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A radiomics‑based study 
for differentiating parasellar 
cavernous hemangiomas 
from meningiomas
Chunjie Wang1,5, Lidong You1,2,5, Xiyou Zhang1,5, Yifeng Zhu1, Li Zheng3, Wangle Huang4, 
Dongmei Guo1 & Yang Dong1*

To investigate the value of the radiomic models for differentiating parasellar cavernous hemangiomas 
from meningiomas and to compare the classification performance with different MR sequences 
and classifiers. A total of 96 patients with parasellar tumors (40 cavernous hemangiomas and 56 
meningiomas) were enrolled in this retrospective multiple‑center study. Univariate and multivariate 
analyses were performed to identify the clinical factors and semantic features of MRI scans. Radiomics 
features were extracted from five MRI sequences using radiomics software. Three feature selection 
methods and six classifiers were evaluated in the training cohort to construct favorable radiomic 
machine‑learning classifiers. The performance of different classifiers was evaluated using the AUC 
and compared to neuroradiologists. The detection rates of  T1WI,  T2WI, and CE‑T1WI for parasellar 
cavernous hemangiomas and meningiomas were approximately 100%. In contrast, the ADC maps 
had the detection rate of 18/22 and 19/25, respectively, (AUC, 0.881) with 2.25 cm as the critical value 
diameter. Radiomics models with the SVM and KNN classifiers based on  T2WI and ADC maps had 
favorable predictive performances (AUC > 0.90 and F‑score value > 0.80). These models outperformed 
MRI model (AUC 0.805) and neuroradiologists (AUC, 0.756 and 0.545, respectively). Radiomic models 
based on  T2WI and ADC and combined with SVM and KNN classifiers have the potential to be a viable 
method for differentiating parasellar hemangiomas from meningiomas.  T2WI is more universally 
applicable than ADC values due to its higher detection rate for parasellar tumors.

Parasellar cavernous hemangiomas (CHs) are relatively rare intracranial-extraaxial vascular malformation with 
unknown etiology, accounting for 2–3% of all cavernous sinus  tumor1. In recent years, advances in neuroradiol-
ogy techniques improve the ability to detect  it2–4. Dural cavernous angiomas occurred in parasellar cavernous 
sinus often share a similar appearance with parasellar meningiomas on conventional MR imaging (MRI) and 
exhibit a dural tail sign on enhanced-T1weighted  (T1WI) imaging  occasionally5. They were misdiagnosed as 
meningiomas  commonly6–9, and the misdiagnosis rate was as high as 66.7–87.5%1,10.

Althouth parasellar CHs were benign, clinical symptoms such as headache and cranial nerve deficits may 
arise due to progressive tumor growth and mass  effect11. The management of parasellar CHs remains a chal-
lenge for neurosurgeons due to the complex neurovascular structures of the cavernous sinus. The incidence of 
uncontrollable and massive hemorrhage during surgery and neurovascular function injury was high and even 
 death12. Stereotactic radiosurgery (SRS) could alleviate symptoms and effectively reduce surgical  complication12, 
attaining long-term CHs  control13,14. However, SRS increases the risk of adhesion between meningiomas and 
surrounding tissues, which is not the preferred method for meningiomas. Surgical resection is considered to be 
an effective strategy for the treatment of parasellar  meningiomas15, and SRS is an adjuvant treatment for residual 
or recurrent meningiomas after  surgery5,16,17. Consequently, accurate preoperative diagnosis for parasellar CHs 
and meningiomas is crucial for individualized treatment decisions.
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In recent years, advanced functional imaging features were explored to provide information for improving 
diagnostic accuracy, including a description of compactness of tumor cell arrangement, cerebral blood perfu-
sion, and vascular proliferation characteristics. Pathologically, CHs can be classified as type A, B and  C18. Type 
A was sponge-like with intact pseudocapsule; type B was mulberry-like with the pseudocapsuel incomplete or 
absent; and type C was composed of both mulberry-like composition and sponge-lied composition. Parasellar 
meningiomas are mostly meningothelial  subtype19. They are obvious enhancement and hyperperfusion, with a 
significantly lower minimum apparent diffusion coefficient (min ADC) compared to parasellar  CHs20. These pro-
vide valuable information for the identification. However, sometimes its clinical application is limited due to the 
following reasons: (1) the gradual “filling” features on dynamic contrast-enhanced MRI (DCE-MRI) help in the 
diagnosis of cavernous hemangioma, which was different from meningomas. However, type A CH, accounting 
for about 40% of all parasellar  CHs21, is composed of thin-walled large lumen sinusoids with scanty interven-
ing connective tissue. It shows marked homogeneous enhancement than type B and  C18,22, which is similar to 
meningiomas; (2) identification by perfusion status is typically  incomplete23. Type B cavernous hemangioma 
contains ample solid parenchyma and well-formed vasculature and connective tissue. It has high CBF values 
and is easily misdiagnosed as  meningiomas20,22; (3) poor imaging effect on diffusion-weighted imaging (DWI) of 
parasellar lesions was inevitably, due to the low signal-to-noise ratio and magnetic susceptibility artifacts caused 
by skull base bone and nasal containing gas; (4) although DCE-MRI has certain value in differential diagnosis, 
it is inevitable to inject exogenous contrast agents. Which limits its use in specific populations of pregnant 
 women18,20,24. The previous reports showed that parasellar CHs and meningoma were both the most frequently 
diagnosed parasellar disease during  pregnancy25. Therefore, the exploration based on conventional MR without 
contrast agents is more expected.

Radiomics has become an attractive technique in recent years. It is a powerful tool for constructing decision-
support models based on conventional or functional imaging for extracting large amounts of image features and 
quantitative data  analysis26. However, to our knowledge, its application in differentiating parasellar CHs from 
meningioma has not been  reported27–30. The present study extracted a large panel of radiomics features from 
T1-weighted images  (T1WI), T2-weighted images  (T2WI), contrast-enhanced T1-weighted images (CE-T1WI), 
diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) imaging data involving 96 patients 
with parasellar CHs and meningiomas. This study aimed to construct an MRI-based radiomics model as a non-
invasive preoperative prediction method to facilitate the differentiation of parasellar CHs from meningiomas.

Materials and methods
Patients. Radiological and clinical databases of 96 cases of parasellar CHs and meningiomas from Second 
Hospital of Dalian Medical University, Jining NO. 1 People’s Hospital, and First Affiliated Hospital of Wenzhou 
Medical University were retrospectively reviewed between January 2010 and September 2019. This retrospective 
study was approved by the ethics review board of Second Hospital of Dalian Medical University, Jining NO. 1 
People’s Hospital, and First Affiliated Hospital of Wenzhou Medical University. The requirement for informed 
consent was waived by our Review Board owing to the retrospective nature of the current study. The methods 
in the current study were performed in accordance with the relevant guidelines and regulations. Inclusion cri-
teria included the following: (1) patients pathologically confirmed and/or clinically diagnosed with parasellar 
cavernous hemangioma or meningioma; (2) preoperative multi-parametric MRI scans including  T1WI,  T2WI, 
CE-T1WI, DWI, and ADC data were acquired; and (3) patients with no treatment history before magnetic 
resonance examination. Patients were excluded if (1) clinical data were incomplete; (2) they received any treat-
ment before the MRI examination, and (3) MR image quality was suboptimal. As a result, 40 cases of parasellar 
CHs and 56 cases of parasellar meningiomas were included in the study. The flowchart for patient selection is 
presented in Fig. 1.

MR image acquisition and data management. MR examinations were performed in 37 and 59 patients 
using 1.5T (HDXT, GE Healthcare, USA) and 3.0T (Siemens, Verio, Germany) MR scanners, respectively. The 
MR scan parameters are summarized in Table 1. CE-T1WI was acquired after administration of 0.1 mmol/kg of 
gadolinium-based contrast material (Gadovist; Bayer, Leverkusen, Germany). Diffusion-weighted images were 
transferred to a post-processing workstation to obtain ADC maps. MR data for  T1WI,  T2WI, and CE-T1WI 
were acquired for all patients. DWI was obtained for 27 patients with cavernous hemangiomas and 32 patients 
with meningiomas. ADC maps were obtained for 22 patients with cavernous hemangiomas and 25 patients with 
meningiomas. All  T1WI,  T2WI, DWI, ADC, and CE-T1WI data were selected for texture analysis.

Tumor segmentation. The radcloud platform (Huiying Medical Technology Beijing Co., Ltd, https:// mics. 
huiyi huiyi ng. com/#/) was used to manage the imaging and clinical data and to perform subsequent radiomics 
statistical analysis. To minimize the MRI intensity variations, we normalized the intensity of the image using the 
following formula:

x indicates the original intensity; f(x) indicates the normalized intensity; μ refers to the mean value; σ indicates 
the variance; s is an optional scaling, by default, it is set to  131.

All lesions in the training set were manually delineated by a junior radiologist on contiguous  T2WI slices and 
then copied to the corresponding  T1WI, CE-T1WI, DWI, and ADC maps for each slice. The first and last image 
layers were excluded to reduce the partial volume effect in all of the following series. The volume of interest 

f (x) =
s(x − µx)

δx

https://mics.huiyihuiying.com/#/
https://mics.huiyihuiying.com/#/
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(VOI) was manually adjusted to avoid interference from magnetic sensitivity artifacts. A senior radiologist with 
10 years of experience reviewed all contour lines and decided on the tumor boundaries when no consensus was 
reached. Next, the computer automatically generated a three-dimensional VOI. Both radiologists were double-
blinded to both clinical and pathological information. Figure 2 depicts a schematic of the radiomics workflow.

Feature extraction and selection. A total of 1409 quantitative imaging features were extracted from 
MR images using the Radcloud  platform32. All of these features were classified into four  categories26,33. (1) first 
order statistic: these features quantitatively described the intensity distribution of voxels in MR images, but did 
not involve the spatial arrangement of voxels; (2) shape-based: these features reflected the shape of the depicted 
region; (3) texture: texture analysis quantified the variation of features within gray levels and described the statis-
tical information related to the spatial distribution of gray levels or voxel intensities. This analysis was generally 
performed by second- or higher-order statistical methods that quantified the heterogeneity within the lesion. 
These features included gray level run length matrix, (GLRLM), gray level co-occurrence matrix (GLCM), and 
gray level size zone matrix, (GLSZM); (4) high order features: high order features were obtained using statisti-
cal methods after filtering the images. They included Laplacian of Gaussian, wavele, square, square root, and 
logarithm.

In order to avoid over-fitting and improve the generalization ability of the model, variance threshold, select 
K best, and LASSO algorithm were used to select the optimal features (Fig. 3). A variance threshold of 0.8 was 
used in the variance threshold method to remove variance eigenvalues smaller than 0.8. The select K best was 
chosen to remove features without a statistically significant difference (p > 0.05). For the LASSO model, the L1 
regularizer was used as the cost function with a cross-validation error value of 5 and a maximum number of 
iterations of 1000. The LASSO algorithm was used to find the best alpha in each sequence, calculate the coef-
ficients, and obtain the most relevant features.

Model training and validation. The present study constructed radiomics-based models using KNN, 
SVM, LR, RF, XGBoost, and DT classifiers. The radiomic features after a three-dimensional dimensionality 
reduction were used as the dataset. Then, 80% of the datasets were randomly selected to build the training set 
and the remaining 20% were used as the validation set to evaluate the accuracy of the models.

Figure 1.  Flowchart for patient selection.

Table 1.  MRI protocol. SE spin echo, FSE fast spin echo, TR repetition time, TE echo time, NEX number of 
excitations, FOV field of view, DWI diffusion-weighted imaging.

Sequences TR (ms) TE (ms) NEX Slice Thickness (mm) FOV (mm) Matrix

SE-T1WI 1750–2500 9–25 2–4 3–5 24 × 24 256 × 256

FSE-T2WI 4000–4500 90–120 2 3–5 24 × 24 256 × 256

DWI 4500–6400 70–80 2 3–5 24 × 24 256 × 256
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Neuroradiologist evaluation. Subsequently, two neuroradiologists (with 5 and 10 years of experience, 
respectively) made a diagnosis based on the characteristics of parasellar cavernous hemangiomas and men-
ingiomas in conventional MR images  (T1WI,  T2WI, and CE-T1WI), including size, signal intensity on  T2WI 
and DWI (hyperintensity, isointensity, hypointensity), morphology (roundish, irregular and spindle), the spatial 
relationship with the peripheral blood vessels (encapsulation, compression, close to, separation), and enhance-
ment characteristics (homogeneous and heterogeneous). Signal intensities were recorded according to the Elster 
scoring  criteria34. The lesion diameters detected by ADC maps,  T2WI, and other sequences were recorded to 
compare the recognition rate of each sequences. The maximum values were taken as the focus size in this study. 
The two neuroradiologists were blinded to the clinical and pathology data of specific cases, but knew the patients 
were parasellar CHs or meningoma.

Statistical analysis. The present study compared and analyzed the area under the receiver operating curve 
(ROC) curve with 95% confidence interval (CI), sensitivity, specificity, and accuracy of each classifier based on 
the results of different MR sequence tests. Model stability was evaluated using the F-score value. The larger the 
F-score value, the better the stability of the model. The lesion detection rate on different MR images was also 
analyzed, and the relationship between lesion diameter and the detection rate on ADC maps was statistically 
evaluated using the SPSS 22.0 software (SPSS, Inc, Chicago, IL). Long-distance cut-off values for the Yoden index 
findings were obtained based on the data sensitivity and specificity. The performance of the two neuroradiolo-
gists was evaluated using ROC curve analysis and compared to the performance of the final radiomics models.

Results
Clinical and MRI characteristics. The baseline clinical factors and the semantic image analysis of 96 
patients are reported in Table 2. In univariate analyses, signal intensity on  T2WI and DWI, morphology, the 
enhancement pattern and the spatial relationship with the peripheral blood vessels showed statistical sig-
nificance between cavernous hemangiomas and meningiomas (χ2 = 35.521, P = 0.000; χ2 = 9.731, P = 0.008, 
χ2 = 7.636, P = 0.022, and χ2 = 13.253, P = 0.004, respectively). No significant differences in age, sex, and size 
were observed between cavernous hemangiomas and meningiomas (P = 0.186, P = 0.420 and P = 0.212, respec-
tively). In multivariate analyses, signal intensity on  T2WI , signal intensity on DWI , and the enhancement pat-
tern were demonstrated as independent predictors of semantic features of MRI scans (Table 2). All lesions were 
detectable on conventional MR images (Fig. 4). The detection rate was 18/22 for cavernous hemangiomas and 
19/25 for meningiomas on ADC maps. The area under the curve (AUC) for the detection rate was 0.881 (95% CI 
0.790–0.972), with an accuracy, sensitivity, and specificity of 74.2%, 67.3%, and 100%, respectively (Fig. 5c). The 
mean diameter was approximately 2.74 ± 0.98 cm, with a critical value of 2.25 cm for the diameter on ADC maps.

The AUC of the MRI model (0.805) were lower than those of the radiomics (Fig. 5a). The AUCs for the two 
neuroradiologists were 0.756 (95% CI 0.654–0.858) for reader 1 (Fig. 5b) and 0.545 (95% CI 0.430–0.659) for 
reader 2 (Fig. 5b). When comparing diagnostic performance, the radiomics classifier had a significantly higher 
AUCs than the two neuroradiologists (P < 0.001).

Model assessment. After three-dimensionality reductions, eight out of 1409 features were selected based 
on  T2WI (Table 3). Features based on other sequences are listed in Supplementary Tables S1–S4.

The diagnostic performance of the prediction models is summarized in Tables 4 and 5. After removing all 
over-fitting results for recognizable lesions, the  T2WI-based radiomics model with KNN and SVM classifiers was 
more effective in identifying parasellar cavernous hemangiomas from meningiomas (Fig. 6).

Discussion
The present study established an accurate classifier to distinguish parasellar cavernous hemangiomas from men-
ingiomas by integrating a large panel of radiomic features. An efficient classifier was obtained by comparing five 
MRI sequences from 1.5 T and 3.0 T MR scanners at three medical imaging centers, bolstering its generalizability. 
Through radiomic and artificial evaluation,  T2WI and DWI sequences were of great value in the differentiation of 
parasellar CHs and meningoma, outperforming the enhanced-T1WI. And  T2WI is more universal applicable for 
its less artifacts and higher detection rate of parasellar lesion. MRI-based radiomic models would be a potential 
method for differentiating parasellar CHs from meningomas.

In this study, imaging characteristics of parasellar CHs and meningomas were analyzed. It was found that 
the signal intensity on DWI and  T2WI, and the enhancement mode in contrast-enhanced MR imaging had 
advantages in the differention of them. The previous study reported that the facilitated diffusion on DWI could 
differentiate parasellar CHs from other  lesions35. In this study, ADC sequences had a good practical value in 
constructing radiomics models. However, the detection rate of parasellar CHs and meningoma in DWI and ADC 
maps was about 78.7% (37/47), with a cut-off diameter of 2.25 cm. Which affects the clinical application of this 
technology. Well, the detection rate of  T2WI,  T1WI, and CE-T1WI was 100%, which was more conducive to the 
establishment of radiomics models. This study proposes for the first time that the signal intensity on  T2WI is 
also significant for the identification. It was characterized by a high signal-to-noise ratio and  homogeneity27,36. 
The radiomics model constructed based on  T2WI had a high diagnostic accuracy and stability in distinguishing 
parasellar hemangiomas and meningiomas, which provides a methodological basis for diagnosis when advanced 
functional and enhanced MR are difficult to carry out. The progressive contrast “filling in” in the tumors can 
aid in differentiating between them, which was reported in the previous studies and suggested the diagnosis of 
cavernous  hemangiomas27,37. However, contrary to our general view, the accuracy of the radiomics model based 
on CE-T1WI was low than  T2WI and ADC, although it was improved in different ways. This might be influenced 
by different types of cavernous hemangiomas and  meningiomas22,37,38, which is worthy of further study.
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Radiomics can provide additional metabolic and biological information in addition to the traditional MRI 
metrics. Gray contrast, uniformity, depth, and texture roughness have been used to study tumor grading, predic-
tion of genomic information, and differentiation of lesion and non-lesion  images39–41. The present study found 
that higher-order features could better reflect the degree of tumor heterogeneity and texture information. A 
GLSZM can quantify gray-level zones in an image to reflect tumor heterogeneity at a local scale. The coefficient 
of High Gray-Level Zone Emphasis was the largest, which measured the distribution of the higher gray-level 
values. Larger values indicated a larger proportion of high gray-level values and size zones in the  image42. Tumor 
heterogeneity usually reflected the gray contrast variation of the image. Therefore, the GLSZM was more sensitive 
in distinguishing parasellar cavernous hemangiomas from meningiomas.

Different classifier algorithms may lead to different results. The present results suggested that the radiomics 
models combined with SVM and KNN classifiers had better diagnostic performance in distinguishing between 
parasellar cavernous hemangiomas and meningiomas. SVM has been proposed by Cortes et al. in 1995 as a 
binary classifier based on supervised  learning43,44. The critical concept of SVM involves the use of a hyperplane to 
define decision boundaries to separate different classes of data points. This technique finds support vectors with 
a high discrimination and maximizes the interval between classes. It has good adaptability and discrimination 
ability. The K-nearest neighbor (KNN) method is mostly used for image classification. This object classification 
is based on the distance between its neighbors and is mainly used to solve regression and classification problems. 
By selecting the KNN points of a sample when the nearest neighbors belong to a certain category, the sample is 
determined to belong to that category. Several previous studies have demonstrated KNN’s excellent and stable 
performance using different datasets, which was similar to the present  result45–47. Consistent with our study, other 
classifiers also suffer from over-fitting. This is manifested by the fact that the training set is too accurate, while 
the validation set cannot achieve the expected ideal results. In addition, there are too many feature dimensions, 
parameters, and noise, which lead to a too-perfect prediction of the fitted function in the training set. However, 
the prediction results in the new data test set were low. In the present study, SVM and KNN classifiers were 
suggested for use as radiological diagnostic models to distinguish between parasellar cavernous hemangiomas 
and meningiomas.

There are several limitations in the present study. First, the sample size was relatively small and needs to be 
further explored. Second, different types of parasellar cavernous hemangiomas and meningiomas were not con-
sidered. Third, the differential diagnosis mainly focused on parasellar hemangiomas and meningiomas. Other 
parasellar tumors that are relatively easy to diagnose were not included in the study.

Figure 3.  Dimension reduction analysis and feature selection for  T2WI. (a) Variance threshold method was 
used to select 486 features from 1409 radiomics features (variance threshold = 0.8); (b) 145 feat ures were 
retained using select K best (P value < 0.05); (c–e) 145 features were retained using LASSO algorithm method. 
Eight eigenvalues were retained.
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Table 2.  Baseline characteristics and semantic image analysis of the population study. NA not analyzed, DWI 
diffusion-weighted imaging.

Characteristic All Patients (n = 96)
Cavernous hemangioma 
(n = 40) Meningiomas (n = 56)

Univariate analysis Multivariate analysis

Statistics P Value Odds Ratio* P Value

Age (y) 58.14 ± 12.02 56.20 ± 14.05 59.52 ± 10.10 7.708 0.186 NA* NA*

(23–86) (23–86) (26–80)

Sex 0.649 0.420 NA* NA*

Men 27/96 (0.28) 13/40 (0.33) 14/56 (0.25)

Wemen 69/96 (0.72) 27/40 (0.67) 42/56 (0.75)

Size (cm) 3.20 ± 1.09 (1.57–6.80) 3.11 ± 1.19 (1.70–6.80) 3.08 ± 0.96 (1.57–5.6) 9.987 0.212 NA* NA*

Signal intensity on T2WI 35.521 0.000

Hyperintensity 40/96 (0.42) 24/40 (0.60) 16/56 (0.29)

Isointensity 39/96 (0.40) 11/40 (0.28) 28/56 (0.50) 3.488 (0.632–19.251) 0.152

Hypointensity 17/96 (0.18) 5/40 (0.12) 12/56 (0.21) 18.194 (1.177–281.334) 0.038

Signal intensity on DWI 9.731 0.008

Hyperintense 21/59 (0.36) 4/27 (0.15) 17/32 (0.53)

Isointensity 25/59 (0.42) 16/27 (0.59) 9/32 (0.28) 0.060 (0.009–0.404) 0.004

Hypointensity 13/59 (0.22) 7/27 (0.26) 6/32 (0.19) 0.147 (0.019–1.113) 0.063

Morphology 7.636 0.022 NA* NA*

Roundish 41/96 (0.43) 11/40 (0.28) 30/56 (0.54)

Irregular 48/96 (0.50) 24/40 (0.60) 24/56 (0.43)

Spindle 7/96 (0.07) 5/40 (0.12) 2/56 (0.03)

The spatial relationship with 
the peripheral blood vessels 13.253 0.004 NA* NA*

Encapsulation 55/96 (0.57) 31/40 (0.78) 24/56 (0.43)

Compression 14/96 (0.15) 5/40 (0.12) 9/56 (0.16)

Close to 17/96 (0.18) 3/40 (0.08) 14/56 (0.25)

Separation 10/96 (0.10) 1/40 (0.02) 9/56 (0.16)

Enhancement pattern 11.497 0.001

Homogeneous 62/96 (0.65) 18/40 (0.45) 44/56 (0.79)

Heterogeneous 34/96 (0.35) 22/40 (0.55) 12/56 (0.21) 4.979 (1.060–23.389) 0.042

Figure 4.  (a–e) Images of parasellar cavernous hemangioma in a 54-year-old woman. (f–j) Images of parasellar 
meningioma in a 58-year-old woman. MRI protocol included (a, f) axial  T2-weighted images, (b, g), axial  T1-
weighted images, (c, h) diffusion-weighted images, (d, i) apparent diffusion coefficient maps, and (e, j) contrast-
enhanced  T1-weighted images. Cavernous hemangioma exhibited hyperintensity on  T2-weighted images, 
hypointensity on  T1-weighted images, DWI, and ADC map, and CE-T1WI showed homogeneous enhancement. 
Meningioma exhibited slightly hyperintensity on  T2-weighted images, slightly hypointensity on  T1-weighted 
images, DWI, and ADC map, and CE-T1WI showed homogeneous enhancement.
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In conclusion, the proposed  T2WI-based radiomics model combining SVM and KNN classifiers showed 
favorable predictive efficacy in the preoperative differential diagnosis between parasellar cavernous hemangiomas 
and meningiomas. It had more general applicability in complementing conventional imaging modalities and as 
an alternative to functional imaging. Moreover, the more readily available  T2WI could provide higher detection 
rates and more texture features. Other imaging modalities based on  T2WI for differentiating parasellar cavernous 
hemangiomas and meningiomas need to be explored.

Figure 5.  Receiver operating characteristic (ROC) curves of MRI model (a, AUC = 0.805), diagnostic efficiency 
of two neuroradiologists (b, the AUC of Reader 1 = 0.756, the AUC of Reader 2 = 0.545), and ADC map 
detection rate (c, AUC = 0.881).

Table 3.  Description of selected radiomic features with their associated feature group and filter based on 
 T2WI. GLDM gray-level dependence matrix, GLSZM gray-level size zone matrix.

Radiomic feature Radiomic class Filter

Median firstorder Lbp-2D

Interquartile range firstorder Wavelet-LLL

Variance firstorder Wavelet-LLL

Skewness firstorder Original

Skewness firstorder Gradient

High gray level zone emphasis glszm Wavelet-LHL

Large dependence high gray level emphasis gldm Wavelet-HLL

Skewness firstorder Wavelet-LHL

Table 4.  Performance of KNN classifier radiomics models in differentiating parasellar cavernous 
hemangiomas from meningiomas in the validation set. MRI magnetic resonance imaging, T1WI  T1-weighted 
images, T2WI  T2-weighted images, DWI diffusion-weighted images, CE-T1WI contrast-enhanced  T1-weighted 
images, AUC  areas under the ROC curves, 95% CI 95% confidence interval.

MRI sequence Category AUC 95% CI Sensitivity Specificity F-score

T2WI
Meningiomas 0.93 0.78–1.00 0.92 0.88 0.9

Cavernous hemangioma 0.93 0.78–1.00 0.88 0.92 0.88

ADC
Meningiomas 0.93 0.75–1.00 0.88 1 0.89

Cavernous hemangioma 0.93 0.75–1.00 1 0.88 0.89

CE-T1WI
Meningiomas 0.92 0.69–1.00 0.82 0.71 0.82

Cavernous hemangioma 0.92 0.69–1.00 0.71 0.82 0.71

DWI
Meningiomas 0.79 0.56–1.00 0.5 1 0.67

Cavernous hemangioma 0.79 0.56–1.00 1 0.5 0.80

T1WI
Meningiomas 0.75 0.55–0.94 0.83 0.75 0.83

Cavernous hemangioma 0.75 0.55–0.94 0.75 0.83 0.75
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Table 5.  Performance of SVM classifier radiomics models in differentiating parasellar cavernous 
hemangiomas from meningiomas in the validation set. MRI magnetic resonance imaging, T1WI  T1-weighted 
images, T2WI  T2-weighted images, DWI diffusion-weighted images, CE-T1WI contrast-enhanced  T1-weighted 
images, AUC  areas under the ROC curves, 95% CI 95% confidence interval.

MRI sequence Category AUC 95% CI Sensitivity Specificity F-score

T2WI
Meningiomas 0.87 0.71–1.00 0.92 0.88 0.92

Cavernous hemangioma 0.87 0.71–1.00 0.88 0.92 0.88

ADC
Meningiomas 0.95 0.77–1.00 0.88 1 0.89

Cavernous hemangioma 0.95 0.77–1.00 1 0.88 0.89

CE-T1WI
Meningiomas 0.91 0.73–1.00 1 0.71 0.92

Cavernous hemangioma 0.91 0.73–1.00 0.71 1 0.83

DWI
Meningiomas 0.94 0.71–1.00 0.67 1 0.80

Cavernous hemangioma 0.94 0.71–1.00 1 0.67 0.86

T1WI
Meningiomas 0.73 0.52–0.94 0.75 0.75 0.78

Cavernous hemangioma 0.73 0.52–0.94 0.75 0.75 0.71

Figure 6.  ROC curves for the optimal classifier. (a) ROC curve for KNN model based on  T2WI with 
AUC = 0.93; (b) ROC curve for SVM model based on  T2WI with AUC = 0.88; (c) ROC curve for KNN model 
based on ADC maps with AUC = 0.83; (d) ROC curve for SVM model based on ADC maps with AUC = 0.81.
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