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Abstract
Background: The construction of literature-based networks of gene-gene interactions is one of
the most important applications of text mining in bioinformatics. Extracting potential gene
relationships from the biomedical literature may be helpful in building biological hypotheses that
can be explored further experimentally. Recently, latent semantic indexing based on the singular
value decomposition (LSI/SVD) has been applied to gene retrieval. However, the determination of
the number of factors k used in the reduced rank matrix is still an open problem.

Results: In this paper, we introduce a way to incorporate a priori knowledge of gene relationships
into LSI/SVD to determine the number of factors. We also explore the utility of the non-negative
matrix factorization (NMF) to extract unrecognized gene relationships from the biomedical
literature by taking advantage of known gene relationships. A gene retrieval method based on NMF
(GR/NMF) showed comparable performance with LSI/SVD.

Conclusion: Using known gene relationships of a given gene, we can determine the number of
factors used in the reduced rank matrix and retrieve unrecognized genes related with the given
gene by LSI/SVD or GR/NMF.

Background
Latent semantic indexing based on the singular value
decomposition (LSI/SVD) [1,2] uses the truncated singu-
lar value decomposition as a low-rank approximation of a
term-by-document matrix. Recently, LSI/SVD has been
applied to gene clustering so as to retrieve genes directly
and indirectly associated with the Reelin signaling path-
way [3]. This approach may provide us with a powerful
tool for the functional relationship analysis of discovery-
based genomic experiments. However, this work did not
utilize a priori knowledge of gene-gene relationships that

are generally available. Moreover, the determination of
the number of factors k used in the reduced rank matrix is
still an open problem even though it is an important
parameter that determines a concept space in which gene-
documents are projected. In this paper, we suggest a
method to estimate the reduced rank k in LSI/SVD by tak-
ing advantage of known gene relationships. In addition,
we propose a gene retrieval method based on the non-
negative matrix factorization (GR/NMF), which is a new
framework for extracting unrecognized gene relationships
from the biomedical literature.
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Given a non-negative matrix A of size m × n and a desired
reduced dimension k < min{m, n}, NMF finds two non-
negative matrices W ∈ �m×k and H ∈ �k×n so that A ≈ WH.
A solution to the NMF problem can be obtained by solv-
ing the following optimization problem:

where W ∈ �m×k is a basis matrix, H ∈ �k×n is a coefficient
matrix, ||·||F is the Frobenius norm, and W, H ≥ 0 means
that all elements of W and H are non-negative. Due to k
<m, dimension reduction is achieved and the lower-
dimensional representation is given by H. The NMF gives
a direct interpretation due to non-subtractive combina-
tions of non-negative basis vectors. In addition, some
practical problems require non-negative basis vectors. For
example, pixels in digital images, term frequencies in text
mining, and chemical concentrations in bioinformatics
are typically non-negative [4]. The NMF has been success-
fully applied to many problems including text data min-
ing [5,6] and gene expression data analysis [7,8]. Non-
negative dimension reduction is desirable for handling
the massive quantity of high-dimensional data that
require non-negative constraints. The determination of
the reduced dimension k and the initialization of W and
H are open problems. Some NMF algorithms [5,9,10]
require that both W and H be initialized, while NMF
based alternating non-negativity-constrained least squares
that we describe in this paper only requires the initializa-
tion of H. We initialized a part of the matrix H by incor-
porating a known cluster structure and determined the
reduced dimension k that can capture well the known
gene relationships.

Results and discussion
For evaluation of our methods, we study two biological
pathways: (1) Reelin signaling pathway and (2) Alzhe-
imer's disease pathway. We try to extract unrecognized
gene-gene relationships from the biomedical literature by
taking advantage of known gene relationships. Table 1
shows 50 genes used for our experiments.

Reelin signaling pathway
Reelin is a large extracellular protein that controls neuro-
nal positioning, formation of laminated structures
(including the cerebellum) and synapse structure in the
developing central nervous system [11,12]. Reelin binds
directly to lipoprotein receptors, the very low-density
lipoprotein receptor (VLDLR) and the apolipoprotein E
receptor-2 (ApoER2), and induces tyrosine phosphoryla-
tion of the cytoplasmic adapter protein Disabled-1
(Dab1) by fyn tyrosine kinase. APOER2 is a gene alias
name of LRP8. By using these knowledge, we chose five
genes directly associated with Reelin signaling pathway,
i.e. {RELN, DAB1, LRP8, VLDLR, FYN}.

We will examine if the following indirect gene relation-
ships can be found by using the above knowledge. Dab1
is phosphorylated on serine residues by cyclin-dependent
kinase 5 (Cdk5) [13]. The proteins encoded by CDK5R1
(p35) and CDK5R2 (p39) are neuron-specific activators
of Cdk5. They associate with Cdk5 to form an active
kinase. Apolipoprotein E (ApoE) is a small lipophilic
plasma protein and a component of lipoproteins such as
chylomicron remnants, very low density lipoprotein
(VLDL), and high density lipoprotein (HDL). The ApoER2
is involved in cellular recognition and internalization of
these lipoproteins. ApoE blocks the interaction of Reelin
with its receptors. The Src related family member fyn tyro-
sine kinase mediates the effect of Reelin on Dab1 [14,15].
MAPT encodes the microtubule-associated protein tau.
Cdk5 is one of the major kinases that phosphorylates tau
[16]. MAPT gene mutations have been associated with
several neurodegenerative disorders such as Alzheimer's
disease, Pick's disease, frontotemporal dementia, cortico-
basal degeneration and progressive supranuclear palsy.
The six genes indirectly associated with the Reelin signal-
ing pathway are CDK5, CDK5R1, CDK5R2, APOE, SRC,
and MAPT.

Alzheimer's disease pathway
We obtained the Alzheimer's disease pathway data from
the KEGG pathway database [17]. From this pathway, we
can obtain an overview of the general picture of the Alzhe-
imer's disease pathway. Amyloid beta precursor protein

min ( , ) , . . , ,
,W H Ff W H A WH s t W H≡ − ≥1

2
02
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Table 1: The genes considered in the data set. The letters 'A', 'C' and 'D' in brackets show the relation with Alzheimer's disease, 
cancer, development, respectively.

A2M(A) APBA1(A) APBB1(A) APLP1(A) APLP2(A) APOE(A)
APP(A) LRP1(A) MAPT(A) PSEN1(A) PSEN2(A) ABL1(C)
BRCA1(C) BRCA2(C) DNMT1(C) EGFR(C) ERBB2(C) ETS1 (C)
FOS (C) FYN(C) KIT(C) MYC(C) NRAS(C) SHC1(C)
SRC(C) TP53(C) TGFB1(D) ATOH1(D) CDK5(D) CDK5R1(D)
CDK5R2(D) DAB1(D) DLL1(D) GLI(D) GLI2(D) GLI3(D)
JAG1(D) LRP8(D) NOTCH1(D) PAX2(D) PAX3(D) PTCH(D)
RELN(D) ROBO1(D) SHH(D) SMO(D) VLDLR(D) WNT1(D)
WNT2(D) WNT3(D)
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(APP) encodes a cell surface receptor and transmembrane
precursor protein that is cleaved by secretases to form a
number of peptides. The pathway includes {APP, APBB1,
LRP1, APOE, A2M, PSEN1, PSEN2, MAPT} among our 50
genes. These eight genes are known genes associated with
the Alzheimer's disease pathway.

However, we cannot guarantee that the pathway contains
all information regarding the Alzheimer's disease. We will
determine whether we can find the following unrecog-
nized knowledge from the above known knowledge.
Amyloid beta precursor-like protein 1 (APLP1) affects the
endocytosis of APP and makes more APP available for α-
secretase cleavage [18]. Site-specific proteolysis of the
amyloid-beta precursor protein (APP) by BACE 1 and γ-
secretase, a central event in Alzheimer disease, releases a
large secreted extracellular fragment (called APP(S)), pep-
tides of 40–43 residues derived from extracellular and
transmembrane sequences (Abeta), and a short intracellu-
lar fragment (APP intracellular domain) that may func-
tion as a transcriptional activator in a complex with the
adaptor protein Fe65 and the nuclear protein Tip60. APP
is closely related to APP-like protein (APLP) 1 and APLP2,
and similar to APP, APLP1 and APLP2 are also cleaved by
BACE 1 [19]. Amyloid beta precursor protein-binding,
family A, member 1 (APBA1) stabilizes APP and inhibits
production of proteolytic APP fragments including the
Abeta peptide that is deposited in the brains of Alzhe-
imer's disease patients. Some of the knowledge about
genes is from the gene summary entries in the Entrez Gene
database. The three unrecognized genes associated with
the Alzheimer's disease pathway are APLP1, APLP2, and
APBA1.

Performance comparison
For performance comparison, we tested two additional
reference methods to identify unrecognized gene-gene
relationships. The first method counts the number of
shared PubMed citations cross-referenced in the Entrez
Gene IDs for each gene. For the Reelin signaling pathway,
we counted the number of PubMed co-citations between
RELN and other genes. For the Alzheimer's disease path-
way, we counted the number of PubMed co-citations
between APP and other genes. If a paper is cross-refer-
enced in two genes, the two genes are likely to have a
direct or indirect association. The larger number of co-
citations provides us with the more probable relationship
between two genes, which may be a direct or indirect asso-
ciation. Provided we already knew genes directly associ-
ated with a pathway, we can find genes indirectly
associated with the pathway. In Table 2, the number of
PubMed co-citations between RELN and DAB1 was 9.
Even though this method could not find some indirect
relationships, i.e. (RELN – APOE) and (RELN – MAPT), it
could find most of the direct and indirect relationships in
the Reelin signaling pathway. However, it found only a
known relationship (APP – PSEN1) in the Alzheimer's
disease pathway (see Table 3). It cannot suggest potential
gene relationships if they do not have co-citations.

The second method counts the frequency of gene symbol
'gene-B' in the gene-document of gene-A, and the fre-
quency of gene symbol 'gene-A' in the gene-document of
gene-B to find the relationship between gene-A and gene-
B. For example, we searched for a symbol 'DAB1' in the
RELN gene-document and a symbol 'RELN' in the DAB1
gene-document in order to find a relationship of (RELN –
DAB1). The total frequency of symbol-match for (RELN –
DAB1) was 47. Though this method could find all direct

Table 2: Genes directly and indirectly associated with the Reelin signal pathway. The cosine similarities between RELN and genes in 
the full space and the reduced dimensional space obtained from NMF are also presented. (n/a: not applicable)

Gene PubMed co-citation Symbol match Full space NMF (k = 3)

# co-citation Rank # match Rank cos θ Rank cos θ Rank

Genes directly associated with the Reelin signaling (five genes)
RELN n/a - n/a - 1.0000 1 1.0000 1
DAB1 9 1 47 1 0.7349 2 0.9964 3
LRP8 2 2 1 7 0.4955 4 0.9854 6
FYN 1 5 4 4 0.2887 9 0.9811 7
VLDLR 2 2 9 2 0.5223 3 0.9463 8

Genes indirectly associated with the Reelin signaling (six genes)
CDK5R1 1 5 0 - 0.2893 7 0.9966 2
CDK5 2 2 3 6 0.2903 6 0.9964 3
CDK5R2 1 5 0 - 0.3228 5 0.9962 5
SRC 1 5 5 3 0.2889 8 0.8433 9
MAPT 0 - 0 - 0.2147 29 0.7630 10
APOE 0 - 0 - 0.2151 28 0.6059 11
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relationships, it could not find most of the indirect rela-
tionships except (RELN – CDK5) and (RELN – SRC) in the
Reelin signaling pathway. This low recall problem is pri-
marily due to inconsistencies in gene symbol usage in the
literature. It could not find a known relationship (APP –
APOE) in the Alzheimer's disease pathway. In contrast to
these two reference methods, our gene retrieval method
based on NMF could extract most of the direct and indi-
rect gene-gene relationships by using the cosine similarity
measure in the reduced dimensional space. We ranked
genes by cosine similarity with a query gene RELN for the
Reelin signaling pathway. A higher cosine similarity indi-
cates a more probable relationship between two genes,
which may be a direct or indirect association. In the full
dimensional space, the ranks of two indirect relationships
((RELN – APOE) and (RELN – MAPT)) were 28 and 29,
which were larger than those obtained from GR/NMF.
APP was used as a query gene for the Alzheimer's disease
pathway. In the full dimensional space, the ranks of two
known relationships ((APP – APOE) and (APP – A2M))
were 13 and 18. In the reduced dimensional space
obtained from NMF, the ranks were reduced so that we
could capture the relationships. NMF (k = 3) can also be
used to visualize genes in three dimensional space when
it can retrieve most of the known relationships. Figure 1
shows gene relationships in the Reelin signaling pathway.
Figure 2 illustrates gene relationships in the Alzheimer's
disease pathway. By using different initializations of H, we
were able to focus on the specific gene relationships in the
different pathways. The proposed NMF initialization
scheme was evaluated by retrieving genes associated with
the Alzheimer's disease pathway in the reduced three-
dimensional space obtained from NMF with k = 3. After
computing the NMF with different initializations, we
obtained F-measure values when 10 genes were retrieved.

From 50 different random initializations, the NMF pro-
duced the maximal F-measure value (0.9524) only 36
times. Typically, the NMF is sensitive to random initializa-
tion since it converges only to a critical point.

On the other hand, by using the proposed initialization
scheme, the NMF achieved the maximal F-measure value
49 times. Using known biological knowledge, we were
able to improve the probability that the NMF converges to
a solution which reflects the known knowledge very well.
In addition, since the convergence criterion Eq. (6)
(below) is sometimes not tight enough for true conver-
gence, guaranteed and faster convergence by the proposed
NMF initialization scheme is required.

Tables 4 and 5 show the influence of the reduced dimen-
sion k on the LSI/SVD and GR/NMF retrieval perform-
ance. Recall, precision, and F-measures were computed
when 10 genes were retrieved. Both cases showed that
small k was enough to generate high F-measure values.
GR/NMF showed comparable performance with LSI/SVD.
By using the k-selection scheme in LSI/SVD, k = 3 was cho-
sen for the Reelin signaling pathway and the Alzheimer's
disease pathway. As for GR/NMF, we chose k = 3 for both
pathways by using the k-selection scheme and the initial-
ization strategy. Tables 4 and 5 show that LSI/SVD and
GR/NMF exhibited excellent retrieval for indirect or
unrecognized genes with k = 3.

Practical applications
The LSI/SVD and proposed GR/NMF can elucidate unrec-
ognized gene-gene interactions (i.e. edges in a gene inter-
action graph) from some known gene relationships. There
are several types of identified gene-gene interactions.
Firstly, a gene relationship identified by our methods can

Table 3: Known and unrecognized genes associated with the Alzheimer's disease pathway. The cosine similarities between APP and 
genes in the full space and the reduced dimensional space obtained from NMF are also presented. (n/a: not applicable)

Gene PubMed co-citation Symbol match Full space NMF (k = 3)

# co-citation Rank # match Rank cos θ Rank cos θ Rank

Known genes associated with the Alzheimer's disease pathway (eight genes)
APP n/a - n/a - 1.0000 1 1.0000 1
APBB1 0 - 97 1 0.4428 5 0.9989 3
PSEN1 2 1 37 5 0.5018 2 0.9989 3
PSEN2 0 - 18 6 0.4172 6 0.9978 7
LRP1 0 - 12 8 0.2674 10 0.8433 8
A2M 0 - 1 10 0.2350 18 0.7479 9
APOE 0 - 0 - 0.2480 13 0.7142 10
MAPT 0 - 1 10 0.3084 8 0.6649 11

Unrecognized genes associated with the Alzheimer's disease pathway (three genes)
APBA1 0 - 54 4 0.3468 7 1.0000 1
APLP1 0 - 95 2 0.4490 4 0.9989 3
APLP2 0 - 85 3 0.4824 3 0.9989 3
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be a completely novel direct gene-gene interaction so that
it needs to be confirmed by wet-laboratory biochemical
experiments. Secondly, it can be an indirect gene-gene
interaction implicit in a priori knowledge. For instance, if
gene-A activates gene-B and gene-B inhibits gene-C, then
gene-A and gene-C have an indirect gene-gene interaction.
However, one need to be careful since there is still a pos-
sibility that gene-A and gene-C have a direct gene-gene
interaction. Thirdly, it can be an explicitly known direct
gene-gene interaction that is available in public databases
although it was not recognized by users in advance.

Conclusion
In this paper, we have shown the utility of the SVD and
the NMF extracting unrecognized gene-gene relationships
from the biomedical literature. We have introduced a way
to incorporate a priori knowledge into LSI/SVD and NMF

in order to retrieve unrecognized documents related with
a query document. Specifically, we have established the
reduced dimension k estimation schemes for LSI/SVD and
GR/NMF, which are generally applicable to information
retrieval using the SVD and the NMF when there are some
known relationships between a query document and
other documents. The proposed GR/NMF takes advantage
of a priori knowledge of cluster structure in its initializa-
tion step. It could retrieve unrecognized genes by using
known genes associated with a biological pathway, which
showed comparable performance with LSI/SVD. Extract-
ing potential gene relationships from the biomedical liter-
ature may be helpful in building biological hypotheses
that can be explored further experimentally.

Visualization of genes associated with the Reelin signaling pathwayFigure 1
Visualization of genes associated with the Reelin signaling pathway. Three-dimensional representations of 50 genes, 
which were obtained from NMF (k = 3) using an initial matrix H built from genes directly associated with Reelin signaling path-
way. The j-th gene is located at (h1j, h2j, h3j), where H ∈ �3×50 = [hij]. (A red circle: RELN; A red circle and blue diamonds: genes 
associated with the Reelin signaling pathway; Black dots: other genes)
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Methods
Gene-document collection
In [3], a gene-document is generated by concatenating all
titles and abstracts of the PubMed IDs cross-referenced in
the human, mouse, and rat Entrez Gene IDs for each gene.
However, this concatenation may cause skewed encoding
in favor of a gene that has more PubMed IDs. In our study,
to identify unrecognized gene relationships for n genes, a
term-by-gene_document matrix A of size m × n is gener-
ated by the following scheme. A total of 50 genes were
considered in three broad categories: (1) Alzheimer's dis-
ease; (2) cancer; (3) development (see Table 1). These 50
genes are the same genes as those used in [3]. For each
Enrez Gene ID, we downloaded up to 10 of the most
recent titles and abstracts, which were available as of July,
2006. Table 6 shows Entrez Gene IDs for human, mouse,
and rat and the number of PubMed citations for each

gene. As an intermediate step, we constructed a term-by-
PudMed_document matrix Ap of size 8, 316 × 1, 273 in the
form of MATLAB sparse arrays generated by Text to Matrix
Generator (TMG) [20], where a PubMed-document is a
document generated by concatenation of a title and an
abstract for a PubMed ID. Then, from Ap, we built a term-
by-gene_document matrix A of size 8, 316 × 50, where 50
gene-documents are centroid vectors for 50 genes.

We applied common filtering techniques (e.g. removal of
common words, removal of words that are too short or
too long, etc.) for the purpose of reducing the size of the
term dictionary. Stemming was also applied. The m × np

term-by-PubMed_document matrix Ap = [ ] was pro-

vided by using a log-entropy weighting scheme [2]. The

aij

Visualization of genes associated with the Alzheimer's disease pathwayFigure 2
Visualization of genes associated with the Alzheimer's disease pathway. Three-dimensional representations of 50 
genes, which were obtained from NMF (k = 3) using an initial matrix H built from known genes associated with the Alzheimer's 
disease pathway. The j-th gene is located at (h1j, h2j, h3j), where H ∈ �3×50 = [hij]. (A red circle: APP; A red circle and blue dia-
monds: genes associated with the Alzheimer's disease pathway; Black dots: other genes)
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elements of Ap are often assigned two-part values  = lij *

gi, where lij is the local weight for the i-th term in the j-th

PubMed-document, and gi is the global weight for the i-th

term. The local weight lij and the global weight gi can be

computed as

lij = log2(1 + fij),

where fij is the frequency of the i-th term in the j-th
PubMed-document, pij is the probability of the i-th term
occurring in the j-th PubMed-document, and np is the
number of PubMed-documents in the collection.

A gene-document vector ai (the i-th column of A) can be
easily compared with another gene-document vectors aj (1
≤ j ≤ n) in the full dimensional space. The similarity scores
between two gene-documents (ai and aj) can be computed
as

Gene-document vectors having the higher cosine values
are deemed more relevant to each other. In this gene
retrieval method, a query gene vector is one of column
vectors of A. This method tries to retrieve genes relevant to
the given query gene. In order to compare gene retrieval
methods quantitatively, we used the following perform-
ance measures. We defined the relevant genes, which
include the query gene itself as well as genes related with
the query gene. The recall and precision are defined as

The weighted harmonic mean of precision and recall, the
traditional F-measure is defined as

Reduced rank estimation for gene retrieval via LSI/SVD
LSI is based on the assumption that there is some under-
lying latent semantic structure in the term-by-
gene_document matrix that is corrupted by the wide vari-
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Table 5: Influence of the reduced dimension k on gene retrieval 
of the Alzheimer's disease pathway. Recall, precision, and F-
measure were computed when 10 genes were retrieved.

k Recall Precision F-measure

LSI/SVD 2 0.5455 0.6000 0.5714
3* 0.9091 1.0000 0.9524
4 0.9091 1.0000 0.9524
5 0.8182 0.9000 0.8571
6 0.8182 0.9000 0.8571
10 0.7273 0.8000 0.7619
20 0.8182 0.9000 0.8571
30 0.8182 0.9000 0.8571
40 0.8182 0.9000 0.8571
50 0.8182 0.9000 0.8571

GR/NMF 2 0.4545 0.5000 0.4762
3* 0.9091 1.0000 0.9524
4 0.9091 1.0000 0.9524
5 0.9091 1.0000 0.9524
6 0.8182 0.9000 0.8571
10 0.8182 0.9000 0.8571
20 0.7273 0.8000 0.7619

*The reduced dimension k obtained from the k-selection scheme 
using only known genes associated with this pathway.

Table 4: Influence of the reduced dimension k on gene retrieval 
of the Reelin signal pathway. Recall, precision, and F-measure 
were computed when 10 genes were retrieved.

k Recall Precision F-measure

LSI/SVD 2 0.5455 0.6000 0.5714
3* 0.9091 1.0000 0.9524
4 0.7273 0.8000 0.7619
5 0.6364 0.7000 0.6667
6 0.6364 0.7000 0.6667
10 0.6364 0.7000 0.6667
20 0.5455 0.6000 0.5714
30 0.8182 0.9000 0.8571
40 0.7273 0.8000 0.7619
50 0.8182 0.9000 0.8571

GR/NMF 2 0.4545 0.5000 0.4762
3* 0.9091 1.0000 0.9524
4 0.9091 1.0000 0.9524
5 0.6364 0.7000 0.6667
6 0.6364 0.7000 0.6667
10 0.5455 0.6000 0.5714
20 0.7273 0.8000 0.7619

*The reduced dimension k obtained from the k-selection scheme 
using only genes directly associated with this pathway.
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ety of words used in gene-documents. This is referred to as
the problem of polysemy and synonymy. The basic idea is
that if two gene-documents represent the same topic, they
will share many associating words, and they will have very
close semantic structures after dimension reduction via
the SVD. In LSI/SVD, if the matrix A has its SVD,

A = UΣV,

then its rank k approximation for some k < rank(A),

A = UkΣk

is considered, where the columns of Uk are the leading k

left singular vectors, Σk is a k × k diagonal matrix with the

k largest singular values in nonincreasing order along its
diagonal, and the columns of Vk are the leading k right sin-

gular vectors. Then, Sk  is the reduced dimensional rep-

resentation of A, or equivalently, a gene-document vector

a ∈ �m×1 can be represented in the k-dimensional space as

 = a. Then, the similarity scores between two gene-

documents ( i and j) in the k-dimensional space can be

computed as

Gene-documents having the higher cosine values in the
reduced k-dimensional space are deemed more relevant to
each other.

Here, we suggest a method to estimate the reduced rank k
in LSI/SVD in order to retrieve unrecognized genes related
with a query gene. If we can capture known gene-gene
relationships in the reduced dimensional space obtained
from LSI/SVD, we expect that the low-rank representa-
tions of gene-document vectors would be reliable to
extract other gene relationships as well. This reduced rank

k estimation scheme computes the following recall ( ),

precision ( ), and -measure only from known genes

relevant to the given query gene:

for various k values. It chooses the smallest k that shows

the highest -measure value in order to retrieve unrecog-
nized genes related to the given query gene.

Gene retrieval via NMF (GR/NMF)
In this section, we describe a gene retrieval method based
on the NMF (GR/NMF) including the initialization of H
and the reduced dimension k selection scheme.

NMF based on alternating non-negativity-constrained least squares 
(NMF/ANLS)
Given a non-negative matrix A ∈ �m×n, the NMF based on
alternating non-negativity-constrained least squares
(NMF/ANLS) starts with the initialization of H ∈ �k×n

with non-negative values. Then, it iterates the following
ANLS until convergence:

which fixes H and solves the optimization with respect to
W, and

which fixes W and solves the optimization with respect to
H. Paatero and Tapper [21] originally proposed using a
constrained alternating least squares algorithm to solve
Eq. (1). Lin [22] discussed the convergence property of
alternating non-negativity-constrained least squares and
showed that any limit point of the sequence (W, H) gen-
erated by alternating non-negativity-constrained least
squares is a stationary point of Eq. (1). After convergence,
the columns of the basis matrix W are normalized to unit
L2-norm and the rows of H are adjusted so that the
approximation error is not changed. Here, we adopt a fast
algorithm for large scale non-negativity-constrained least
squares (NLS) problems [23] to solve Eqs. (4–5). Bro and
de Jong [24] made a substantial speed improvement to
Lawson and Hanson's algorithm [25] for large scale NLS
problems. Van Benthem and Keenan [23] devised an algo-
rithm that further improves the performance of NLS. This
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Table 6: The number of PubMed citations associated with Entrez Gene IDs for each gene

Entrez Gene ID The number of PubMed citations

Symbol Gene description Human Mouse Rat Human Mouse Rat Total

A2M alpha-2-macroglobulin 2 232345 24153 10 10 10 30
ABL1 v-abl Abelson murine leukemia viral oncogene homolog 1 25 11350 311860 10 10 4 24
APBA1 amyloid beta precursor protein-binding, family A, member 1 320 108119 83589 10 2 6 18
APBB1 amyloid beta precursor protein-binding, family B, member 1 322 11785 29722 10 10 7 27
APLP1 amyloid beta precursor-like protein 1 333 11803 29572 10 10 2 22
APLP2 amyloid beta precursor-like protein 2 334 11804 25382 10 10 5 25
APOE apolipoprotein E 348 11816 25728 10 10 8 28
APP amyloid beta precursor protein 351 11820 54226 10 10 10 30
ATOH1 atonal homolog 1 (Drosophila) 474 11921 - 6 10 - 16
BRCA1 breast cancer 1, early onset 672 12189 24227 10 10 6 26
BRCA2 breast cancer 2, early onset 675 - 25082 10 - 3 13
CDK5 cyclin-dependent kinase 5 1020 12568 140908 10 10 10 30
CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35) 8851 12569 116671 10 10 10 30
CDK5R2 cyclin-dependent kinase 5, regulatory subunit 2 (p39) 8941 12570 - 10 10 - 20
DAB1 disabled homolog 1 (Drosophila) 1600 13131 266729 10 10 4 24
DLL1 delta-like 1 (Drosophila) 28514 13388 84010 10 10 2 22
DNMT1 DNA (cytosine-5-)-methyltransferase 1 1786 13433 84350 10 10 3 23
EGFR epidermal growth factor receptor 1956 13649 24329 10 10 10 30
ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 2064 13866 24337 10 10 10 30
ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 2113 23871 24356 10 10 10 30
FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 2353 14281 24371 10 10 10 30
FYN FYN oncogene related to SRC, FGR, YES 2534 14360 25150 10 10 10 30
GLI glioma-associated oncogene homolog 1 2735 14632 140589 10 10 1 21
GLI2 GLI-Kruppel family member GLI2 2736 14633 - 10 10 - 20
GLI3 GLI-Kruppel family member GLI3 2737 14634 140588 10 10 1 21
JAG1 jagged 1 (Alagille syndrome) 182 16449 29146 10 10 5 25
KIT feline sarcoma viral oncogene homolog 3815 16590 64030 10 10 8 28
LRP1 low density lipoprotein-related protein 1 4035 16971 - 10 10 - 20
LRP8 low density lipoprotein receptor-related protein 8 7804 16975 - 10 10 - 20
MAPT microtubule-associated protein tau 4137 17762 29477 10 10 10 30
MYC v-myc myelocytomatosis viral oncogene homolog (avian) 4609 17869 24577 10 10 10 30
NOTCH1 Notch homolog 1, translocation-associated (Drosophila) 4851 18128 25496 10 10 10 30
NRAS neuroblastoma RAS viral (v-ras) oncogene homolog 4893 18176 24605 10 10 6 26
PAX2 paired box gene 2 5076 18504 - 10 10 - 20
PAX3 paired box gene 3 (Waardenburg syndrome 1) 5077 18505 114502 10 10 2 22
PSEN1 presenilin 1 (Alzheimer disease 3) 5663 19164 29192 10 10 10 30
PSEN2 presenilin 2 (Alzheimer disease 4) 5664 19165 81751 10 10 10 30
PTCH patched homolog (Drosophila) 5727 19206 89830 10 10 3 23
RELN reelin 5649 19699 24718 10 10 10 30
ROBO1 roundabout, axon guidance receptor, homolog 1 6091 19876 58946 10 10 2 22
SHC1 Src homology 2 domain containing transforming protein 1 6464 20416 85385 10 10 10 30
SHH sonic hedgehog homolog (Drosophila) 6469 20423 29499 10 10 10 30
SMO smoothened homolog (Drosophila) 6608 20596 - 10 9 - 19
SRC v-src sarcoma viral oncogene homolog 6714 20779 83805 10 10 10 30
TGFB1 transforming growth factor, beta 1 7040 21803 59086 10 10 10 30
TP53 tumor protein p53 (Li-Fraumeni syndrome) 7157 22059 24842 10 10 10 30
VLDLR very low density lipoprotein receptor 7436 22359 25696 10 10 5 25
WNT1 wingless-type MMTV integration site family, member 1 7471 22408 24881 10 10 5 25
WNT2 wingless-type MMTV integration site family member 2 7472 22413 114487 10 10 6 26
WNT3 wingless-type MMTV integration site family, member 3 7473 22415 24882 8 10 4 22



BMC Bioinformatics 2007, 8(Suppl 9):S6 http://www.biomedcentral.com/1471-2105/8/S9/S6
algorithm deals with the following NLS optimization
problem given B ∈ �m×k and A ∈ �m×n:

where G ∈ �k×n is a solution. It is based on the active/pas-
sive set method. More detailed explanations of this algo-
rithm can be found in [23].

A method for initialization

Most NMF algorithms require initialization of both W
and H, whereas NMF/ANLS described in this paper
requires only initialization of H. In our approach, we
incorporate a priori knowledge of gene relationships into
the initialization of H. A gene-document is represented as
a linear combination of basis vectors. For gene clustering
by NMF, gene-documents that are dominated by the same
basis vector belong to the same cluster. Here, we propose
the following NMF initialization strategy. The elements of

the first row of the initial matrix H ∈ �k×n are set to 1 only

if the columns corresponding to a set of known genes g

are related with one another, otherwise set the elements to
0. For the other rows of H, the elements are set to 0 only

if the columns correspond to g, otherwise the elements

are set to random numbers ∈ (0.25, 0.75). For instance,
we know that RELN is related to DAB1, LRP8, VLDLR, and
FYN. Thus, the elements of the first row of H have 1 only

if the columns correspond to a set of genes g = {RELN,

DAB1, LRP8, VLDLR, FYN}, otherwise set the element to
0. The elements of the other rows of H have 0 only if the

corresponding columns are related to g, otherwise set

the elements to random numbers ∈ (0.25, 0.75). Let us
assume that the 4th, 5th, 6th, 7th, and 8th columns of H
correspond to RELN, DAB1, LRP8, VLDLR, and FYN.
Then, when k = 3, we can construct an initial matrix H as

where the values in the location of • are random numbers.
The columns of the initial matrix H are normalized to unit
L2-norm. This initial matrix H contains a priori cluster
structure.

Gene retrieval
NMF/ANLS is used to obtain the final W and H from the
initial matrix H. Convergence is tested at every five itera-
tions. The Frobenius norm of the error, i.e. f = ||A - WH||F,

is computed at each convergence test. The convergence cri-
terion is

where fprev and fcurr are the Frobenius norms in the previous
and current convergence tests respectively. The final
matrix H ∈ �k×n contains the low-rank representation of
the term-by-gene_document matrix A. Hence, the similar-
ity scores between two genes (i and j) in the k-dimen-
sional space can be computed as

where hj is the j-th column of the final matrix H. Genes
having the higher cosine values in the k-dimensional
space are deemed more relevant to each other.

NMF can generate different final H matrices because of the
random numbers in the initial matrix H. Therefore, it is
natural to repeat NMF with different initial matrices to
obtain final H matrices. GR/NMF selects one of the final

H matrices, which generates the highest -measure value
using only known genes related with a query gene (see Eq.
(3)). If there are several final H matrices that yield the

same maximal -measure value, it chooses one produc-
ing the highest average of cosine values between the query
gene and other known genes related with the query gene.

Reduced dimension estimation for GR/NMF

The determination of the reduced dimension k is also an
open problem in the NMF. As with the k-selection scheme
for LSI/SVD, we can estimate the reduced dimension k for
GR/NMF by making use of known gene-gene relation-
ships. The reduced k-dimensional representations of n
gene-documents are obtained from the NMF. Then, the

-measure is calculated only from known genes relevant
to a query gene, after retrieving genes by cosine similari-
ties in the reduced k-dimensional space. Even with a single

k value, the NMF can generate different -measure values
owing to the random numbers in the initial matrix H.

Thus, to determine an -measure value for each k, the k-

selection scheme selects the highest -measure value

after computing -measure values with different initial

matrices. This determines -measure values for various k

min , . . ,
G FBG A s t G− ≥2 0
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values and then chooses the smallest reduced dimension

k that produces the highest -measure value.
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