
RESEARCH ARTICLE

A new framework based on features

modeling and ensemble learning to predict

query performance

Mohamed ZaghloulID*, Mofreh Salem, Amr Ali-EldinID

Computer Engineering and Control Systems Dept, Faculty of Engineering Mansoura, Mansoura, Egypt

* mmustafa@nxn.ae

Abstract

A query optimizer attempts to predict a performance metric based on the amount of time

elapsed. Theoretically, this would necessitate the creation of a significant overhead on the

core engine to provide the necessary query optimizing statistics. Machine learning is

increasingly being used to improve query performance by incorporating regression models.

To predict the response time for a query, most query performance approaches rely on

DBMS optimizing statistics and the cost estimation of each operator in the query execution

plan, which also focuses on resource utilization (CPU, I/O). Modeling query features is thus

a critical step in developing a robust query performance prediction model. In this paper, we

propose a new framework based on query feature modeling and ensemble learning to pre-

dict query performance and use this framework as a query performance predictor simulator

to optimize the query features that influence query performance. In query feature modeling,

we propose five dimensions used to model query features. The query features dimensions

are syntax, hardware, software, data architecture, and historical performance logs. These

features will be based on developing training datasets for the performance prediction model

that employs the ensemble learning model. As a result, ensemble learning leverages the

query performance prediction problem to deal with missing values. Handling overfitting via

regularization. The section on experimental work will go over how to use the proposed

framework in experimental work. The training dataset in this paper is made up of perfor-

mance data logs from various real-world environments. The outcomes were compared to

show the difference between the actual and expected performance of the proposed predic-

tion model. Empirical work shows the effectiveness of the proposed approach compared to

related work.

Introduction

A query optimizer attempts to make a comparable performance estimate. It attempts to fore-

cast the time spent on a performance metric. It necessitates access to the most recently pro-

cessed performance statistics. In theory, this requirement creates a significant overhead for

supplying the necessary statistics to the core engine. Many factors influence query

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zaghloul M, Salem M, Ali-Eldin A (2021)

A new framework based on features modeling and

ensemble learning to predict query performance.

PLoS ONE 16(10): e0258439. https://doi.org/

10.1371/journal.pone.0258439

Editor: Usman Qamar, National University of

Sciences and Technology (NUST), PAKISTAN

Received: May 17, 2021

Accepted: September 27, 2021

Published: October 18, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0258439

Copyright: © 2021 Zaghloul et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Supporting

Information files.

Funding: The authors received no specific funding

for this work.

https://orcid.org/0000-0002-4703-2662
https://orcid.org/0000-0002-3673-3316
https://doi.org/10.1371/journal.pone.0258439
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258439&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258439&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258439&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258439&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258439&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258439&domain=pdf&date_stamp=2021-10-18
https://doi.org/10.1371/journal.pone.0258439
https://doi.org/10.1371/journal.pone.0258439
https://doi.org/10.1371/journal.pone.0258439
http://creativecommons.org/licenses/by/4.0/

performance, such as data stores, data architecture, environmental specifications, and query

syntax [1]. Machine learning is becoming more popular in database improvement. So, which

machine learning technique will be responsible for query performance prediction? All of this

will be covered in this paper.

Data store

Data can be stored in the Hadoop file system (HDFS) or Google file system (GFS) or in a data-

base such as a relational or a columnar database [1, 2]. The basic identifier for distinguishing

these databases is that the columnar database stores each column in a sequence so that all the

values of these columns are adjacent to each other. A relational database, on the other hand,

stores the data as a row in an adjacent manner, with the row’s various column values parallel

to each other. Columnar databases are best suited for analytical workloads, whereas relational

databases are better suited for transactional workloads. Real-time analytics is enabled by in-

memory columnar databases. Incorta [3], for example, is faster than Oracle database manage-

ment system (DBMS) [3].

Data architecture

In addition to data stores having an impact on query performance, data architecture is also a

factor. The new data architecture is a hybrid of the Lambda and Kappa architectures [4, 5]. In

summary, the Lambda Architecture is used in various layers for batch and stream processing

[6, 7]. The batch layer of the Lambda Architecture manages historical data with fault-tolerant

distributed storage, ensuring a low possibility of errors even if the system crashes. It has a good

balance of speed and reliability, as well as a fault-tolerant and scalable data processing architec-

ture. The Lambda Architecture has the disadvantage of resulting in coding overhead due to

the involvement of comprehensive processing. It is difficult to migrate or reorganize data that

has been modelled using the Lambda Architecture. The Kappa Architecture, on the other

hand, is regarded as a more straightforward alternative to the Lambda Architecture because it

employs the same technology stack to handle both real-time stream processing and historical

batch processing. Both architectures require the storage of historical data to enable large-scale

analytics. They are also useful for addressing "human fault tolerance," in which problems with

the processing code (either bugs or simply known limitations) can be overcome by updating

the code and running it again on the historical data. The main distinction with the Kappa

Architecture is that all data is treated as a stream; thus, the stream processing engine serves as

the sole data engineering engine. The lack of a batch layer in the Kappa Architecture may

result in errors during data processing or database updates, necessitating the use of an excep-

tion manager to reprocess the data or perform reconciliation [7–9].

Query performance prediction is regression problem

The prediction of query performance is regarded as a regression problem. Different regression

algorithms, such as linear regression, lasso regression, neural networks, ridge regression, and

so on, can be considered here [10]. Before applying scoring to the model, the initial model

development approach is to have a training dataset and a cross-validation dataset. Simple lin-

ear regression, polynomial regression, support vector regressor, ridge regression, and lasso

regression are some regression algorithms that can be used to solve such problems. There

must be a linear relationship between the independent and dependent variables, no multicolli-

nearity within the independent variables, and the residual mean must be zero [11, 12]. Polyno-

mial regression converts the original features into polynomial features of a specific degree

before applying linear regression. With a few minor exceptions, support vector regression

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 2 / 18

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0258439

follows the same principles as support vector machine for regression [13]. In the case of regres-

sion, a tolerance epsilon margin is a fixed approximation to the SVM. The main idea, however,

is to minimize errors by individualizing the hyperplane, which maximizes the margin. There

are also linear and non-linear SVR [14]. When the data is multicollinearity, ride regression is

used (independent variables are highly correlated). Even though the ordinary least squares

(OLS) estimates are unbiased in multicollinearity, their variance is large, causing the observed

value to deviate significantly from the true value. Ridge regression reduces errors by adding a

degree of bias to the regression estimates. L2 has a tendency to evenly shrink coefficients [15].

When you have collinear/co-dependent features, this is useful. The loss function equation with

regularization is as follows:

Loss function ¼ RSSðWÞ þ ljjw jj ð1Þ

We have a set of metrics for measuring things. The mean square error (MSE) [16] is the

first metric. It is simply the average of the squared difference between the target value and the

regression model’s predicted value. Because it squares the differences, it penalizes even minor

errors, leading to an overestimation of how bad the model is. It is preferred over other metrics

because it is different and thus can be optimized more effectively. The MSE is calculated as fol-

lows:

MSE ¼
1

n
Pn

i¼1
ðy � �yÞ2

ð2Þ

The root mean squared error (RMSE), the most used metric for regression tasks, is the

square root of the average squared difference between the target value and the value predicted

by the model [16]. It is preferred in some cases because errors are squared before averaging,

imposing a high penalty on large errors. This means that the RMSE can be useful when large

errors are undesirable. The RMSE is calculated as follows:

RMSE ¼
ffi

1=N
Pn

i¼1
ðyi � byiÞ

2

q

ð3Þ

The third metric is the mean absolute error (MAE), which is the absolute difference

between the target value and the value predicted by the model [16, 17]. The MAE is more resis-

tant to outliers and does not penalize errors as harshly as the MSE. The MAE is a linear score,

which means that all individual differences are equally weighted. It is not appropriate for appli-

cations where you want to pay more attention to outliers. The MAE equation is as follows:

MAE ¼ 1=N
Pn

i¼1
jyi � byi j ð4Þ

Ensemble learning

Ensemble learning techniques are also being considered for use in the solution of regression

problems. Ensemble learning entails combining multiple models and can also be used to clas-

sify and predict business problems. Ensemble learning is based on a bagging or boosting

approach. In bagging, all the individual models are built in parallel. Each individual model is

distinct from the others. All observations in all samples will be treated equally in this approach.

Bagging aids in the reduction of overfitting. Using the majority voting method, we average all

the model’s outputs. The predicted value for regression models will not be optimized. If any of

the models deviates more than the others, the output value will be the average of all the models.

Random forests are a type of bagging algorithm. All the individual models in the boosting

ensemble approach are built sequentially, which means that the outcome of the first model is

passed on to the next model, and so on. Boosting is an ensemble-based learning algorithm that

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 3 / 18

https://doi.org/10.1371/journal.pone.0258439

converts weak learners to strong estimators by training ML models sequentially one after the

other, with each iteration attempting to correct the model’s errors from the previous iteration.

In boosting, on the other hand, once the first model is built, we know the errors of that model.

So, when we pass this first model to the next model, the goal is to reduce errors even more.

Boosting reduces bias because each model in the sequential chain attempts to reduce the errors

of the previous model. To reduce the errors in each sequential model, we can use multiple loss

functions. The boosting method is prone to overfitting. As the models are built sequentially, all

of them attempt to reduce training errors [18–20].

This paper aims to propose a query performance prediction framework that can be used to

estimate query performance. The proposed framework can then be used as a query perfor-

mance simulator to improve query syntax, optimize the allocated environment resources, and

enhance the data architecture features used to execute the query. The main contribution is to

model all the query features that influence query execution, feeding the ensemble learning

technique with all the query-impactful features, to develop a query performance prediction

model. The proposed framework can then be used as a query performance simulator to

improve query syntax, optimize the allocated environment resources, and enhance the data

architecture features used to execute the query. Section two discusses the related background,

research motivation, and explains the challenges encountered while using the traditional

approach, and sections three, four, and five introduce the proposed approach, experiment

work, results, and discussion. Finally, section six summarizes this work.

Related work

A query optimizer is one that attempts to make a similar estimate of performance. It tries to

predict a performance metric based on the amount of time elapsed. It necessitates access to

runtime performance statistics, the vast majority of which are processed. The need for the core

engine to provide the necessary statistics creates a significant overhead in theory. Machine

learning is increasingly being used to improve databases by incorporating regression models.

Regression models strive for overall prediction accuracy, which means that the model expects

data to be used in the same way that it was used for training. In data management, it is argued

that query distributions do not always obey data characteristics. Queries that use selection

operators explore data subspaces, eliminating the need to build a highly detailed model of the

entire data collection. Given the increasing demand for regression models to be integrated

with database management systems (DBMS) [21–23], regression models optimize a loss func-

tion, whereas the query-centric approach seeks to reduce the error rate for a typical single

query in a planned workload. Under this assumption, the query data is the same as the training

data. In general, query workloads have been presented in data systems research. This section

will present a number of related works that demonstrate various approaches and frameworks

proposed for the SQL query performance prediction problem.

The first approach emphasized the difficulty of selecting the best regression model to pro-

vide the best prediction result for a specific query because the model’s behavior varies depend-

ing on the algorithm, mathematical model, and dataset. So, a question is first transferred to a

classifier, which is pre-trained. Since the classifier "knows" the prediction capacity of each

model in the different data spaces, the query will be allocated to the model that performs better

in the query’s data space. Unlike traditional data-mining approaches, only one machine learn-

ing model is invoked for each query [23, 24]. To conclude, for different data sets, different

regression models are better performing and, more interestingly, for different data subspaces

within them. This applies to simpler models and, perhaps unexpectedly, to advanced regres-

sion models of the ensemble. With minimal overheads, accuracy improvements are achieved,

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 4 / 18

https://doi.org/10.1371/journal.pone.0258439

even with huge data sizes. The same can be concluded from this approach. It combines various

techniques to address each step of the problem of predictive estimation time [25–27]. This

approach uses a few features to quickly predict the response time for a query with an accept-

able error, according to the analysis of the obtained results. To improve the approach, this

approach focuses solely on resource utilization (CPU, I/O); thus, the model features generali-

zation with different environment specifications, query syntax complexities, and other factors

that influence query performance [26, 27].

An alternative approach is based on performing feature selection to reduce the dimension-

ality of the input vectors. Step (A), extracting feature vectors from a mass of SQL data. The fea-

ture extraction is based on a bag of words (BoW) technique. Step (B) The model selection

process receives such a dataset, (1) adjusts the parameters and performs a grid search for the

most appropriate specific parameters. (2) each trained model is then evaluated using the K-

fold cross validation (cv) to estimate the associated error. (C) The specified error metric for the

K-fold CV method is the mean absolute error between the expected value and the projected

target values for each partition. (D) Therefore, by choosing a subset of features that best char-

acterize the phenomenon, a method of dimensional reduction is applied. The selection func-

tion uses models with tuned parameters derived from the selection model. This research

presented a machine learning approach to query response time estimation in the cloud. It

incorporates various techniques to address each stage of the problem of predictive time estima-

tion. This work was analyzed in the sense of the cloud world. Based on the interpretation of

the results obtained, the method uses a few features to easily predict the query response time

with limited features [28–30].

Another research approach to using kernel canonical correlation analysis (KCCA) replaces

Euclidean dot products with kernel functions [31–33]. Kernel functions are at the heart of

many recent developments in machine learning, as they provide expressive, computationally

tractable notions of similarity [31–33]. The KCCA model approach is based on the kernel

function to compute a "distance metric" between every pair of query vectors and performance

vectors. In this work, the researchers made use of the commonly used Gaussian kernel. It

describes the steps involved in using KCCA to create a predictive model. The first step is to

create feature vectors for all the points in the two datasets and then correlate them. For query

prediction, the researcher builds a vector capturing query features and a vector capturing per-

formance characteristics for each query in the training data set. The researcher combines these

vectors into a query feature matrix with one row per query vector and a performance feature

matrix with one row per performance vector. It is important that the corresponding rows in

each matrix describe the same query. KCCA then uses a kernel function to compute a "distance

metric" between every pair of query vectors and performance vectors. Thus, intuitively, KCCA

finds correlated pairs of clusters in the query vector space and the performance vector space.

The prediction is done in three steps. First, we create a query feature vector and use the model

to find its coordinates on the query projection. The researcher then infers its coordinates on

the performance projection and uses the k nearest neighbors in the query projection to do so.

Finally, the map takes place from the performance projection back to the metrics when we

want to predict. Finding a reverse mapping from the feature space back to the input space is

known as a hard problem, because of the complexity of the mapping algorithm and because of

the dimensionality of the feature space that can be much higher or lower than the input space

[33, 34].

The challenges of previous approaches, which relied solely on hardware specifications fea-

tures such as (CPU, I/O, allocated RAM) to develop query performance prediction models,

were highlighted in previous related work. The previously proposed models are not general-

ized enough to be used as a performance simulator to enhance query features that influence

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 5 / 18

https://doi.org/10.1371/journal.pone.0258439

performance. Further, proposed hybrid models for determining which regression algorithm

will fit into the distributed data space and produce the lowest error can be seen as a work-

around. However, they are not optimal. As a consequence, we need to employ a more sophisti-

cated regression algorithm.

Proposed framework

Fig 1 depicts the framework flow and explains the purpose of each step in the flow. There are two

flows in the proposed framework: the training flow, which focuses on modeling the query features

and then training the machine learning model, and the score flow, which explains how to use a

trained model in any other environment with a new SQL statement syntax. The diagram is

divided into layers, including the metadata source layer, the feature modeling layer, the training/

scoring layer, and the consuming layer. The metadata source layer is used to list the query dimen-

sions that are being considered for extracting the query features. Step (1) is used to model the

SQL syntax features in the modeling features layer. Step 2 brings together all the other features

that will be used to train the predictive model. To ensure that all input features are numbers, step

3 employs engineering features such as encoding categorical features into a number, reformatting

a number, and deleting redundant features. Step (4) employs the XGBoost algorithm to train the

model. Step (5) makes use of the built-in feature’s importance in the XGBoost algorithm. The

mean absolute error, root-mean-square error (RMSE), and average percentage difference between

actual and predicted performance will be considered as regression performance metrics. Steps 6

through 9 of the score flow will be used to consume the trained model.

The embedded features of the XGBoost are used in the proposed flow diagram. As a result,

the feature engineering step is fed by the feed from feature importance. Label encoding also

occurred. We proposed label encoding, which converts categorical features into numbers. The

list of categorical features includes deployment environment encoded to (1 for cloud, 2 for on-

premises), operating system environment encoded to (1 for Linux, 2 for Windows), data stor-

age type encoded to (2 for SSD type), data transformation engine encoded to (1 for Hadoop, 2

Fig 1. Proposed framework.

https://doi.org/10.1371/journal.pone.0258439.g001

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 6 / 18

https://doi.org/10.1371/journal.pone.0258439.g001
https://doi.org/10.1371/journal.pone.0258439

for Oracle, and 3 for Greenplum), and query number encoded to 1 through 10 because we

have 10 queries for data transformation.

Training dataset metrics

Here, an example of the features extracted is presented. From query syntax statement features,

hardware features, software features, and data architecture features to historical performance

logs, these metrics will be used as an input to train the machine learning model. However, this

list of metrics is just an example of what we can feed the model; as already demonstrated, the

data preparation phase will take place to prepare training datasets. So, the objective of this

study is to show how to extract features from hardware, software, SQL syntax, and data archi-

tecture. It does not show the complete list of features, which will change from case to case, as

shown in Table 1. However, the majority of queries are complex, with sub queries and complex

joins, as shown in the attached S1 File, which was used in the experiment work. The concept

was to use complex queries from real-world implementations [the reference project was for a

telecom operator on a big data platform (cloudera environment) that handles streaming data].

These features will be derived from query syntax statement specifications, hardware specifica-

tions, software specifications, data architecture specifications, and historical performance logs.

Feature modeling is used to extract input features from various types of queries.

Ensemble learning XGBoost algorithm

Gradient boosting is the original XGBoost model that combines weak basic learning models

with stronger learning in an iterative [35]. At each iteration of the gradient boost, the residual

Table 1. Training dataset metrics.

Dimension Features

Hardware ■ Number of used processors

■ Env_Deploymnet_Type

■ Env_OS_Type

Software ■ ETL_Engine_Type

■ Target_DataBase_Engine_Type

■ Hadoop_Target_DataStore_Type

■ Data_Virtualization_Engine

SQL ■ Data_Transformation_No_Conditions

■ Data_Transformation_No_String_Conditions

■ Data_Transformation_No_Encoding_String_Conditions

■ Data_Transformation_No_Sub_Query

■ Data_Transformation_No_Agg

■ Data _Transformation_Frequency_Rate

■ Data _Transformation _No_Format_Func

Data Architecture ■ DataSources_Type (Structure File, Structure DB, Structure Stream data, unstructured File, unstructured stream data, etc)

■ Target_DataBase_Engine_Type (RDBMS, Columnar, In-Memory)

■ Data_Transformation_Engine_Type (ETL_Engine_File, ETL_Engine_Repos, ETL_Engine_Repos_Pushdown)

■ Number_Data_Transformation_sources

■ Number_Data_Transformation_Files_sources

■ Number_Data_Transformation_Hadoop_sources

■ Hybrid_Data_Sources (Files with DB, DB with Hadoop, files with Hadoop)

■ BigData_Data_Transformation_Engine_Type

■ Data_Architrecture_Type (lambda, Kappa)

https://doi.org/10.1371/journal.pone.0258439.t001

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 7 / 18

https://doi.org/10.1371/journal.pone.0258439.t001
https://doi.org/10.1371/journal.pone.0258439

will be used to correct the previous predictor so that the specified loss function can be opti-

mized. As an improvement, regularization is added to the loss function to determine the objec-

tive function of the XGBoost model performance measurement. So, we can write the model as,

Y i ¼
PK

k¼1
fkðxiÞ; fk 2 F ð5Þ

Where K is the number of trees, is a function in the functional space and is the set of all pos-

sible classification and regression trees (CARTs). The objective function always needs to con-

tain training loss and regularization [35]. Xgboost takes a more iterative approach to

determining the best K. The equation shows the iteration numbers that should be used in the

XGBoost to achieve the smallest possible error. The number of rounds parameter is used as an

input parameter in the XGBoost. The ensemble technique is based on a cleverer approach

because it is based on many iterations that are combined to perform the final one. Rather than

training all the models separately, boosting trains models that succeed, with each new model

being trained to correct the mistakes made by the previous ones. Models are added in a

sequential order until no further advancements can be made. So, rather than specifying an

exact number, we provide the algorithm with a set of parameters to determine the optimal

number of trees (no of estimators).

objðyÞ ¼
Pn

i lðyi;Y iÞ þ
PK

k¼1
Ofk ð6Þ

we need to learn are those functions fi, each containing the structure of the tree and the leaf

scores. Learning tree structure is much harder than traditional optimization problem where

we can simply take the gradient. It is intractable to learn all the trees at once. Instead, we use

an additive strategy: fix what we have learned and add one new tree at a time. We can write the

prediction value at step t as YðtÞi then the objective equation will be [36].

objðtÞ ¼
Xn

i¼1
lðyi;Y

ðt� 1Þ

i Þ þ ftðxiÞ� þ OðftÞ þ C ð7Þ

If we consider using mean squared error (MSE) as our loss function, the objective becomes

[36].

objðtÞ ¼
Xn

i¼1
lðYðt� 1Þ

i � yiÞþgiftðxiÞ þ
1

2
hif

2

tðxiÞ
� �

þ O ftð Þ þ C ð8Þ

where the gi and hi are defined as,

gi ¼ @Yðt� 1Þ

i
lðyi;Y

ðt� 1Þ

i Þ ð9Þ

hi ¼ @
2

Yðt� 1Þ

i
lðyi;Y

ðt� 1Þ

i Þ ð10Þ

After we remove all the constants, the specific objective at step t becomes the optimization

goal for the new tree. We can optimize every loss function as follows [36]:

Xn

i¼1
½giftðxÞ þ

1

2
hif

2

tðxiÞ� þ O f tð Þ ð11Þ

We have introduced the training step, but we still need to consider the regularization term.

We need to define the complexity of the tree. Here ω is the vector of scores on leaves, and T is

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 8 / 18

https://doi.org/10.1371/journal.pone.0258439

the number of leaves. So, we define the complexity as [36]:

O ftð Þ ¼ gT þ
1

2
l
XT

j¼1
o2

j ð12Þ

So, the best objective reduction we can get in the equation, ωj are independent with respect

to each other, the form GiojðxiÞ þ 1

2
HjþlÞo

2
j xið Þ

�
is quadratic and using the best ωj,we can

compute the optimal weight o�j of leaf j as [36]:

o�j ¼ �
Gi

Hj þ l
ð13Þ

obj� ¼ �
1

2

PT
j¼1

G2
j

Hj þ l
þ gT ð14Þ

Then, it can be used as a scoring function to measure the quality of the tree structure q.

This score is like the impurity score for evaluating decision trees, except that it is derived from

a wider range of objective function [36].

Gain ¼
1

2

G2
L

HL þ l
þ

G2
R

HR þ l
þ

G2
R þ G2

L

HR þHL þ l

� �

� g ð15Þ

Experimental work description

The experimental work will use performance logs for ten SQL queries that have already been

deployed in different environments. These performance logs, along with environmental

requirements and query syntax, will be used to prepare the training dataset features as outlined

in the next section, which will explain how to prepare the training dataset. What is the specifi-

cation of the environment used to extract these training datasets? What are the specifications

of the experimental environment? What are the results of the proposed framework? An exam-

ple of the queries is shown in Table 2.

Environment specification

The environmental specifications used in the experiment work are shown in Table 3.

Training dataset

The total dataset records used in the experiment was around 27225 records with 45 variables.

The training data set had around 24502 records (90% of the total dataset) and cross-validation

of around 2723 records (10% of the whole dataset). The number of selected variables is 40. The

following variables have been ignored: Start Time, End Time, Day, Size DT DB Sources, DT

Records Number. The dataset is based on the performance tracking logs for ten queries that

ran in different environments, as is illustrated in the environment specification section. The

query syntax metrics are used (data source type, number of data sources, number of conditions

in the query syntax, number of string conditions in the query syntax, number of subqueries in

the query syntax, number of aggregated functions in the SQL statement, number of data

sources in the query syntax, number of formatting functions in the query syntax, and so on).

The hardware metrics (number of processors, ram used, hard disk type (HDD or SSD)), envi-

ronment deployment (on-cloud, on-premises), number of nodes in the Hadoop environment,

number of edge nodes, edge node processors, edge node storage, number of worker nodes,

worker node processors, worker node storage, number of master nodes, master node

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 9 / 18

https://doi.org/10.1371/journal.pone.0258439

processors, mast node processors, etc. are used. Metrics of data architecture such as database

engine, Hadoop engine, and Hadoop hybrid database were used. The used list of features is

shown in Table 4. The list of features in Table 4 is not limited to these features, it is part of the

proposed framework that can be added more.

Table 2. Example of query syntax used in the experiment work.

No Syntax Freq

Q1 insert into table sandbox_nxn.hive_tcpdr partition (h) H

select s.last_timestamp_utc,cast(trim(s.session_duration) as bigint), cast(s.last_timestamp_utc as bigint), s.roaming, cast(s.msisdn as bigint), cast(s.imei as

bigint), cast(s.tac as bigint), cast(s.last_location_type as bigint), cast(s.last_cell as bigint), cast(s.volume_ul as bigint), cast(s.volume_dl as bigint), s.

id_content_provider, s.id_content_category, s.first_lac_enodeb_id, s.first_location_id, s.last_lac_enodeb_id, s.last_location_id, year(from_unixtime(cast(s.

last_timestamp_utc as bigint))), month(from_unixtime(cast(s.last_timestamp_utc as bigint))),day(from_unixtime(cast(s.last_timestamp_utc as bigint))),

hour(from_unixtime(cast(s.last_timestamp_utc as bigint))) as h

from

sandbox_nxn.${var0} as s where s.last_timestamp_utc is not null and cast (s.msisdn as bigint) is not null;

Q2 INSERT into sandbox_nxn. fact_pos_mbb_hourly partition (day) D

SELECT MBB.LAST_TIMESTAMP_HOUR, MBB.duration_seconds, MBB.number_of_visits, MBB.MSISDN, MBB.ROAMING_FLAG, MBB.

VOLUME_UL, MBB.VOLUME_DL, MBB.AVG_THROUGHPUT, POS_CUST.subscriber_id, CPRV.DIM_CONTENT_PROVIDER_DK, DT.timekey,

DD.dw_date_calendar_dim_key, case WHEN CELL.dw_dim_cell_site_key IS not NULL THEN CELL.dw_dim_cell_site_key else CELL2.

dw_dim_cell_site_key end, case WHEN CELL.dw_dim_cell_site_key IS not NULL THEN CELL.dw_dim_site_location_key else CELL2.

dw_dim_site_location_key end, COALESCE(HNDST.dw_dim_handset_key,181653), NULL, CASE WHEN MBB.last_cell_location_type = 0 then ’2G’

WHEN MBB.last_cell_location_type = 1 then ’3G’ WHEN MBB.last_cell_location_type in(3,4) then ’4G’ ELSE ’NA’ END, MBB.day as day

FROM sandbox_nxn.mbb_tcpdr_hourly as MBB

Join

sandbox_nxn.dim_pos_customer_uniq as POS_CUST on (MBB.MSISDN = cast(concat(’965’,POS_CUST.SUBSCRIPTION_NO) as bigint)) LEFT OUTER

join offload.dim_date_calendar as DD on (MBB.DAY = concat(cast(DD.dw_month_num_of_year as string),concat(concat(’-’,cast(DD.

dw_day_num_of_month as string)),concat(’-’,DD.dw_year_id)))) Left OUTER join sandbox_nxn.dim_cell_site_uniq as CELL on (lpad(MBB.

last_location_id,4,’0’) = lpad(CELL.CELLHEX,4,’0’) and CELL.end_date is null and (last_cell_location_type in (3,4) and lpad(MBB.

last_lac_enodeb_id,5,’0’) = CELL.SITEHEX)) left outer join sandbox_nxn.dim_cell_site2_uniq as CELL2 on (lpad(MBB.last_location_id,4,’0’) = lpad

(CELL2.CELLHEX,4,’0’) and CELL2.end_date is null and (last_cell_location_type in (0,1) and lpad(MBB.last_lac_enodeb_id,5,’0’) = CELL2.lachex)) join

sandbox_nxn.dim_content_provider as CPRV on (substr(MBB.ID_CONTENT_PROVIDER,2,length(MBB.ID_CONTENT_PROVIDER)-2) = CPRV.

ID_CONTENT_PROVIDER) join sandbox_nxn.dim_time as DT on (MBB.LAST_TIMESTAMP_HOUR = DT.HOUR) LEFT OUTER JOIN offload.

dim_handset_imei as HNDST ON (cast(MBB.TAC as string) = HNDST.TAC) WHERE MBB.MSISDN IS NOT NULL and MBB.

LAST_TIMESTAMP_HOUR = ${var0} and MBB.day = ’${var1}’ and POS_CUST.TERMINATION_DATE IS NULL;

https://doi.org/10.1371/journal.pone.0258439.t002

Table 3. Environment specification used in the experiment work.

HW Name HW Specs

Performance Log Environment Processors = 16

RAM = 128

HD SSD = 20 TB

Database Engine = Greenplum

Performance Log Environment Hadoop Environment

6 Cluster Nodes

Each Node

Processors = 16

RAM = 64

HD SSD = 10 TB

(One Mater Node, One Edge Node, 4 Worker Nodes)

Database Engine = Hive /Impala

Experiment Environment Processors = 16

RAM = 64

Database Engine = Oracle HD SSD = 20 TB

https://doi.org/10.1371/journal.pone.0258439.t003

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0258439.t002
https://doi.org/10.1371/journal.pone.0258439.t003
https://doi.org/10.1371/journal.pone.0258439

Features engineering

The process of encoding the training dataset was used for data preparation. We have coded the

numbers for the categorical features. The list of categorical features includes deployment envi-

ronment encoded to (1 for cloud, 2 for on-premises), operating_system_environment encoded

to (1 for Linux, 2 for Windows), data_storage_type encoded to (2 for SSD type),

Table 4. List of features in the training dataset.

Features Domain Features

Hardware Environment

Processors

RAM

Env_Deploymnet

Env_OS

Data_Storage_Type

Number_of_nodes_for_Hadoop_Environment

Number_of_Edge_Nodes

Edge_Processors

Edge_RAM

Edge_Storage

Number_of_Workers_Nodes

Workers_Processors

Workers_RAM

Worker_Storage

Number_of_Master_Nodes

Master_Processors

Master_RAM

Master_Storage

Software Data_Transformation_Engine_Type

Data Architecture Number_ Data_Transformation_sources

Number_ Data_Transformation_Files_sources

Number_ Data_Transformation_DB_sources

Number_ Data_Transformation_Hadoop_sources

Size_ Data_Transformation_Files_Sources

Size_ Data_Transformation_DB_Sources

Size_ Data_Transformation_Hadoop_sources

SQL syntax Data_Transformation_No_Conditions

Data_Transformation_No_String_Conditions

Data_Transformation_No_En_String_Conditions

Data_Transformation_No_Sub_Query

Data_Transformation_No_Agg

Data_Transformation_No_Format_Func

Data_Transformation_Frequency_Rate

DT_Records_Number

Performance Hour_of_the_data

Query

Start_time

End_time

Day

Performance

https://doi.org/10.1371/journal.pone.0258439.t004

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 11 / 18

https://doi.org/10.1371/journal.pone.0258439.t004
https://doi.org/10.1371/journal.pone.0258439

data_transformation_engine encoded to (1 for Hadoop, 2 for Oracle, and 3 for Greenplum),

and query number encoded to 1 till 10 as we have 10 queries as data transformation syntax.

We dropped Start Time, End Time, and Day from the feature selection because they had

already been used to calculate the performance (target feature) (Size of DT DB Sources, DT

Records Number) to be redundant (DT Data Source Size, Number of Records); we reformat-

ted the day features to be used (YYYYMMDD).

Development steps

The experimental life cycle is illustrated as features modeling, features engineering, model

development, then testing and validation. The feature modeling extracts the features from the

query syntax statement characteristics, hardware characteristics, data processing engine char-

acteristics, data architecture characteristics, and historical performance logs using different

environments. Feature engineering checks the correlation and importance across all input var-

iables and target variables. Then machine learning development, model development and

model validation.

XGBoost alogrithm parameters

This section describes the algorithm parameters shown in Table 5.

XGBoost alogrithm flow

This section describes the algorithm flow steps that are shown in Table 6.

Table 5. Algorithm parameters.

Parameter Parameter

Value

Parameter Description

booster gblinear Select the type of model to run at each iteration. It has two options:

gbtree: tree-based models

gblinear: linear models

eta 0.0004 The learning rate used to weight each model

max_depth 10 The maximum depth of each tree

gamma 10 Gamma is a pseudo-regularization parameter

subsample 0.9 Represents the fraction of observations to be sampled for each tree

colsample_bytree 1 Number of features (columns) used in each tree

objective reg:

squarederror

reg: squarederror: for linear regression

eval_metric rmse rmse –root mean square error.

nrounds 30000 max number of boosting iterations.

nthreads 10 Number of threads can also be manually specified via

early_stopping_rounds 20 If NULL, the early stopping function is not triggered. If set to an integer k, training with a validation set will stop if the

performance doesn’t improve

verbose 0 If 0, xgboost will stay silent. If 1, it will print information about performance. If 2, some additional information will be

printed out

Results The model performance measures the tested dataset that compared the predicted values versus actual values, the tested

dataset being around 2723 records.

The mean absolute error (MAE) is given by.

MAE ¼ 1=N
Pn

i¼1
jyi �

byibj = 0.663

The root mean square error (RMSE) is given by.

RMSE ¼
ffi

1=N
Pn

i¼1
ðyi �

byibÞ
2

q

= 0.814

The average percentage difference between the actual and the predicted performance is equal to 5.3%, as shown in Fig 4.

https://doi.org/10.1371/journal.pone.0258439.t005

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 12 / 18

https://doi.org/10.1371/journal.pone.0258439.t005
https://doi.org/10.1371/journal.pone.0258439

Results

The results show the importance of embedded features in XGBoost. Analyzing the results in

Fig 2, we observe the environment OS, data storage type, number of data sources (Number of

DT sources), number of SQL sub queries (Number of DT Sub Query) in the SQL query, etc.

The training model behavior on a tested dataset includes the predicted performance values

from the model versus the actual observed performance, as shown in Fig 3.

The model performance measures the tested dataset that compared the predicted values

versus actual values, the tested dataset being around 2723 records.

The mean absolute error (MAE) is given by.

MAE ¼ 1=N
Pn

i¼1
jyi � byi j ¼ 0:663 ð16Þ

Table 6. Algorithm flow.

1. Import Libraries

2. Loading Data

3. Reformat Loaded Data

4. Split the Data (Training /Testing)

5. Convert the cleaned data frame.

6. XGBoost parameters Configuration

7. Model Training

8. Extract the results.

9. Compare observed vs predicted.

10. Extract Feature’s importance

11. Check Model Performance

https://doi.org/10.1371/journal.pone.0258439.t006

Fig 2. Feature’s importance results.

https://doi.org/10.1371/journal.pone.0258439.g002

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 13 / 18

https://doi.org/10.1371/journal.pone.0258439.t006
https://doi.org/10.1371/journal.pone.0258439.g002
https://doi.org/10.1371/journal.pone.0258439

The root mean square error (RMSE) is given by.

RMSE ¼
ffi

1=N
Pn

i¼1
ðyi � byiÞ

2
¼ 0:8143

q

ð17Þ

The average percentage difference between the actual and the predicted performance is

equal to 5.3%, as shown in Fig 4.

Discussion

The key lessons of learning from the proposed approach and other approaches in the related

work section are shown in Table 7. Number of features. Most of the approaches in the related

work section limit the number of features used to train the prediction model to improve

model accuracy. While the proposed approach did not limit the features, it did propose a gen-

eralization approach for features modelling to enrich the prediction model’s input training

data set. The impact of feature standardization is that it standardizes the features used for

training the prediction model despite differences in the query’s environment specifications in

terms of hardware and software, as well as data architecture. So, defining a feature domain,

then extracting a list of features from each domain, generalizes an approach to standardizing

Fig 3. Model behavior predicted versus actual tested dataset.

https://doi.org/10.1371/journal.pone.0258439.g003

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 14 / 18

https://doi.org/10.1371/journal.pone.0258439.g003
https://doi.org/10.1371/journal.pone.0258439

the features. This step of standardizing the input features for the query prediction model is not

considered in any of the related works. All the related work depends on the optimizer statistics

to extract the logs and the features that impacted the query performance as per the historical

execution plans. While the proposed approach standardized the input features considering the

performance logs. Features Modelling is a step towards modelling the features, not to limiting

the features. Other approaches just extract limited features. It is clear from the related work

using the ensemble learning technique that the boosting methodology has shown better perfor-

mance in such regression problems. A comparison between the related approach and the pro-

posed approach is shown in Table 7.

Conclusion

This paper proposed a framework for predicting query performance. The challenges of devel-

oping such a predictive performance are how to standardize the required features to train the

model, which machine learning technique to be used, so the trained model can be used as an

optimization tool or simulation tool to optimize the structure query, hardware specification,

software specification, or data architecture specification. Thus, for these domains (software,

hardware, data architecture, SQL syntax), a list of features extracted from these domains were

proposed by the framework, as shown in sections 4, 5 and 10. Then, the framework was used

to develop a performance prediction model with an ensemble learning technique based on

extreme boosting methodology, considering the challenges of using linear regression. The

ensemble learning technique (tree-based model) handles missing values because it has the

built-in ability to handle missing values. Dealing with linear and non-linear regression issues,

handling over-fitting with built-in regularization of L1 (lasso regression), and L2 (ridge

Fig 4. Actual performance vs predicted.

https://doi.org/10.1371/journal.pone.0258439.g004

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 15 / 18

https://doi.org/10.1371/journal.pone.0258439.g004
https://doi.org/10.1371/journal.pone.0258439

regression), which prevented over-fitting of the model. That is why the regularized form of the

GBM (gradient boosting machine) is also called the XGBoost. The proposed model perfor-

mance showed an average difference of around 5.3% between the actual and the predicted

performance.

There are areas of enhancement that may be considered in the future in the proposed

framework. Instead of relying on the feature’s importance embedded in ensemble learning, we

can use separate feature selection steps to be added to the development cycle of machine learn-

ing. The second area is that we can use ensemble deep learning to develop a performance pre-

diction model instead of using the ensemble learning technique. The automation of the feature

modelling process improves the process of data preparation. One of the automation mecha-

nisms is to use NLP to extract the SQL features instead of manually analyzing them. The pro-

posed framework can be enriched by all these future contributions.

Supporting information

S1 File.

(RAR)

Table 7. Comparison between proposed approach and related works.

Points Classifier Approach BOW

Approach

KCCA Approach Proposed Approach Notes

Number of Features Limited Features Limited

Features

Limited Features No Limited Features

Features

Standardization

NA NA NA Features Modeling

Features Importance NA grid search NA Embedded in the

ensemble learning

Machine Algorithm

Approach

Classifier with any

prediction algorithm

SVR, RFR and

GBR

kernel canonical

correlation analysis

XGBoost

Software Features

Optimization

NA NA NA Supported

Hardware Features

Optimization

NA NA NA Supported

Query Syntax

Optimization

NA NA NA Supported

Data Architecture

Features

Optimization

NA NA NA Supported

approach

performance

MAE = NA MAE = 0.8518 MAE = NA MAE = 0.663 Some relative approaches measures MAE, actual

vs predicted. However, to predict the response

time for a query, most query performance

approaches rely on DBMS optimizing statistics

and the cost estimation of each operator in the

query execution plan, which also focuses on

resource utilization (CPU, I/O). Modeling query

features is thus a critical step in developing a

robust query performance prediction model. In

this paper, we propose a new framework based

on query feature modeling and ensemble

learning to predict query performance and use

this framework as a query performance predictor

simulator to optimize the query features that

influence query performance.

RMSE = NA RMSE = NA RMSE = NA RMSE = 0.8143

Actual vs

predicted = 0.077

Actual vs

predicted = 0.45

Actual vs

predicted = 0.053

https://doi.org/10.1371/journal.pone.0258439.t007

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258439.s001
https://doi.org/10.1371/journal.pone.0258439.t007
https://doi.org/10.1371/journal.pone.0258439

Author Contributions

Conceptualization: Mohamed Zaghloul.

Data curation: Mohamed Zaghloul.

Methodology: Mohamed Zaghloul, Amr Ali-Eldin.

Resources: Mohamed Zaghloul.

Supervision: Mofreh Salem, Amr Ali-Eldin.

Validation: Mofreh Salem, Amr Ali-Eldin.

Writing – original draft: Mohamed Zaghloul.

References
1. Wamba S. F., Akter S., Edwards A., Chopin G. and Gnanzou D., “How ‘big data’ can make big impact:

Findings from a systematic review and a longitudinal case study,” International Journal of Production

Economics, vol. 165, pp. 234–246, 2015.

2. H. Baars and J. Ereth, “From data warehouses to analytical atoms–the internet of things as a centrifugal

force in business intelligence and analytics,” in 24th European Conference on Information Systems

(ECIS), Istanbul, Turkey, 2016.

3. Incorta https://www.incorta.com/

4. A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release transformation and DevOps,” in

2015 IEEE/ACM 3rd International Workshop on Release Transformation, Florence, 2015, p. 3.

5. A. Palmer. (2015). From DevOps to DataOps. Available: https://www.tamr.com/from-devops-

todataops-by-andy-palmer/, last accessed 2018/04/21.

6. Gartner Says Global IT Spending to Reach $3.7 Trillion in 2018. (2018, January 16). Available: https://

www.gartner.com/newsroom/id/384556

7. G. Press. (2017, January 20). 6 Predictions for the $203 Billion Big Data Analytics Market. Available:

https://www.forbes.com/sites/gilpress/2017/01/20/6-predictionsfor-the-203-billion-big-data-analytics-

market/#599b23752083.

8. J. Kreps. (2014, July 2). Questioning the Lambda Architecture. Available: https://www.oreilly.com/

ideas/questioning-the-lambda-architecture, last accessed 2018/05/26.

9. N. Marz and J. Warren. (2015). Big Data: Principles and Best Practices of Scalable Real-time Data Sys-

tems. Available: https://www.manning.com/books/big-data.

10. S. Zhelev and A. Rozeva, “Big data processing in the cloud—challenges and platforms,” in the 43rd

International Conference Applications of Mathematics in Transformation and Economics, Sozopol, Bul-

garia, 2017, December. http://dx.doi.org/10.1063/1.5014007

11. J. Ereth, “Dataops—towards a definition,” 09 2018

12. Burgess M., Garduno E., Kavulay S. P., Tan J., Gandhi R., Narasimhan P., et al., “Is devops the future

of sysadmin?” Usenix.org login, vol. 38, no. 2, 2013

13. J. Hoffman, How AIOps Supports a DevOps World. Available: https://thenewstack.io/how-aiops-

supports-a-devops-world/

14. Nellore K.; Hancke G. A Survey on Urban Traffic Management System Using Wireless Sensor Net-

works. Sensors 2016, 16, 157. [CrossRef] [PubMed] https://doi.org/10.3390/s16020157 PMID:

26828489

15. Mori U., Mendiburu A., Alvarez M. and Lozano J. A., “A review of travel time estimation and forecasting

for advanced traveller information systems,” Transp. A Transp. Sci., vol. 11, pp. 119–157, 2015

[CrossRef]

16. Vlahogianni E. I., Karlaftis M. G. and Golias J. C., “Short-term traffic forecasting: Where we are and

where we’re going,” Transp. Res. Part C Emerg. Technol., vol. 43, pp. 3–19, 2014 [CrossRef]

17. Antoniou C., Balakrishna R. and Koutsopoulos H. A., “Synthesis of emerging data collection technolo-

gies and their impact on traffic management applications,” Eur. Transp. Res. Rev., no 3, 2011

[CrossRef]

18. Liebig T., Piatkowski N., Bockermann C. and Morik K., “Dynamic route planning with real-time traffic

predictions,” Inf. Syst., no. 64, pp. 258–265, 2017 [CrossRef]

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 17 / 18

https://www.incorta.com/
https://www.tamr.com/from-devops-todataops-by-andy-palmer/
https://www.tamr.com/from-devops-todataops-by-andy-palmer/
https://www.gartner.com/newsroom/id/384556
https://www.gartner.com/newsroom/id/384556
https://www.forbes.com/sites/gilpress/2017/01/20/6-predictionsfor-the-203-billion-big-data-analytics-market/#599b23752083
https://www.forbes.com/sites/gilpress/2017/01/20/6-predictionsfor-the-203-billion-big-data-analytics-market/#599b23752083
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.manning.com/books/big-data
http://dx.doi.org/10.1063/1.5014007
https://thenewstack.io/how-aiops-supports-a-devops-world/
https://thenewstack.io/how-aiops-supports-a-devops-world/
https://doi.org/10.3390/s16020157
http://www.ncbi.nlm.nih.gov/pubmed/26828489
https://doi.org/10.1371/journal.pone.0258439

19. Li K., Liu Z. and Han Y., “Study of selective ensemble learning methods based on support vector

machine,” Physics Procedia, vol. 33, pp. 1518–1525, 2012.

20. Bellal F., Elghazel H. and Aussem A., “A semi-supervised feature ranking method with ensemble learn-

ing,” Pattern Recognition Letters, vol. 33, no. 10, pp. 1426–1433, 2012.

21. Mrinal P. and Taruna S., “A comparative study of ensemble methods for students’ performance model-

ling," International Journal of Computer Applications, vol. 103, no. 8, pp. 0975–8887, October 2014.

22. D. V. Aken, A. Pavlo, G. J. Gordon and B. Zhang, “Automatic database management system tuning

through large-scale ma- chine learning,” in Proceeding of ACM SIGMOD, 2017.

23. C. Anagnostopoulos and P. Triantafillou, “Learning set cardinality in distance nearest neighbours,” in

Proceeding of IEEE International Conference on Data Mining. (ICDM15), 2015.

24. C. Anagnostopoulos and P. Triantafillou. “Learning to accurately COUNT with query-driven predictive

analytics,” in Proceeding of IEEE International Conference on Big Data, 2015.

25. C. Anagnostopoulos and P. Triantafillou, “Query-Driven Learning for Predictive Analytics of Data Sub-

space Cardinality,” in ACM Trans. on Knowledge Discovery from Data. (ACM TKDD), 2017.

26. Anon. (2018). XLeratorDB. Available: http://westclintech.com/

27. Beleites C., Neugebauer U., Bocklitz T., Krafft C. and Popp J., “Sample size planning for classification

models,” Analytica chimica acta, no. 760, pp. 25–33, 2013. https://doi.org/10.1016/j.aca.2012.11.007

PMID: 23265730

28. Z. Cai, Z. J Gao, S. Luo, L. L. Perez, Z. Vagena and C. Jermaine, “A comparison of platforms for imple-

menting and running very large-scale machine learning algorithms,” in Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data. ACM, 2014, pp. 1371–1382.

29. T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016, 785–794

30. Chen T., Singh S., Taskar B. and Guestrin C., “Efficient second-order gradient boosting for conditional

random fields,” in Artificial Intelligence and Statistics, 2015, pp. 147–155.

31. Cochran W. G., Sampling Techniques. John Wiley & Sons, 2007.

32. Cohen J., Statistical Power Analysis for the Behavioral Sciences. Routledge, 2013.

33. Cohen J., Dolan B., Dunlap M., Hellerstein J. M. and Welton C., “MAD skills: New analysis practices for

big data,” Proc. VLDB Endow, 2009.

34. D. Crankshaw, P. Bailis, J. Gonzalez, H. Li, Z. Zhang, M. Franklin, et al. “The missing piece in complex

analytics: Low latency, scalable model management and serving with Velox,” in Conference on Innova-

tive Data Systems Research (CIDR), 2015.

35. D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez and Ion Stoica. (2016). Clipper: A Low-

Latency Online Prediction Serving System. arXiv preprint arXiv:1612.03079.

36. https://xgboost.readthedocs.io/en/latest/tutorials/model.html

PLOS ONE A new framework based on features modeling and ensemble learning to predict query performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0258439 October 18, 2021 18 / 18

http://westclintech.com/
https://doi.org/10.1016/j.aca.2012.11.007
http://www.ncbi.nlm.nih.gov/pubmed/23265730
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://doi.org/10.1371/journal.pone.0258439

