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Abstract

Background: The current disease model for leishmaniasis suggests that only a proportion of infected individuals develop
clinical disease, while others are asymptomatically infected due to immune control of infection. The factors that determine
whether individuals progress to clinical disease following Leishmania infection are unclear, although previous studies
suggest a role for host genetics. Our hypothesis was that canine leishmaniasis is a complex disease with multiple loci
responsible for the progression of the disease from Leishmania infection.

Methodology/Principal Findings: Genome-wide association and genomic selection approaches were applied to a
population-based case-control dataset of 219 dogs from a single breed (Boxer) genotyped for ,170,000 SNPs. Firstly, we
aimed to identify individual disease loci; secondly, we quantified the genetic component of the observed phenotypic
variance; and thirdly, we tested whether genome-wide SNP data could accurately predict the disease.

Conclusions/Significance: We estimated that a substantial proportion of the genome is affecting the trait and that its
heritability could be as high as 60%. Using the genome-wide association approach, the strongest associations were on
chromosomes 1, 4 and 20, although none of these were statistically significant at a genome-wide level and after correcting
for genetic stratification and lifestyle. Amongst these associations, chromosome 4: 61.2–76.9 Mb maps to a locus that has
previously been associated with host susceptibility to human and murine leishmaniasis, and genomic selection estimated
markers in this region to have the greatest effect on the phenotype. We therefore propose these regions as candidates for
replication studies. An important finding of this study was the significant predictive value from using the genomic
information. We found that the phenotype could be predicted with an accuracy of ,0.29 in new samples and that the
affection status was correctly predicted in 60% of dogs, significantly higher than expected by chance, and with satisfactory
sensitivity-specificity values (AUC = 0.63).
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Introduction

Leishmaniasis is a vector-borne disease affecting humans and

animals, caused by parasitic species of the genera Leishmania and

transmitted by the bite of phlebotomine sand flies. Around the

Mediterranean basin, visceral (VL) and cutaneous (CL) human

leishmaniasis as well as canine leishmaniasis (CanL) are caused by

Leishmania infantum. The current disease model for leishmaniasis

suggests that infected individuals may live without progression

towards clinical disease manifestation probably due to immune

control of the infection.

The factors that determine whether individuals progress to

clinical disease following Leishmania infection are unclear, but

previous studies suggest a large contribution of the host genetic

background, as reviewed elsewhere [1,2]. Studies in mice [1]

provided early support for a strong genetic component to

susceptibility to Leishmania infection. In humans, most epidemio-

logical studies [3,4,5,6], candidate gene studies [7,8,9,10,11,12]

and genome-wide approaches [7,13,14] have offered further

support for genetic susceptibility to leishmaniasis, however they

did not specifically dissect the genetic factors that cause

progression of the disease following infection. Some studies have
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investigated genetic differences between healthy infected and

symptomatic individuals, but most of these were either not aimed

to identify candidate loci [15,16] or targeted at few candidate

genes [17,10,18]. Only Jeronimo et al. [19] have studied

progression of leishmaniasis following infection using a genome-

wide linkage approach in humans based on a few hundred

microsatellite markers. In dogs, genetic susceptibility to progres-

sion of disease from Leishmania infection is supported by the fact

that the percentage of infected dogs in endemic areas is as high as

60% [20] whereas rates of clinical CanL are much lower in these

areas [21,22]. Similarly to familial aggregation and ethnic

differences of leishmaniasis prevalence seen in humans, dog

breeds show variable susceptibility to CanL. Some breeds such as

Boxer, German shepherd and Rottweiler [23,24,25] appear more

predisposed to overt CanL. In contrast, the Ibizan hound, a dog

breed believed to have been relatively isolated in an endemic area

such as Ibiza (Balearic Islands, Spain), is reported to be resistant to

CanL [26].

Understanding the genomic factors controlling progression to

clinical disease in dogs is critical since the dog is the main natural

reservoir of Leishmania infantum infection for humans, and CanL is a

disease of great importance in veterinary medicine because of its

severity in the dog. Despite the importance of leishmaniasis in

dogs, there have been very few genetic studies of this species and

these have focused on a few candidate genes [27,25,28,29,30],

which have confirmed some genes previously found in mice and

humans. There have been no previous genome-wide studies of

genetic susceptibility to visceral leishmaniasis in the dog.

The dog has been previously proposed as a comparative animal

genetic model for disease mapping. For complex diseases, a

strategy with a first genome-wide scan genotyping tens of

thousands of single-nucleotide polymorphisms (SNPs) for a few

hundreds of dogs from one or few breeds has been suggested

[31,32,33] based on calculations of statistical power. This

approach has been based on simulation studies. For complex

phenotypes, these simulation studies demonstrate that 100–300

cases and 100–300 controls provide adequate power to detect

alleles conferring 2 to 5-fold multiplicative risk [33]. As a proof of

principle, the efficacy of the proposed design has recently been

demonstrated on several different studies [34,35,36,37,38,39,

40,41,42,43,44,45]. Moreover, Daetwyler and collaborators [46]

showed that the predictive accuracy depends upon the genomic

structure of the species, and this is favorable for canine studies

because of its low effective population increases the power in

genomic selection techniques [47].

The aim of this work was therefore to carry out a genome-wide

study of the genetic contribution to the progression of clinical

CanL from Leishmania infection. Our working hypothesis were: (i)

that the observed phenotypic variance in the progression of

leishmaniasis in infected dogs is partly explained by the genetics of

the host; (ii) that CanL is a complex disease with multiple loci

involved and an environmental component; and (iii) that genomic

information may be used to predict the progression of the disease.

We applied both genome-wide association study (GWAS) and

genomic selection approaches to a population-based case-control

dataset of 219 dogs from a single dog breed (Boxer) genotyped for

,170,000 single-nucleotide polymorphisms (SNPs) in order to

study host genetic susceptibility to progression of clinical

leishmaniasis from Leishmania infection. Firstly, we tried to identify

loci in the canine genome associated with the disease progression

phenotype. Secondly, we investigated the genetic component of

the observed phenotypic variance. Thirdly, we examined whether

genome-wide SNP data could be used to predict accurately the

phenotype.

Results

Genome-wide scan of loci affecting disease progression
A GWAS analysis testing markers individually was performed in

order to find loci associated with the progression to clinical CanL

from Leishmania infection, using a dataset of 115 healthy infected

and 104 affected Boxer dogs. All dogs had genotypes for 126,607

SNPs distributed across the genome.

Three statistical models were applied by fitting additional

covariates in order to correct for the two confounding effects

considered (described in Materials and Methods). When no

covariates were included (Model 1), the strongest associations were

found on Canis familiaris chromosomes (CFA) 1:39,058,553 bp

(Praw = 1.061025, Pgenome = 0.21), CFA 4: 68,238,371 bp

(Praw = 1.161025, Pgenome = 0.22) and CFA 20: 30,132,329 bp

(Praw = 2.561025, Pgenome = 0.43) (Figure S1 and Table S1).

Although healthy infected and affected samples generally clustered

together in the MDS plot (Figure S2), genetic stratification was

observed in our cleaned dataset based on the genomic inflation

factor (l= 1.29), with C1 capturing twice the stratification

captured by C2. The associations on CFA1 and 4 remained

when confounding effects were accounted for although signifi-

cance did not reach the genome-wide level (Table S1). Genetic

stratification, corrected by fitting the two first dimensions from the

multidimensional scaling analysis (C1 and C2), is likely to explain

part of the initial association in Model 1, as Praw values for the ten

strongest associated SNPs on CFA 1 and 4 were an order of

magnitude higher when stratification was accounted for (Model 2).

Nevertheless, associations of C1 and C2 with each of these

markers were not significant (data not shown). Inclusion of dog

lifestyle as a confounding effect did not affect the significance of

the markers. After correction for the confounder effects (Model 3)

the inflation factor was reduced to l= 1.17 and this was not

reduced by adding three additional MDS dimensions which

altogether captured an extra 5% of the genetic variance in the

markers (Table S2).

We examined candidate loci previously reported to have

associations with host response to Leishmania infection and

susceptibility to leishmaniasis in Homo sapiens (49 loci) and Mus

musculus (33 loci) to test in a systematic way if any of these loci

showed a stronger association in our canine dataset. When

possible, these were mapped to their orthologues in the dog

genome, and this was successful for 78 loci (95%; Dataset S1).

We selected SNPs in the GWAS data contained within these

candidate loci and their flanking regions (61 Mb) and assigned

them to sets of non-overlapping candidate regions. This resulted in

4,751 SNPs in 37 sets with a median of 108 SNPs (Dataset S1).

Sets were tested one at a time for association with the phenotype

controlling for within-set linkage disequilibrium (LD) and multiple

testing arising from the number of SNPs in the set as described

elsewhere [48] (r2 = 0.80 and p = 0.05 were used). Three sets of

SNPs on CFA 4, and one each on CFA 9 and 10 showed an

empirical set-specific p-value (EMP1),0.05 (Dataset S1). The

same sets showed EMP1,0.01 when r2 = 0.10 and p = 0.01 were

applied (see Materials and Methods). Although EMP1 does

not account for the fact that multiple sets are tested, the sets on

CFA 4 showed EMP1 values notably lower than for other sets

(Figure S3). The sets on CFA 4 spanned the region 61.2–

76.9 Mb which had previously showed the strongest associations

in the initial GWAS (Table S1). All the sets contain loci associated

with Leishmania infection, and the three sets on CFA 4 included

several genes (Il7r, Lifr, C6, C7 and Csf1r) that lie within a locus

involved in lesion development in murine Leishmania major infection

[49,50,51,52].

Genetic Control of Canine Leishmaniasis
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Finally, the same dataset used in the GWAS was analysed using

genomic selection with the BayesB method [47] with some

modifications previously published [53]. Briefly, the BayesB

method first proposed by Meuwissen et al. [47] is a Bayesian

model in which the effect of SNPs on the total genetic values are

predicted simultaneously, with an a priori assumption that only few

SNPs are useful for predicting the trait. With the modified BayesB

method we used (from now onwards referred just as BayesB for

simplicity), Models 1–3 produced a similar genome-wide plot of

both estimated marker effects (Figure S4) and the proportion of

realisations a given marker was estimated to have a non-zero effect

(data not shown), with a most detectable peak on CFA 4:61–

77 Mb. This region overlapped with both the strongest association

in GWAS and the region in which SNP sets covering candidate

genes were significant (EMP1,0.01).

Estimating genetic variance in the phenotype
GWAS methodology is concerned with identifying individual

SNPs that may be a causative variant for the phenotype or in LD

with such a variant. Despite the failure to detect any such SNP, it

was possible to detect genetic variation relating to the leishman-

iasis phenotype. Two different approaches were adopted, the first

using a modified BayesB methodology [53] and the second a

Restricted Maximum Likelihood (REML) methodology imple-

mented within the GCTA package [54]. The estimates of

heritability obtained were 0.64 and 0.58 (s.e. 0.17) from BayesB

and GCTA, respectively (Table 1). These estimates were

corrected for genetic stratification (C1, C2) and lifestyle. Note

that these estimates are likely to be biased upwards because of the

selection of the samples contributing to the study – as would be

expected in a case-control study. Given the uncertainty of the

actual prevalence of the disease we decided to explore this using

GCTA by varying the prevalence from 0.01 to 0.6. As show in

Table S3, in all cases heritability was found notably greater than

zero and it went down to 0.32 with prevalence equal to 0.01.

Using BayesB the fraction of markers contributing to the genetic

variance was estimated as 0.015 (s.e. 0.011), however experience

with such methods suggests that this fraction is sensitive to the

distribution of allele effects that is assumed (results not shown). The

inclusion of an additional MDS dimension (C3) did not change the

results compared with Model 3.

Prediction of the phenotype
Cross-validation was used to test the predictive potential of

genomic evaluation. Five cross-validation sets (denoted A–E) were

produced at random from the full dataset to estimate the

predictive benefit when new individuals, which have not been

used to estimate the effects of markers and covariates, are

genotyped in order to predict their phenotypes. Two approaches

to assess the predictive value were adopted: the accuracy to predict

the phenotype and the capability to diagnose individuals from

genomic information.

Accuracy. The correlation between predicted fitted values for

the new individuals and their known actual phenotype was

calculated as a measure of accuracy (r) for predicting the

phenotype. The Model 1 results suggest that the combined SNP

effects predict the phenotype with an accuracy of 0.18 and that, by

comparison with Model 2, little accuracy is added by including

covariates correcting for genetic stratification (Table 2 and

Table 3). Including lifestyle, which was identified as a risk factor

in previous analyses, improved the accuracy to 0.29 (Table 4).

Still, the key question is whether the genomic data adds accuracy

and this was assessed in different ways.

Firstly, cross-validation was performed on permuted data prior

to the running of the BayesB analyses, where genotypes were

randomized with respect to both phenotypes and covariates, whilst

the link between phenotypes and covariates was maintained. In

general, accuracy values were notably lower with permuted data

than with the actual data, regardless of which of Models 1 to 3

were fitted. Within-set accuracies from permuted data were very

close to zero when no covariates (Model 1) and genetic

stratification (Model 2) were included. Statistical significance was

observed only when lifestyle was included (Model 3), which

confirms the earlier result that lifestyle has predictive value.

Secondly, to test the contribution of the genomic data, the

predictions obtained from the BayesB analysis were decomposed

into the component from the covariates and the component from

the SNPs. The SNP component was then permuted within the

cross-validation set as described in the Materials and Methods,

but maintaining the link between the predictor from covariates

and the phenotypes. For each permutation the accuracy of

prediction was calculated. Tables 2, 3, 4 show that the accuracy

from the observed data with the true link between phenotypes and

genotypes was in the upper tail of the distribution of accuracies

(P,0.05). Collectively this demonstrates the Models have

significant predictive value and that, within the predictor, the

genomic data makes a significant contribution to the accuracy.

Finally, the magnitude of the benefit from the genomic data was

assessed by predictions that excluded all genomic data. Overall

accuracy obtained by C1 and C2 as explanatory factors alone was

not significant (Table 3). Accuracy using only covariates in Model

3 was significant although the accuracy achieved was only half the

value obtained from the full Model (Table 4). Altogether, these

three ways to look at the data proved that prediction of the

phenotype was more accurate when genetic markers were

included.

Nevertheless, as may be expected from the relatively small data

sets, there is considerable variation among the cross validation sets,

and confidence intervals within individual cross-validation sets are

large. Predictive accuracies were significant in sets C and D, but

were not significant in sets A, B and E (Table 2), coinciding with a

slightly higher posterior fraction of markers with a non-zero (1–p)

effect for sets A, B and E than for C and D (data not shown).

Overall, there was an improvement in prediction by using SNPs.

Prediction of the trait. Our second approach to assess the

capability of our data to be used for prognosis of disease

development required individuals to be classified as either

healthy infected or affected for increasing thresholds of fitted

values. Note that the phenotype was defined as one or two for

Table 1. Summary results from the BayesB and GCTA
analyses.

Model 1 Model 2 Model 3 Model 4

BayesB

Posterior 1–p (%) 1.65 1.57 1.54 1.57

h2 0.61 0.63 0.64 0.65

GCTA

h2 (s.e.) 0.53 (0.18) 0.55 (0.18) 0.58 (0.17) 0.59 (0.17)

The estimates for the percentage of markers affecting the phenotype (1–p) and
its heritability (h2) are shown for the different statistical models: Model 1
included no covariates; Model 2 included the first two dimensions of the MDS
analysis; Model 3 included the first two dimensions of the MDS analysis plus the
lifestyle; Model 4 included an additional dimension of the MDS analysis to
Model 3.
doi:10.1371/journal.pone.0035349.t001
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healthy infected and affected, respectively, and therefore fitted

values were approximately in this range. Receiver operating

characteristic (ROC) curves were generated from sensitivity and

specificity values for different thresholds and the area under the

curve (AUC) was calculated as an indicative of the balance

between sensitivity and specificity. AUC values were notably

higher than randomness and Model 3 achieved the best

performance (Figure 1). Regardless of the model, a threshold of

1.5 to diagnose individuals would reach the highest fraction of

correct predictions (g), notably higher than the expected by chance

alone (for Model 3, g1.5 = 0.63; g95%limit = 0.55) (Figure 2).

Discussion

In this study we have explored the contribution of genetic loci in

the dog genome for determining clinical progression of disease

following Leishmania infection and how such information may be

used to predict disease course. Our first analysis was focused on

identifying individual loci in the canine genome which contributed

medium to large effects for determining disease development.

Different analyses associated CFA 4: 61–77 Mb. The strongest

association in the GWAS analysis was for markers in this region,

even when we considered confounding factors such as lifestyle and

genetic stratification, whose causes are discussed below. However,

these associations were not significant when corrected for multiple

testing (Figure S1, Table S1). The lack of genome-wide

significance at the individual SNP level may indicate that our

study was underpowered for GWAS due to the small sample size

of our study. However the size of the study was at the lower end of

the range of 100–300 cases and 100–300 controls that has been

suggested for GWAS in dogs in complex diseases [33]. The lack of

genome-wide significance may also be evidence of a complex

genetic nature for leishmaniasis. This provides justification for the

genomic selection approach which is more suited to prediction of

complex traits (e.g. [47]).

Table 2. Summary of cross-validation results after constructing five sets (labelled A–E), showing the predictive accuracy when the
set is excluded from the training set for Model 1.

Model 1

Set A B C D E A–E

Ntraining 175 175 177 176 173

Ncases 21 21 20 20 22 104

Full model

Accuracy (r) 0.02 0.09 0.41 0.49 0.07 0.18

(95% CI) (20.28, 0.32) (20.21, 0.38) (0.13, 0.64) (0.22, 0.69) (20.23, 0.35) (0.05, 0.30)

Empirical significance 0.42 0.34 ,0.01 ,0.01 0.44 ,0.01

Permuted genotypes

Accuracy (r) 20.11 20.05 20.17 20.23 20.13 20.14

(95% CI) (20.39, 0.19) (20.34, 0.25) (20.45, 0.14) (20.49, 0.08) (20.41, 0.16) (20.27, 20.01)

Empirical significance was obtained from the fraction of permutations that showed a correlation higher than in the real data.
doi:10.1371/journal.pone.0035349.t002

Table 3. Summary of cross-validation results after constructing five sets (labelled A–E), showing the predictive accuracy when the
set is excluded from the training set for Model 2.

Model 2

Set A B C D E A–E

Ntraining 175 175 177 176 173

Ncases 21 21 20 20 22 104

Full model

Accuracy (r) 0.05 0.05 0.41 0.53 0.12 0.20

(95% CI) (20.26, 0.34) (20.25, 0.34) (0.12, 0.64) (0.27, 0.71) (20.18, 0.39) (0.07, 0.32)

Empirical significance 0.37 0.27 0.02 0.03 0.34 0.04

Permuted genotypes

Accuracy (r) 20.03 20.09 0.09 0.11 0.07 0.02

(95% CI) (20.32, 0.27) (20.38, 0.21) (20.22, 0.38) (20.20, 0.40) (20.23, 0.35) (20.11, 0.15)

Covariates alone

Accuracy (r) 0.003 20.06 0.23 0.43 0.17 0.11

(95% CI) (20.29, 0.30) (20.35, 0.24) (20.08, 0.50) (0.15, 0.65) (20.13, 0.43) (20.02, 0.24)

Empirical significance was obtained from the fraction of permutations that showed a correlation higher than in the real data.
doi:10.1371/journal.pone.0035349.t003
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Interestingly, when we tested for association focusing only on

SNPs residing within candidate loci related to host response to

Leishmania and susceptibility to leishmaniasis in humans and mice

[50,55,56], loci on chromosome 4: 61–77 Mb were significant

after correcting for multiple testing and linkage disequilibrium

(Dataset S1 and Figure S3).

In addition, from the BayesB analysis, markers in this region of

CFA 4 had a larger estimated effect on the phenotype than other

genome-wide markers (Figure S4). Chromosome 4: 61–77 Mb is

syntenic to a locus that mediates host response to Leishmania major

in mice, which includes the candidate genes Il7r, Lifr, C6 and C7

[50]. Il7r (CFA 4: 75.8 Mb) is of special interest as, although

healthy infected and affected samples showed similar MAF and

observed heterozygosity values along CFA 4: 61–77 Mb, in both

groups three SNPs (CFA 4: 75.7–75.9 Mb) flanking Il7r

significantly deviated from HWE (p-value,1025) (data not

shown). Extended patterns of markers deviating from HWE may

indicate copy number variants. Variation in the number of copies

between affected and healthy infected cannot be detected through

differences in genotype frequencies though it might affect the

phenotype. In fact, structural variations have been described for

the syntenic region in the human genome [57,55,58], which

encompasses SPEF2, CAPSL, UGT3A1 and UGT3A2 in addition to

Table 4. Summary of cross-validation results after constructing five sets (labelled A–E), showing the predictive accuracy when the
set is excluded from the training set for Model 3.

Model 3

Set A B C D E A–E

Ntraining 175 175 177 176 173

Ncases 21 21 20 20 22 104

Full model

Accuracy (r) 0.10 0.14 0.46 0.56 0.23 0.29

(95% CI) (20.20, 0.38) (20.16, 0.42) (0.18, 0.67) (0.32, 0.74) (20.06, 0.49) (0.16, 0.41)

Empirical significance 0.48 0.24 0.02 0.01 0.46 0.03

Permuted genotypes

Accuracy (r) 0.09 20.01 0.28 0.29 0.26 0.15

(95% CI) (20.22, 0.37) (20.31, 0.29) (20.03, 0.54) (20.01, 0.54) (20.03, 0.51) (0.02, 0.28)

Covariates alone

Accuracy (r) 0.11 0.03 0.35 0.43 0.34 0.22

(95% CI) (20.19, 0.40) (20.27, 0.32) (0.05, 0.59) (0.15, 0.65) (0.05, 0.57) (0.09, 0.35)

Empirical significance was obtained from the fraction of permutations that showed a correlation higher than in the real data.
doi:10.1371/journal.pone.0035349.t004

Figure 1. Receiver Operating Characteristic (ROC) curves.
Sensitivity and specificity values were obtained for increasing classifi-
cation thresholds to produce the ROC curves. In the legend, the values
for the area under the ROC curve (AUC) are indicated in parenthesis for
each model. AUC can range between 0.5 (randomness, dashed line) and
1.0 (ideally).
doi:10.1371/journal.pone.0035349.g001

Figure 2. Fraction of correct predictions. For increasing classifica-
tion thresholds percentages of correct classifications were compared to
those expected by chance. Calculations for the random expectation and
the random 95% limit were drawn from a hypergeometric distribution
and are detailed in Text S1.
doi:10.1371/journal.pone.0035349.g002
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IL7R. In mice, structural variation has also been reported for a

shorter region overlapping Ugt3a1 [59]. However, replication in an

independent sample is needed to confirm the association on

chromosome 4, as well as those on chromosomes 1 and 20, and the

identification of these regions only represents a first discovery step

for a better understanding of the genetic variants that control

genetic susceptibility to clinical progression of leishmaniasis from

Leishmania infection.

Next, we studied the extent to which the additive effects of loci

throughout the genome determine the disease development

following Leishmania infection. Our data suggest that the trait is

complex with many different gene segments contributing to the

phenotype and that the genetic variance may explain as much as

60% of the total observed phenotypic variance. Whilst this

estimate was fairly consistent across the different methodologies

used for its estimation (Table 1), the estimation is made more

complex and very likely to be biased upward, by the case-control

nature of the data. This is the first clear evidence that there is a

significant genetic component to leishmaniasis in dogs within

breeds. In addition, it is the first heritability estimate for

progression of clinical leishmaniasis from Leishmania infection in

any species, although an estimate of heritability for a marker of

healed Leishmania infection and protection against subsequent

reinfection in humans has been reported [19].

An important finding of this study was that whilst no single SNP

was found to be reliably predictive, there was significant predictive

value of the genomic data through using the genomic evaluation as

proposed by Meuwissen et al. [47]. The best predictor included

information on lifestyle as well as the genomic predictor, but it was

clearly established that the genomics made a substantial

contribution to the accuracy. The model including the covariates

and the genomic data reached an accuracy of 0.29 for a dog that

was outside the current dataset (e.g. a newborn dog), and thus is

only weakly predictive of the phenotype. However three points

should be remembered. Firstly this accuracy was achieved using

80% of the data (the other 20% were used for cross-validation),

and that the total data consisted of only 219 infected animals, of

which only 104 had developed the disease. Secondly, this accuracy

is the prediction of a phenotype and not the underlying genetic

liability, and the accuracy of predicting the genetic liability is likely

to be greater. In random sample with continuous traits the

accuracy would be scaled by 1/h (.1) where h is the square root

of the heritability. The structure of the data prevents us from

proposing any correction. Thirdly the value of using genomics is

that the genomic data can be accumulated over time with

increasing accuracy of prediction. One might anticipate that

further collection of cases and controls would increase accuracy to

levels that have the potential for making a clinical impact on

breeding for resistance away from the development of pathology,

i.e. toleration of the parasite.

Finally, we would like to comment on the possible causes of the

genetic stratification seen in our dataset, which especially affected

the GWAS results and could only be reduced to l= 1.17, and to

compare with other GWAS in dogs. Roughly half of the dozen

published GWAS in dogs provided information with regard to

stratification. Three studies [37,45,43] observed good clustering of

cases and controls when plotting the first two MDS dimensions, in

spite of different geographical origin of the samples in the study

from Madsen et al.. Barber et al. [42] also used MDS in order to

detect stratification and excluded a good number of outlier

samples. Wilbe et al. [34] and Downs et al. [60] reported inflation

factor values, before correction, of 1.3 and 1.4, respectively. Both

studies observed clustering of either samples with similar

geographic provenance [34] or known to be related [60] and

performed a Cochran-Mantel-Haenszel stratified analysis within

the clusters as a measure of correction. However, no value of the

inflation factor after the correction was presented. Only Olsson

and collegues reported an inflation factor of 1.2 after removing

two outliers in the MDS plot [35]. We consider that it is unlikely

that our lambda value was inflated due to population stratification

because we neither observed geographical clustering of samples

within Spain (the majority of the samples were collected from

different areas in the country) nor differentiation of samples

collected in other countries (i.e. Italy, Greece and Portugal). It is

reasonable to think that geographical stratification would have

been noticed if present, as it has happened with some other canine

GWAS. Although population or geographical stratification is a

common cause of increased inflation factor, there are other

confounder effects that can produce the same results [61]. We

tried to avoid differential bias by following the same procedures in

the collection of samples and clustering of samples that went

through different DNA extraction protocols or genotyping batches

was ruled out. Although we tried to avoid family structure by not

including members of the same family, cryptic relatedness might

have certainly inflated the lambda value. Nonetheless, we note that

lambda values .1.05 are typically considered to denote

stratification in human studies [61]. Although this is a statistical

rule-of-thumb and it should be the same regardless of the species,

we wonder if certain relatedness owing to founder effects,

inbreeding, popular sire effects and repeated mating might be

inherent to GWAS in dogs in spite of a careful study design.

Materials and Methods

Ethics statement
The dogs in the study were examined during routinary

veterinary procedures by the veterinary clinics participating in

the study. All samples were collected for routine diagnostic and

clinical purposes. The samples were obtained during veterinary

procedures that would have been carried out anyway and DNA

was extracted from residual surplus of samples and used in the

study with verbal owner consent. This is a very special situation in

veterinary medicine. As the data are from client-owned dogs that

underwent normal veterinary exams, there was no ‘‘animal

experiment’’ according to the legal definitions in Spain and the

United Kingdom, and approval by an ethical committee was not

necessary.

Study population and epidemiology
The study population consisted of a single breed of dogs (Boxer).

This design was chosen as the use of a single breed for the first

stage of GWAS in dogs will increase power by reducing effects of

genetic differentiation between breeds and increasing the degree of

linkage disequilibrium [33]. Moreover, this breed appears more

predisposed to overt CanL than others [23,62,63] . An age

criterion for study inclusion was applied (see below) as it has been

reported that age distribution of the prevalence of infection follows

a bimodal pattern, with the first peak including dogs diagnosed at

2 to 4 years of age and the second peak including dogs about 7

years old [64]. The study was carried out in collaboration with the

Hospital Clı́nic Veterinari of the Universitat Autònoma de

Barcelona (HCV-UAB) and therefore most Boxers included were

from the metropolitan area of Barcelona, Spain, where the HCV-

UAB is located. A number of Boxers from other areas where the

disease is endemic were also included (Spain, Greece, Italy and

Portugal).
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Veterinary clinics recruitment and samples collection
Veterinary clinics and dog owners were encouraged to

participate in the study, in the case of the latter through their

veterinary centre. Two millilitres of EDTA peripheral blood and

2 ml of serum were required. In addition, other tissues (e.g. bone

marrow) as well as conjunctiva or lesion swabs were received

occasionally. With regard to CanL, no pre-screening of the

samples sent to the laboratory was done by the veterinary clinics.

Dogs affected by CanL included those with a documented history

of disease, undergoing a relapse or newly diagnosed. For those

showing a disease episode when samples were collected, additional

samples were requested one month after treatment or if requested

by the referring clinician in order to both confirm the diagnosis

and help inform then clinician on treatment response. For healthy

infected dogs (see below), additional samples and medical

information were requested to confirm the absence of CanL

development. Inclusion of additional samples relied on the

collaboration of veterinary clinics.

Phenotype definition, clinical classification and
laboratory tests

Dogs were classified by clinical signs, clinical biochemistry,

direct parasite detection and anti-Leishmania immune reactions into

the following groups: (i) healthy infected: healthy and .4 years old

but with evidence of prior infection and (ii) affected: manifest

clinical disease and diagnosed before the age of 4 years. Ages were

recorded as age-of-onset of disease for affected and current age at

sample collection for healthy infected dogs. Lifestyle (i.e. living

indoors, outdoors, both or undetermined), gender, level of

relatedness and geographic location of origin were also collected.

Leishmania quantitative polymerase chain reaction (qPCR) and

anti-Leishmania Enzyme-Linked ImmunoSorbent Assay (ELISA)

were performed on all samples from all dogs, although additional

results from direct parasite detection and anti-Leishmania immune

tests were provided by veterinary clinics for most samples.

Leishmania qPCR was performed at the Servei Veterinari de

Genètica Molecular, UAB, as described previously [62] and

ELISA was performed at UNIVET Servicio de Diagnóstico

Veterinario SL, UAB, as described elsewhere [63].

DNA extraction, SNP genotyping and data quality control
DNA was extracted from peripheral blood and bone marrow

samples using either QIAampH DNA Blood Mini Kit (QIAGEN)

or by conventional phenol-chloroform DNA extraction and

deproteinization methods. All samples were genotyped using the

Illumina CanineHD BeadChip (174,376 markers) [65] at the

Centre National de Génotypage, France. Data cleaning was

conducted using PLINK [48] and R version 2.13.0 [66] packages.

Quality control was performed independently on two genotyping

batches. In total eight samples with call rate ,90% were excluded.

Intensity probes were excluded together with markers on the

boundary autosomal region on the CFA X and SNPs on the non-

pseudoautosomal region on CFA X for which heterozygous

genotypes in male samples were observed. Markers with call rate

,90% were also excluded. Multidimensional scaling (MDS)

analysis based on the genotypes was performed to detect samples

with a very different genetic content (explained below). Three

affected dogs were excluded because they appeared as outliers

when the first two dimensions from the MDS analysis were plot

(data not shown). After data cleaning 115 healthy infected and 104

affected dogs remained. In addition, markers were filtered to have

a minor allele frequency (MAF) .1.5% and a Hardy-Weinberg

Equilibrium (HWE) test p-value.0.005 (a threshold set based on

the empirical distribution of our data). This left 126,607 markers

for analysis. Finally, for logistic regression and BayesB analyses,

one SNP of a pair was removed for those SNP pairs showing

complete genotypic correlation, resulting in 99,997 SNPs left for

analysis.

Statistical analysis
Covariates. Two confounding effects were considered and

fitted into the statistical analyses: genetic stratification and dog

lifestyle. Using PLINK [48], an identical-by-state correlation

matrix for n individuals was calculated from which n dimensions

were extracted using MDS analysis, resulting in a matrix of n-

samples by n-dimensions eigenvalues. The fraction of genetic

variance explained by each dimension was calculated as the

variance for a given dimension along all samples divided by the

sum of variances for all the dimensions extracted. The eigenvalues

for the first two dimensions (C1 and C2) of the MDS analysis were

used as continuous covariates. For simplicity, only C1 and C2

were used because the fraction of additional genetic variance

explained by each of the subsequent 217 MDS dimensions

extracted was minimal (Figure S2). Although healthy infected

and affected samples generally clustered together in the MDS plot

(Figure S2), genetic stratification was observed in our cleaned

dataset based on the genomic inflation factor (l= 1.29), with C1

capturing twice the stratification captured by C2. Therefore, C1

and C2 values for each sample were fitted as continuous covariates

in the indicated models. CanL is known to be a complex disease

with an environmental component and thus dogs living outdoors,

more exposed to infection, are believed to more frequently develop

the disease. Hence, lifestyle was also included as a factor in the

analyses for the models indicated. For Model 3, the inflation factor

was reduced to l= 1.17. In the logistic regression, lifestyle was

fitted as a factor (one degree of freedom) using dummy variables

for indoors, indoors/outdoors, outdoors and ‘undetermined’. In

the genomic selection analyses, lifestyle was considered as a

categorical covariate with four levels. Three genetic models

varying in whether covariates were fitted were defined to explain

the phenotype (y), treated as binary (i.e. either healthy infected or

affected):

Model 1: y,SNPs

Model 2: y,SNPs+C1+C2

Model 3: y,SNPs+C1+C2+lifestyle

GWAS and candidate genes analysis
Markers were tested for association using the Cochran-

Armitage for trend test (Model 1) and logistic regression (Models

2 and 3). Genome-wide significance (Pgenome) was obtained after

10,000 permutations. Based on the permutations carried out in

our dataset, the uncorrected p-value that would reach genome-

wide significance (at the 5% level) after correction for multiple

testing in our study would be p = 2.0861026. Formally, first, for

each permutation the maximum statistic across all SNPs was

recorded and, second, from this distribution of maximum statistics,

the statistic in the top 5% is used to give the p = 2.0861026 that

would be significant after permutations.

Candidate loci reported as related to host response to Leishmania

and susceptibility to leishmaniasis in Mus musculus and Homo sapiens

[56,67] were used to retrieve homologous loci in C. familiaris using

Biomart [68] with CanFam 2.0. Sets were defined with SNPs in

the Illumina’s CanineHD Beadchip residing within the retrieved

candidate loci and their flanking regions (61 Mb). Loci for which

at least one SNP overlapped were merged into the same set

(Dataset 1). Set-based association tests were performed as

described in PLINK [53] with two different sets of parameters:
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(1) r2 = 0.80, p-value = 0.05; and (2) r2 = 0.10, p-value = 0.01. In

both cases, a maximum set size of 10 SNPs (,10% of the median

set size) was used. The Cochran-Armitage for trend test was used

and 10,000 within-set permutations were conducted to obtain

empirical set-based p-values (EMP1).

Modified BayesB method. Datasets were analysed with the

BayesB method [47] with some modifications previously published

[53] assuming Models 1–3. The phenotype was treated as

continuous. A flat prior distribution for the proportion of markers

with non-zero additive effect (1–p) was set to follow a beta

distribution with parameters a= 1 and b= 1 and a starting value of

0.2. An informative distribution for the variance for the additive

parameter was set to follow an inverse chi-squared distribution with

two degrees of freedom (n = 2) and a scale parameter (S) of 0.001

(weak prior). The Markov chain Monte Carlo (MCMC) of BayesB

was run for 160,000 cycles and the first 10,000 cycles were discarded

as burn in; 3,000 realisations of sampling were performed with 50

cycles between realisations. Absolute variation between each of the

3,000 sampled values of posterior S and their prior S (either

S = 0.001 or S = 0.1) was calculated and a Welch two sample t-test

was applied. The same test was applied to the sampled values of (1–

p) produced by each of weak and stronger S priors. BayesB

produced estimates of the genomic breeding values (GEBV) and of

the effects of C1, C2 and each lifestyle category, which were used to

calculate fitted values of the phenotype (ŷ) according to the different

predictive models (Text S1).

In order to assess the effect of the weak informative prior

distribution used for the variance of the additive parameter on the

resulting posterior value, for Model 1 the analysis was repeated

with S = 0.1 (strong prior), which was 100 times higher than the

value used otherwise. In absolute values, the posterior S value

changed a 58.7% respect to the weak prior (S = 0.001) whereas this

variation was significantly greater, 78.9%, for S = 0.1 (p-

value = 761026). Another effect of giving a stronger prior S was

that the posterior proportion of markers with a non-zero effect (1–

p) was 100 times lower compared to the obtained for the weak

prior (0.02% and 1.65%, respectively, p-value = 2610216) and the

fraction of genetic variance was also lower (0.27 and 0.61,

respectively). Moreover, the genome-wide pattern of estimated

SNP effects was notably different depending on the prior given.

With a weak prior most markers had non-zero but very low

estimated effect (10%-quantile = 1025) whereas a small fraction of

SNPs (10%-quantile = 0) had 10-fold estimated effects with a

stronger prior. Altogether these results can be explained by a

scenario in which fewer SNPs with greater effect contribute to the

phenotype when a greater prior variance of the additive parameter

is allowed.

Restricted Maximum Likelihood (REML) analysis (GCTA

software). When calculating the genetic relationship matrix

(GRM) with GCTA [54], no adjustment was specified to correct

for imperfect LD between genotyped markers and causal loci.

REML analyses were run assuming Models 1–3. As input

parameters, genetic and environmental variances were not

specified and default values of 0.12 for both were used. Model 3

was run with varying phenotype prevalence values from 0.01 to

0.60 in order to explore the sensitivity of estimates to prevalence.

Cross-validation. Samples were assigned randomly to one of

five training sets (denoted A–E) so that (i) each training set had a

size of approximately 4/5 of the full unpermuted dataset and (ii) in

each training set the proportions of samples belonging to each

phenotype (either affected or healthy infected) and lifestyle

categories were approximately as in the full dataset. Samples not

included in each training set were used as testing data. For each

training set, BayesB was run to both estimate EC1, EC2, Elife from

samples in the training set and produce GEBV for the testing data

samples and then calculate their fitted values, according to the

corresponding predictive model.

Accuracy (r) was calculated as the correlation between fitted

values (ŷ) and true phenotypes (y). In each testing set, r was

calculated as a measure of accuracy to predict the phenotype. The

overall correlation for the full unpermuted dataset was calculated

by combining the predictions across sets. The contribution of

markers to the accuracy was analysed in three ways. First, GEBV

generated with BayesB were permuted before the calculation of

fitted values. In this way, the correspondence between phenotypes

and covariates was not altered. Within each model, 100 sets of

permuted GEBV, resulting in 100 sets of permuted fitted values,

were generated for each set. The empirical p-value for the real

data was computed as the fraction of permuted sets with a lower p-

value that the real data. Second, genotypes were randomized

respective to phenotypes and covariates, which were kept as in the

original data. The BayesB analysis was then run and cross-

validation applied as explained before. Third, fitted values were

calculated using uniquely covariates, i.e. GEBV were not used.

For Models 1–3, receiver operating characteristic (ROC) curves

were calculated as follows. A fitted value threshold was set so that

below or above it individuals were predicted to be healthy infected

or affected, respectively. Specificity, sensitivity and fraction of

correct predictions (g) values were calculated (Text S1) for

increasing thresholds of fitted values and ROC curves were

generated by plotting specificity against sensitivity. The area under

the ROC curve (AUC) was calculated as a measure of similarity

between specificity and sensitivity.

Supporting Information

Figure S1 Single-marker genome-wide association plot
for Model 1 after 10,000 permutations with the strongest
associations indicated.
(TIFF)

Figure S2 Genetic stratification. (A) relative genetic vari-

ance explained by the 219 MDS dimensions extracted; (B) MDS

plot for the first two MDS dimensions (C1 and C2) with healthy

infected and affected samples coloured differently. The percentage

of relative genetic variance explained by each dimension is

indicated as well as the genomic inflation factor (lambda).

(TIFF)

Figure S3 Distribution of EMP1 across SNP sets of
candidate regions. Sets comprise SNPs in the following regions:

6 (CFA 4:61.2–63.2 Mb), 7 (CFA 4: 70.5–74.5 Mb), 8 (CFA 4:

74.8–76.9 Mb), 19 (CFA 9: 40.0–46.5 Mb) and 22 (CFA 10: 29.6–

31.5 Mb).

(TIFF)

Figure S4 Genome-wide plot of the absolute mean SNP
effects estimated with BayesB for Model 1 (A), Model 2
(B) and Model 3 (C). The peak on CFA 4: 61–77 Mb (red

segment) consistent across Models 1–3 coincided with both the

strongest association in GWAS analysis and the region in which

SNP sets covering candidate genes were significant (EMP1,0.01).

(TIFF)

Table S1 Strongest associations from each region
identified in the GWAS analysis. BICF2P1345879 was not

used in models 2 and 3 because, for logistic regression, SNPs were

pruned based on LD (see Materials and Methods).The closest

marker, ,6 Kb upstream, was BICF2P813758 at 20:30,126,

633 bp (Model 2: Praw = 4.461024, Pgenome.0.50, OR = 0.33;

Model 3: Praw = 6.261024, Pgenome.0.50, OR = 0.34). Choice of
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SNPs representing each genomic region was based on the

strongest associations in Model 1. Canis familiaris genes (Can-

Fam_2.0) were retrieved using Biomart and associated gene names

are given, with the exception of some for which no gene name was

available and the Ensembl ID is given instead. The same

information is presented for the strongest associations on

chromosomes 9 and 10 from the set-based analysis.

(XLS)

Table S2 Genomic inflation (l) was not affected by
fitting additional MDS dimensions as covariates of the
model.
(DOC)

Table S3 Sensitivity of heritability (h2) estimation using
GCTA to prevalence of the phenotype is shown for Model
3.
(DOC)

Text S1 Fitted values, fraction of correct predictions,
sensitivity and specificity calculation.
(DOC)

Dataset S1 Candidate genes analysis: (A) candidate
genes and loci described in H. sapiens and M. musculus
and retrieved genomic positions in C. familiaris; (B) sets
of non-overlapping candidate regions plus their ±1 Mb-
flanking regions; (C) results from the set-based associ-
ation study.

(XLS)
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