity pattern. In the MG model, available data
were used both to train and to structure the model;
each individual unit represented a distinct biologi-
cal entity (mainly a protein or smaller molecule) and
units were interconnected according to known bio-
logical pathways. The goal in network construction
and parameter optimization was to use available pre-
clinical data both to train and to structure the model
so as to achieve the best possible representation of
the function of microglia (Supplementary Text 2).

After training, the actual outputs of a trained
network match the desired outputs with low error
(Supplementary Figure 2). Thus, a trained network
can reproduce the known behavior of microglia as
represented in the input/desired-output table, and
can be used to predict the responses of microglia
to novel inputs (e.g., novel drug combinations).
Due to the randomness inherent in initial connec-
tion weight randomization, and to the random order
of input/desired-output pattern presentations, predic-
tions on the responses to novel inputs are improved
when the responses of several trained networks are
averaged [24]. The MG model results reported here
are based on the averaged outputs of a set of ten net-
works, each trained from a different initial weight
randomization and according to a different random
schedule of input/desired-output presentations. To
verify that this averaging procedure eliminated the
bias inherent in predictions based on single networks,
the results based on the averaged outputs of the set
of ten networks that are reported here were compared
with results based on the averaged outputs of a second
set of ten networks, each trained using random initial
weights and random input/desired-output presenta-
tion schedules that were different from each other and
from those of the first set. The results derived from
both sets of ten networks were highly consistent.

Predicting drug combination efficacy using the
model

Any input to the microglia model can be thought
of as a pattern over the values assigned to the 90
model input elements. Likewise, any output from the
microglia model can be thought of as a pattern over
the responses of the 18 units that are designated as
model outputs (Supplementary Figure 2). Two spe-
cific model output patterns are the neurotoxic and
the neuroprotective patterns, which correspond to

the responses of actual microglia that cause them to
adopt, respectively, a highly pro-inflammatory or a
highly anti-inflammatory response pattern.

Experimental results [25–27] and prior mod-
eling [20, 21] suggest that the most potent
pro-inflammatory stimulus, which may also repre-
sent actual conditions in the aging and AD brain
[10, 28, 29], is a combination of amyloid-� (A�)
and lipopolysaccharide (LPS), while the most potent
anti-inflammatory stimulus is externally applied
insulin-like growth factor-1 (IGF1). To assess the
efficacy of any drug or drug combination in reduc-
ing the pro-inflammatory response, it is included in
the input pattern along with the pro-inflammatory
stimulus: A� and LPS. Additionally, the input pat-
tern excludes factors known to be diminished in the
aging and AD brain (e.g., acetylcholine, fractalkine),
but includes an input representing necrotic factors
that are more abundant in the aging and AD brain.
The actual output to this input (with a drug combi-
nation, A�, LPS, and necrotic factors but without
acetylcholine, fractalkine, etc.) is determined. The
predicted efficacy of any drug or drug combina-
tion can then be defined as the amount by which it
moves the response of the microglia model from the
neurotoxic (highly pro-inflammatory) to the neuro-
protective (highly anti-inflammatory) output pattern
[21]. Specifically, the MG model efficacy of any
drug combination is quantified as a ratio of normal-
ized differences between the actual output response
pattern and the neurotoxic and neuroprotective pat-
terns, expressed as vectors. According to this ratio,
MG model efficacy ranges from 0 (output pattern
equals neurotoxic pattern) to 1 (output pattern equals
neuroprotective pattern) (Supplementary Text 3 and
Supplementary Figure 3). For reasons to be explained
in the next subsection, a total of 196 drug com-
binations are included in the main analysis. The
MG model efficacies of all 196 drug combinations
included in the analysis range between 0.0682 and
0.5660, and the mean and variance are 0.3326 and
0.0151, respectively.

Assessing drug combination benefit from the
database

The RADC dataset consists of up to 25 different
assessments of the cognitive function of elderly par-
ticipants, along with age (range 50 to 110 years),
certain other demographic variables, a list of comor-
bidities, and self-reports of drug usage that were
recorded on the initial visit and for some number of
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yearly follow-up visits thereafter [30, 31]. The 25
different cognitive function assessments, which had
different measurement scales, were rescaled into the
[0, 1] range and averaged to form a composite cog-
nitive score for each visit (Supplementary Text 4).
Rescaling into the range [0, 1] brought the individual
cognitive scores, and their composites, into the same
range as the MG model outputs.

The RADC dataset has nine comorbidity fields:
hypertension, cancer (all types), diabetes, head injury,
thyroid disease, congestive heart failure, claudica-
tion (peripheral vascular disease), heart disease (heart
attack, myocardial infarction, etc.), and stroke. Each
binary comorbidity field contains a 1 if the partici-
pant self-reported that comorbidity and contains a 0
otherwise. The self-report indicated past history on
the initial visit and any persisting or new comorbid-
ity on subsequent visits. A simple comorbidity score
was calculated by summing all the comorbidity fields
for each visit.

The RADC dataset included data from 3,326
participants whose drug usage was reported. In
the RADC database the drugs participants reported
taking were grouped into 100 drug categories,
many of which were redundant or otherwise over-
lapping. Of those 100 drug categories, 20 were
chosen because they were relatively non-overlapping,
and because the effects on microglia of one or
more of the drugs from that category had been
determined. The 20 chosen drug categories, with
names close to those used in the RADC database,
are: acetaminophen, COX2 inhibitors, antimalarials,
aspirin, glucocorticoids, opioids, antibiotics, ACE
inhibitors, anti-adrenergics, beta blockers, calcium-
channel blockers, angiotensin-receptor blockers,
anti-arrhythmics, anti-diabetics, estrogen, spirono-
lactone, proton-pump inhibitors, antimanics, antide-
pressants, and antihistamines. Any overlaps between
these 20 drug categories were considered admis-
sible because they would be expected to weaken
rather than falsely strengthen any agreement between
RADC database benefits and MG model efficacies,
and because they were relatively minor overall.

The RADC database recorded the drugs in each
category that the participant reported using on each
visit in a binary fashion (1 if taken, 0 if not). To get a
composite view of the drugs used by each participant,
the drug usage over all visits were combined using a
logical OR, so that a participant was designated as a
user of a drug of a specific class if that participant
had reported using a drug from that class on at least
one visit. The simplifying assumption here is that the

effect of any drug on cognitive function (or on neu-
rodegeneration or neuroinflammation) is independent
of the duration of use of that drug. This assumption
is almost certainly false but was considered admis-
sible because it would weaken rather than falsely
strengthen any agreement between RADC database
benefits and MG model efficacies.

When drug combination usage was combined in
this way, using the logical OR over all visits, 2,167
of the possible 1,048,576 combinations of the 20
drug types were actually used by RADC partici-
pants. For simplicity of exposition, the term “drug
combination” will subsume combinations of two or
more drugs as well as single drugs. RADC partici-
pants were grouped according to drug combination,
yielding 2,167 different drug combination groups
containing at least one participant whose age and
composite cognitive score were recorded on at least
one visit.

The benefit of any drug or drug combination to
RADC participants was assessed as the difference
in cognitive function of participants who reported
taking that drug or drug combination, and the cog-
nitive function of participants who reported taking
no drugs. The well-known decline of cognitive func-
tion with age [30, 31] for all of the participants in
each drug combination group was summarized by
pooling all of the composite cognitive score versus
age (cog-score versus age) values for all partici-
pants in each drug combination group, and fitting
them with a simple, three-parameter power func-
tion via nonlinear regression (Supplementary Text 4
and Supplementary Figure 4). Because at least three
data points are needed to specify a three-parameter
power function, any drug combination having fewer
than three cog-score versus age values was removed,
leaving 1,955 drug combination groups (including
the no-drug group). As a further safeguard, only
drug combination groups containing at least three
participants were given further consideration, leav-
ing a total of 196 drug combination groups in the
main analysis.

The power function curve for each drug com-
bination group was used to compute the expected
cog-score at each age included in that specific drug
combination group. Also, the power function curve
for the no-drug group was used to the compute the
expected cog-score in the no-drug case, but at the
same ages as were included for a specific drug com-
bination group. Then the expected cog-score in the
no-drug case was subtracted from the expected cog-
score for that specific drug combination at the same
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set of ages, and the differences were averaged to yield
the RADC database benefit for that drug group. Note
that many of the RADC database benefits are nega-
tive when computed this way, so the relative rather
than the absolute values of the RADC database ben-
efits are relevant to this analysis. For the 196 drug
combinations that were included in the main analy-
sis, RADC database benefits range from −0.4541 to
0.1173, and the mean and variance are −0.0260 and
0.0063, respectively.

All computations were performed using MAT
LAB™ version R2017b, running on an Intel i5-75
00T quad-core CPU at 2.7 GHz per core with 16 GB
RAM.

RESULTS

Correlating MG model efficacies and RADC
database benefits

MG model efficacies and RADC database bene-
fits are significantly correlated. Figure 1 shows the
statistically significant correlation for all drug com-
binations taken by three or more RADC participants
and having three or more cog-score versus age val-
ues, pooled over the participants in the corresponding
drug combination group. Each data point (asterisk) in
Fig. 1 corresponds to a unique drug combination, and
is located in the plot according to its MG model effi-
cacy and its RADC database benefit. The slope of the
regression line (s) is 0.1339, the degree of linearity
(or correlation coefficient, r) is 0.2064, and the proba-
bility that the correlation occurred by random chance
(p) is 0.0037. The set of 196 data points on which
this correlation is based will henceforth be called the
“correlation set”.

As explained above, several assumptions are
implied in making a comparison between MG model
efficacy and RADC model benefit, but most of them
would be expected to degrade the correlation. The
salient exception would be a spurious correlation
related to the fact that, due to experimental bias, most
of the drugs included in the MG model are those that
have anti-inflammatory effects on microglia, which
are considered positive results in the literature. The
bias against reporting negative results means that
data on drugs that have a pro-inflammatory effect on
microglia are relatively very few.

As noted above, only 2,167 of the possible
1,048,576 combinations of drugs in the 20 categories
included in the analysis were actually taken by RADC

participants, and of those only 196 combinations
were taken by at least three participants and included
at least three cog-score versus age data points. A
computational screen using the MG model over all
combinations of the drugs in common between the
model and the RADC dataset (up to 22 drugs in a
combination and over 4 x106 combinations) shows
that the model may indeed capture potential antago-
nisms between drugs, such that the anti-inflammatory
effect of single drugs may actually be reduced in some
combinations (Supplementary Figure 5). However,
over the more limited range of the 196 drug combi-
nations in the correlation set, which has a maximal
number of drugs per combination of ten, the efficacies
of drug combinations in the MG model tend to rise
as the number of drugs in the combination rises. This
is shown in Fig. 2A. A spurious correlation between
MG model efficacies and RADC database benefits
could result if RADC benefit also tended to rise as
the number of drugs in the combination rises. How-
ever, the RADC benefits of the drug combinations
in the correlation set stay constant as the number
of drugs in the combination rises. This is shown
in Fig. 2B.

The lack of correlation between clinically observed
(RADC) benefit and number of drugs in the combi-
nations included in the correlation set reflects a lack
of correlation between clinically observed cognitive
function and number of drugs over the whole RADC
dataset. The results of some regression analyses of
the whole RADC dataset are shown in Fig. 3. They
are based on the 8,675 entries in the RADC dataset
for which complete information on age, cognition,
comorbidities, and drugs taken is available. Data
were pooled over database participant visits because
participants often reported different comorbidities
and different drugs on different visits. There was a
strong and highly statistically significant correlation
(s = 2.0454, r = 0.3697, p = 0.0000) between the num-
ber of drugs taken by a participant and their combined
comorbidity score, as shown in Fig. 3A. This should
be expected for the RADC dataset because it is a sam-
ple of a North American population that generally has
good access to medical care and to prescription drugs.
The correlation between the number of drugs taken by
a participant and their age was also highly significant
but was weak (s = 0.0843, r = 0.0868, p = 0.0000), as
shown in Fig. 3B.

Analysis of the whole RADC dataset suggests that
cognitive performance degrades with comorbidity,
as shown in Fig. 3C. Although the correlation is
statistically significant it is very weak (s=−0.0028,
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Fig. 1. MG model efficacies and RADC database benefits are significantly correlated. Each point represents one of the 196 drug combinations
that was included in the main analysis. The regression line fit to the data points has slope s = 0.1339, correlation coefficient r = 0.2064, and
p-value p = 0.0037. The perpendicular line segments drawn from the points to the regression line are the projections of the points onto the
regression line. The projections show the Ten Best (upper right) and the Ten Worst (lower left) drug combinations, as determined jointly
by the MG model and the RADC database according to the distance along the regression line from the y-intercept to the intersection of the
projections with the regression line. Note that the lengths of the projections themselves are probably meaningless.

r=−0.0363, p = 0.0007; see also below). Of central
concern here is any relationship between cognition
and the number of drugs taken, but regression analysis
clearly indicates (s = 0.0001, r = 0.0091, p = 0.3957)
that there is no such relationship for the RADC
dataset, as shown in Fig. 3D. The very weak relation-
ship between cognition and comorbidity, and the lack
of relationship between cognition and the number of
drugs taken, justifies the pooling of RADC partici-
pants over comorbidities and over drugs taken outside
of the 20 categories included in this analysis (see also
Discussion).

The same lack of relationship between cognition
(RADC) and the number of drugs taken is shown in
Fig. 2B for the correlation set. From Fig. 2A and 2B
it is also apparent that both RADC database bene-
fit and MG model efficacy vary over a broad range
for drug combinations composed of the same num-
ber of drugs. These graphical and regression analyses
show that it is not simply the number of drugs in the

combinations, but the specific drugs in the combina-
tions, which determine their MG efficacy and RADC
benefit.

Finding the Ten Best and Ten Worst drug
combinations

Having established a statistically significant cor-
relation between MG model efficacy and RADC
database benefit, the regression line can be used to
order the drug combinations according to efficacy
using both measures together rather than either one
alone. This joint efficacy ranking can be determined
by finding the distances from the y-intercept of the
projection of each drug combination data point onto
the regression line. Then the Ten Best and Ten Worst
drug combinations, determined jointly according to
MG efficacy and RADC benefit, are those whose
projections have the longest and shortest distances,
respectively, along the regression line (Fig. 1). The
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Fig. 2. MG model efficacy and RADC database benefit vary widely for drug combinations that are composed of the same number of drugs.
In both panels, each small dot represents 1 of the 196 drug combinations that was included in the main analysis. The dots are arranged in
horizontal rows according to the number of drugs in the combination. Circles and squares are the mean and median over drug combinations
composed of the same number of drugs, and the vertical line is the grand mean over all drug combinations. Mean MG model efficacy rises
(A) but mean RADC database benefit stays constant (B) as the number of drugs in the drug combinations rises.

drugs that compose the Ten Best and Ten Worst drug
combinations are indicated in Table 1.

The number of drugs in the Ten Best combina-
tions have a mean of seven and range from five
to nine, while that for the Ten Worst have a mean
of two and range from one to three. The combina-
tions comprising the Ten Best (or the Ten Worst)
are not entirely disparate but tend to have specific
drugs in common. This suggests that some drugs
may contribute more (or less) to combined effec-
tiveness. To illustrate the tendency of certain drugs
to appear in Best and Worst combinations, the per-
centages of the drugs in the Ten Best and Ten Worst
drug combinations are shown relative to each other
and to the overall drug percentages in Fig. 4. In

Fig. 4 as in Table 1, COX2 inhibitors, aspirin, and
calcium-channel blockers stand out because they are
represented at higher percentages in the Ten Best than
overall and much higher than in the Ten Worst. Opi-
oids are represented at a lower percentage in the Ten
Worst drug combinations than overall but are absent
from the Ten Best combinations.

The regression analysis in Fig. 1 suggests that the
Ten Best and Ten Worst drug combinations as deter-
mined jointly from MG model efficacy and RADC
database benefit would be more similar to the ten
best if determined from the MG model alone than they
would be if determined from the RADC dataset alone.
Indeed, if the ten best are determined from either the
MG model or RADC dataset alone, then the Ten Best
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Fig. 3. RADC participants took more drugs as they aged and developed comorbidity, but their cognitive scores were not strongly dependent
on comorbidity or number of drugs taken. Each dot in each plot represents data for one of the 8,675 participant visits in the RADC dataset
for which complete information on age, cognition, comorbidities, and drugs taken is available. Note that combined comorbidity and number
of drugs are integer valued and many dots overlay each other. The number of drugs taken by RADC participants overall increases with
comorbidity (A) or with age (B), but composite cognitive score is only very weakly correlated with comorbidity (C), and there is no
correlation between composite cognitive score and the number of drugs taken by a RADC participant (D).

as determined jointly has eight of the ten best MG
model efficacies but only two of the ten best RADC
database benefits. Similarly, if the ten worst are deter-
mined from either the MG model or RADC database
alone, then the Ten Worst as determined jointly has
nine of the ten worst MG model efficacies but only
one of the ten worst RADC database benefits.

The ten best and ten worst drug combinations as
determined from the RADC database alone are indi-
cated in Table 2. Some differences with the jointly
determined combinations are apparent. Whereas the
Ten Best drug combinations are composed of more
drugs than the Ten Worst, when determined jointly
from the MG model and RADC database (mean Best
is seven, mean Worst is two), the ten best and ten

worst have about the same number of drugs when
determined from the RADC database alone (mean
best and mean worst are both five). Also, whereas
acetaminophen and antidepressants are more fre-
quent in the Ten Best than in the Ten Worst jointly
determined drug combinations, they are less frequent
in the ten best than in the ten worst RADC-alone
determined drug combinations, and the best/worst
differences in antidepressants is especially dramatic
for the RADC-alone determined combinations.

Many similarities between the MG and RADC
jointly determined estimates and the RADC-alone
determined estimates are also apparent. COX2
inhibitors, aspirin, antibiotics, ACE-inhibitors, beta
blockers, calcium-channel blockers, angiotensin
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Table 1
The Ten Best and Ten Worst drug combinations as determined jointly from MG model efficacies and RADC database benefits. When
determined jointly, the Ten Best drug combinations are composed of more drugs than the Ten Worst combinations. The presence of COX2
inhibitors, aspirin, and calcium-channel blockers saliently distinguishes the Ten Best drug combinations. The presence of opioids distinguishes
the Ten Worst. The drug category names are close to those assigned in the RADC database, and are followed in parentheses by the drug (or

drugs) that represent that category in the MG model

receptor inhibitors, and antihistamines, which are all
present at higher frequencies in the Ten Best than
in the Ten Worst jointly determined drug combina-
tions, are also all present at higher frequencies in the
ten best than in the ten worst RADC-alone deter-
mined drug combinations. The opioids, which are
present at lower frequency in the Ten Best than in
the Ten Worst jointly determined drug combinations,
are also present at lower frequency in the ten best
than in the ten worst RADC-alone determined drug
combinations.

Ruling out hypertension and other possible
confounds

The Ten Best jointly determined (MG and RADC)
and the ten best RADC-alone determined drug
combinations are similar in that they include ACE-
inhibitors, beta blockers, calcium-channel blockers,
and angiotensin receptor inhibitors. While some stud-
ies disagree [32, 33], most studies find that these
antihypertensive drugs considered singly have been
associated with a lower risk of AD, and in some cases



296 T.J. Anastasio / Correlation in Drug Combination Benefit

Fig. 4. The percentages of drugs that appear in the Ten Best and Ten Worst combinations are different from their overall percentages. This is
especially true for aspirin and calcium-channel blockers, which appear at much higher percentages than overall in the Ten Best combinations
and at much lower percentages than overall in the Ten Worst combinations. A similar but less pronounced relationship is observed for COX2
inhibitors, ACE inhibitors, and angiotensin-receptor blockers. The reverse relationship holds for the opioids. The labels along the bottom
are similar to the RADC drug category designations, followed by the name of the specific drug included in the MG model to represent
that category. Note that the MG model included both minocycline and rifampicin for the antibiotic RADC category, and both rosiglitazone
and glimepiride for the antidiabetic category, and the averaged outputs for each pair of drugs represented the response of the model for the
corresponding category.

lower risk was independent of hypertension [34–39].
These drugs are frequently taken in combination to
treat hypertension, and the question arises as to the
potential influence of hypertensive status on the effi-
cacy of the various drug combinations determined in
this analysis.

Hypertension, like overall comorbidity, degrades
cognitive performance but the effect is small. As
noted above, the negative correlation between cog-
nitive performance and comorbidity in the larger
RADC dataset is significant (p = 0.0007) but very
weak (s=−0.0028, r=−0.0363). Similarly, a nega-
tive effect on cognitive performance of hypertension
is also observed in the larger RADC dataset, and
the difference between the mean cognitive scores
of participants with hypertension (0.6036) and with-
out hypertension (0.6109) is significant (p = 0.0011)
but very small. In contrast, there are strong, pos-

itive correlations between comorbidity (s = 1.2821,
r = 0.3611, p = 0.0000), or hypertension specifically
(s = 2.1258, r = 0.4551, p = 0.0000), and the efficacy
of the drug combinations in the correlation set as
determined jointly from the MG model and the
RADC database (Supplementary Figures 6 and Sup-
plementary Table 6).

The strong, positive correlations between comor-
bidity or hypertension and drug combination efficacy
might seem to imply that the groups of partici-
pants who take effective drug combinations have
high cognitive scores because they also have high
comorbidities or a high proportion of hypertensives,
but these implications are false because, as we have
seen, comorbidity and hypertension are both nega-
tively related to cognitive performance in the RADC
dataset. In any case, the effects of comorbidity or
hypertension on cognitive performance are very weak
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Table 2
The ten best and ten worst drug combinations determined from RADC database benefits only. The ten best and ten worst RADC-alone
determined drug combinations are composed of similar numbers of drugs. Calcium-channel blockers occur more frequently in the ten best
(5/10) than in the ten worst (1/10). Opioids are notably absent from the ten best but present in almost half of the ten worst, and antidepressants
are absent from the ten best but frequent in the ten worst. The drug category names are close to those assigned in the RADC database, and

are followed in parentheses by the drug (or drugs) that represent that category in the MG model

or very small and can be ignored in the analysis.
The strong, positive correlations between comorbid-
ity or hypertension and drug combination efficacy
imply instead that the participants who suffer comor-
bidities generally, or hypertension superficially, tend
to be those who take combinations of the drugs
examined in this analysis that are known to reduce
the pro-inflammatory responses of microglia. Fur-
ther analysis of the demographic variables available
in the RADC dataset rule out other possible con-
founds (Supplementary Figure 6 and Supplementary
Tables 6–8).

Focusing on specific drug combinations

Featuring prominently in the Ten Best jointly
determined, and in the ten best RADC-alone
determined drug combinations are four antihyper-
tensive drug types: ACE inhibitors, beta blockers,
calcium-channel blockers, and angiotensin-receptor
blockers. Unfortunately, none of the 196 combi-
nations included in the correlation set comprised
only those four drug types, with or without COX2
inhibitors and/or aspirin. The three single drugs that
stand out in the best combinations, whether deter-
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mined jointly or by RADC alone, are the COX2
inhibitors, aspirin, and calcium-channel blockers,
while the drugs that stand out in the worst combi-
nations are the opioids and the antidepressants, and
the question arises as to whether or not combinations
of just those few drugs would be especially good or
bad by themselves.

None of the three possible combinations of the opi-
oids and the antidepressants (each alone and the one
pair) is present in the correlation set. However, all
seven possible combinations of the COX2 inhibitors,
aspirin, and calcium-channel blockers (each alone, all
three pairs, and the one triple) are present in it. Their
projections (not shown) onto the regression line in
Fig. 1 are distributed over the length of the line but
none rise to the level of the Ten Best nor fall to the
level of the Ten Worst.

The projections of each of the COX2 inhibitors,
aspirin, and calcium-channel blockers by themselves
(0.1436, 0.1870, and 0.2431) fall below those of each
pair (0.2700, 0.3390, and 0.3606). The best of the
seven possible combinations of the anti-inflammatory
drugs, aspirin, and calcium-channel blockers is the
triple composed of all three, and its projection
(0.4521) is closest to those of the Ten Best (range
0.5353 to 0.5713). These findings imply that the triple
of COX2 inhibitors, aspirin, and calcium-channel
blockers would be better than those same drugs alone
or in pairs as combination therapies for AD. They also
imply that any of the Ten Best combinations, all of
which include drugs in addition to COX2 inhibitors,
aspirin, and calcium-channel blockers, would be bet-
ter than the combination limited to the triple of COX2
inhibitors, aspirin, and calcium-channel blockers as
combination therapies for AD.

Analysis of variance and multiple comparisons

The main challenge in the identification of poten-
tial multi-drug treatments for AD using clinical data
alone is that the many participants in the dataset
are nevertheless distributed over a great many drug
combinations. The result is that the amounts of data
associated with each individual drug combination is
small, and this reduces statistical power. The problem
is illustrated using the statistical analysis presented
in Supplementary Figures 7-10 and Supplementary
Tables 7-10.

Supplementary Figures 7 and 8 show that statisti-
cally significant ANOVA results are obtained when
statistical power is increased by grouping the cog-
nitive scores associated with several different drug

combinations. The box and whisker plot in Supple-
mentary Figure 7 characterizes the distributions of the
composite cognitive scores for the ten best and ten
worst RADC-alone determined drug combinations,
each taken as a group. Supplementary Figure 7 also
characterizes the distributions of composite cognitive
scores for the group of combinations of antihyper-
tensive medications along with COX2 inhibitors and
aspirin, and those for all other drug combinations
including the null (no-drug) combination. The means
of the ten best, ten worst, and antihypertensive groups
are all significantly different from the mean of the
other group at the p = 0.01 level using the Bonferroni
correction for multiple comparisons. Supplementary
Figure 8 characterizes the distributions of the com-
posite cognitive scores for the analogous jointly (MG
and RADC) determined drug combinations, where
similarly the means of the Ten Best, Ten Worst, and
antihypertensive groups are all significantly different
from the mean of the other group at the p = 0.01 level
using the Bonferroni correction.

The problem of statistical power becomes evident
when drug combinations are considered individu-
ally. Supplementary Figure 9 shows that the medians
of the combined cognitive scores of the ten best
and ten worst RADC-alone drug combinations taken
individually are all, respectively, higher and lower
than the median for the other group (including other
combinations and the no-drug case), and this agree-
ment corroborates the method used to assess RADC
database benefit directly from combined cognitive
scores (see Methods). However, using a multiple
comparisons test with the Bonferroni correction
shows that only two of the ten best are statistically
significantly better than the other category (Supple-
mentary Table 9).

Because composite cognitive score is more directly
related to RADC-alone determined benefit than to
jointly (MG and RADC) determined efficacy, the
relationships between the medians of the combined
cognitive scores of the Ten Best and Ten Worst jointly
determined drug combinations, taken individually,
and that for the other group is not as clean (Supple-
mentary Figure 10). However, here again two of the
Ten Best are statistically significantly better than the
other category (Supplementary Table 10). A multi-
way analysis of variance also confirms the presence of
interactions that were identified, and ruled out, above.

Despite the relative lack of significance in this
more traditional form of analysis, the differences in
statistics such as medians and means (Supplemen-
tary Figures 7–10 and Supplementary Tables 7-10)
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supports the contention that certain drug combina-
tions, particularly those including COX2 inhibitors,
aspirin, and antihypertensive drugs in categories
known as ACE inhibitors, beta blockers, calcium-
channel blockers, and angiotensin-receptor blockers,
may be more effective than single drugs in the treat-
ment of AD.

DISCUSSION

The goal of this analysis was to take estimates of
the efficacy/benefit of specific drug combinations as
determined completely independently, using the MG
model and the RADC database, and reduce the uncer-
tainty inherent in either by correlating them both
together. The positive and highly statistically sig-
nificant correlation makes it possible to rank-order
drug combinations jointly, in terms both of the MG
model and the RADC database. The highly signif-
icant correlation was achieved between two sets of
estimates that were minimally processed. No attempt
was made to adjust the data to account for the
influences of any specific variables. Instead, poten-
tially confounding variables were shown either to
be uncorrelated with RADC benefit (e.g., number
of drugs in the combinations), or to degrade rather
than enhance the correlation (e.g., comorbidity or
hypertension). The positive and highly significant
correlation between RADC database benefit and MG
model efficacy was observed in spite the many fac-
tors that should have prevented agreement between
the two different estimates.

The main assumption in this analysis is that certain
drug combinations as identified by the MG model can
reduce neuroinflammation, which in turn can reduce
neurodegeneration, which in turn can improve cogni-
tive performance, and that the relative improvement
in cognitive score should be detectable for those same
drug combinations in the RADC dataset. The analysis
of available data supports the main assumption, which
is that the agreement between the MG model and the
RADC database indicates that specific drug combi-
nations are associated with relative cognitive benefit
because they reduce neuroinflammation. The analy-
sis does not rule out the possibility that certain drugs
provide a relative benefit because they also amelio-
rate other aspects of AD-related pathology beside
neuroinflammation, as has been suggested for cer-
tain calcium-channel blockers [40, 41] and COX2
inhibitors [42–45].

The analysis does not directly address the fact that
certain drugs, whether or not included among the 20
drug classes in common between the RADC database
and the MG model, altered cognitive function either
as a direct, intended effect or as a side effect, or were
being taken to treat a condition that can affect cogni-
tive function. These effects could enhance or degrade
the correlation. Two examples of drugs included in
the 20 drug classes examined are relevant. The opi-
oids are pro-inflammatory (Supplementary Table 2)
and can also impair cognitive function, and it is pos-
sible that those effects synergized in enhancing the
correlation. In contrast, the antidepressants (i.e., most
selective serotonin reuptake inhibitors, SSRIs) are
anti-inflammatory (Supplementary Table 2) but it is
possible that their use, or the condition of depres-
sion that necessitates their use, could impair cognitive
function, and it is probable that those contrary effects
degraded the correlation. In this regard it is inter-
esting to note that the antidepressants appear in
two of the Ten Best and in one of the Ten Worst
(RADC and MG; Table 1) combinations, but appear
in none of the ten best and in fully nine of the ten
worst combinations (RADC only; Table 2), despite
SSRIs showing clear anti-inflammatory properties in
microglia (Supplementary Table 2). No attempt was
made to adjust the database data to account for the
possible effects of drugs on cognitive function, or to
account for any other factors that could have affected
the correlation.

A highly significant positive correlation was
observed even though RADC database benefit was
based on cognitive function directly while MG model
efficacy was based on reduction of inflammation,
which would affect cognition indirectly. It seems
likely that a computational model that represented
more of the pathophysiology of AD, including the
metabolisms of A� and hyperphosphorylated tau, the
cerebrovascular system, and the functions of neu-
rons and synapses, could represent the direct and
off-target effects of more drugs and could provide
a more comprehensive view on potentially effective
drug combinations for the treatment of AD. There
is no limit, in principle, to the size of the network
models whose parameters can be set via machine
learning, and very large models are routine (e.g.,
[46]). Existing network models of A� metabolism,
and of the effects of A� on synaptic function [47–49]
could be merged and expanded to encompass “the
triad”, which is a unit of neurobiological organiza-
tion composed of neuronal synapses and microglia,
along with astroglia and their regulation of the extra-
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cellular milieu through contact with brain capillaries,
that is thought to be the foci of the pathophysiological
events surrounding neuroinflammation and neurode-
generation. The MG model presented here provides
a framework and a starting-off point for the develop-
ment of more comprehensive models.

Though limited in extent, the MG model could still
account for the effects of 20 drug classes on neu-
roinflammation, and this was apparently enough to
achieve a highly significant correlation with measures
of cognitive function based on the RADC database.
Analysis revealed that COX2 inhibitors, aspirin,
antibiotics, ACE-inhibitors, beta blockers, calcium-
channel blockers, angiotensin receptor inhibitors, and
antihistamines were all present at higher frequencies
in the Ten Best than in the Ten Worst jointly deter-
mined drug combinations, and were also all present at
higher frequencies in the ten best than in the ten worst
RADC-alone determined drug combinations. All of
these drugs have known anti-inflammatory effects on
microglia and, while some have overlapping sets of
targets, all have distinct targets, suggesting that their
effects may synergize because they affect different
cellular pathways (Supplementary Table 2 and refer-
ences therein).

The mean number of drugs in the Ten Best drug
combinations is seven, with a range of five to nine,
and the mean number of drugs, limited to the 20 cat-
egories examined here, that were taken by RADC
participants is five, and range up to 16. Prescribing
and taking a combination of from five to nine drugs
for the treatment of a single disorder, in this case AD,
would be unusual but taking between five and nine
drugs overall would not be inconsistent with current
clinical practice in North America. In any case, the
analysis also suggests that taking a combination of
three drugs, namely COX2 inhibitors, aspirin, and
calcium-channel blockers, would be more beneficial
than taking any of those drugs alone.

The fact that the same drug combinations were
effective in the computational model and also con-
ferred benefit in the clinical database strongly
suggests that these drug combinations should be
evaluated first in pre-clinical (i.e., cell-culture or
animal) studies and then in clinical trials as poten-
tially better treatments for AD and related dementias.
High-throughput experiments on microglia, or on
mixed neural/glial cultures, would be the most eco-
nomical way to test the actual efficacy of the drug
combinations identified in this analysis. For exam-
ple, all combinations of a COX2 inhibitor, aspirin,
and a calcium-channel blocker, with each drug at

one of seven concentrations, could be tested in qua-
druplicate for statistical power on a single, 1,536
microtiter plate. More limited tests are feasible in
AD-transgenic animals. All combinations of a COX2
inhibitor, aspirin, and a calcium-channel blocker,
with each drug at one of three concentrations, could
be tested in quadruplicate for statistical power on
about 100 mice.

New clinical studies are also feasible. All of the
Ten Best drug combinations include at least two of
the following drugs: ACE inhibitors, beta blockers,
calcium-channel blockers, and angiotensin-receptor
blockers. These drugs are frequently taken in com-
bination to treat hypertension, and many of the
cognitively impaired elderly individuals likely to par-
ticipate in new clinical studies are already taking two
or more of them together, along with some of the other
drugs included in the Ten Best list. Adding drugs such
as COX2 inhibitors and aspirin to already established
drug regimens, in order to complete or approximate
some of the Ten Best combinations, is an option for
future clinical trials.
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