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Comparative integrated omics: identification of key
functionalities in microbial community-wide metabolic
networks
Hugo Roume1,5,6, Anna Heintz-Buschart1,6, Emilie EL Muller1, Patrick May1, Venkata P Satagopam1, Cédric C Laczny1,
Shaman Narayanasamy1, Laura A Lebrun1, Michael R Hoopmann2, James M Schupp3, John D Gillece3, Nathan D Hicks3,
David M Engelthaler3, Thomas Sauter4, Paul S Keim3, Robert L Moritz2 and Paul Wilmes1

BACKGROUND: Mixed microbial communities underpin important biotechnological processes such as biological wastewater
treatment (BWWT). A detailed knowledge of community structure and function relationships is essential for ultimately driving these
systems towards desired outcomes, e.g., the enrichment in organisms capable of accumulating valuable resources during BWWT.
METHODS: A comparative integrated omic analysis including metagenomics, metatranscriptomics and metaproteomics was
carried out to elucidate functional differences between seasonally distinct oleaginous mixed microbial communities (OMMCs)
sampled from an anoxic BWWT tank. A computational framework for the reconstruction of community-wide metabolic networks
from multi-omic data was developed. These provide an overview of the functional capabilities by incorporating gene copy,
transcript and protein abundances. To identify functional genes, which have a disproportionately important role in community
function, we define a high relative gene expression and a high betweenness centrality relative to node degree as gene-centric and
network topological features, respectively.
RESULTS: Genes exhibiting high expression relative to gene copy abundance include genes involved in glycerolipid metabolism,
particularly triacylglycerol lipase, encoded by known lipid accumulating populations, e.g., Candidatus Microthrix parvicella. Genes
with a high relative gene expression and topologically important positions in the network include genes involved in nitrogen
metabolism and fatty acid biosynthesis, encoded by Nitrosomonas spp. and Rhodococcus spp. Such genes may be regarded as
‘keystone genes’ as they are likely to be encoded by keystone species.
CONCLUSION: The linking of key functionalities to community members through integrated omics opens up exciting possibilities
for devising prediction and control strategies for microbial communities in the future.
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INTRODUCTION
Our ability to study microbial communities in natural settings as
well as in engineered systems, e.g., biological wastewater
treatment (BWWT) plants, has dramatically improved in recent
years owing to rapid advances in high-throughput DNA sequen-
cing technologies and other ‘meta-omic’ analyses which are
driving molecular microbial ecology into the era of Eco-Systems
Biology.1 Although metagenomic data provide gene inventories,
without any proof of their functionality, the analysis of
community-wide transcripts facilitates an assessment of
community-wide functions,2 and community proteomics provide
representation of the actual phenotypic traits of individual
community members.3 Metabolomics, through resolving the final
and intermediate products of cellular metabolism, should
theoretically be the most sensitive indicator of community-wide
phenotypes and allow inference of key metabolic processes.4

However, current metabolomic methodologies are limited in the
number of metabolites that can be measured as well as their
limited identifiability.5

The reconstruction of metabolic networks based on genomic
data presents a compelling alternative to metabolomics for
resolving the metabolic capabilities of organisms.6 So far, the
conventional approach used to progress from single to multi-
species metabolic network reconstructions has involved treating
the metabolic networks of individual species as an input–output
system to build network-based7 or constraint-based8 models of
metabolic interactions. However, these multi-species models,
which are usually limited to only a few species, fail to explain
how variations in gene or species composition affect the overall
metabolic state of ecosystems.9 Given the complexity of microbial
communities, as well as the inability to isolate and sequence
representative single cultures of all organisms within a commu-
nity, such bottom-up approaches may be limited by the inherent
impossibility to extrapolate community-wide networks and
behaviour from individual isolate omic data sets.1 Recently
developed alternative approaches involve the determination of
community-wide metabolic potential10 and the reconstruction
of community-wide metabolic networks based directly on
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metagenomic data,11 thereby ignoring the contribution of
individual species.12 Through this population-independent
approach, Greenblum et al.12 identified enzyme-coding genes,
either enriched or depleted, in stool samples of human individuals
with obesity or inflammatory bowel disease, highlighting the
potential of such approaches for the identification of key
metabolic traits within microbial consortia. Ideally, top-down
and bottom-up approaches should be combined to identify links
between microbial community structure and function, thereby
bridging the gap between population-level metabolic networks
and the larger community-wide networks to ultimately build a
systems-level model of interactions between species.13

Here, we discuss a framework for comparative integrated omic
analyses, which allows integration of systematically generated
multi-omic data within reconstructed community-level metabolic
networks. The resulting networks allow assessment of gene
expression and protein abundances in combination with network
topological features. We propose the use of these networks as an
alternative to identifying keystone species through co-occurrence
networks14 (Figure 1a). Reconstruction of co-occurrence networks
requires large numbers of highly resolved samples and spurious
correlations can affect interpretability of the resulting networks.15

Here, we identify genes encoding key functionalities in recon-
structed community-wide metabolic networks and trace these
back to the community members which encode them. Through
their activity, keystone species are expected to have a dis-
proportionately large effect on their environment, relative to their
abundance.16 Their removal would greatly impact community
structure and function.17 For example, in the human colon,
specialist primary degraders such as Ruminococcus bromii are
considered keystone species because of their ability to initiate the
degradation of recalcitrant substrates.18 Herein, we define key
functionalities as specific functions which have an overall
pronounced effect on ecosystem functioning, because they
exhibit a high relative gene expression and are represented by a

node with a prominent topological position within a community-
wide metabolic network (Figure 1b). The loss of such nodes would
result in a lack of connectivity and this would greatly impact the
overall topology of the community-wide metabolic network. In
addition, the expression of these genes will likely be rate-limiting,
similar to the effect of ‘load points’ on reconstructed single-
organism metabolic networks,19 and thereby will govern the
metabolic outcomes of the entire community. Therefore, by
altering the expression of such genes, the community-wide
phenotype could be influenced. By extension, members of the
microbial community carrying out these functions would likely
also be keystone species.
We apply the developed methodological framework to

oleaginous mixed microbial communities (OMMCs) sampled from
the surface of an anoxic BWWT tank in autumn and winter,
respectively (Figure 2a,b). BWWT plants exhibit well-defined
physical boundaries and represent a convenient and virtually
unlimited source of spatially and temporally resolved samples. The
microbial communities found in BWWT plants represent an ideal
model system for microbial ecology20 because these communities
are comparatively well described and lie between communities of
low diversity, e.g., acid mine drainage biofilms,21 and complex
communities such as those found in the human gastrointestinal
tract22 or soil environments23 while retaining important hallmarks
of both ends of the spectrum. These characteristics include
(i) levels of dominance of individual taxa typically associated with
low diversity communities (up to 30% of the community), most
notably either Candidatus Microthrix parvicella (henceforth
referred to as Microthrix parvicella) or Perlucidibaca spp. depending
on the time of year;24 and (ii) the functional potential to adapt to
rapid environmental changes typically observed in more diverse
communities. Compared with BWWT microbial communities that
are more typically studied, e.g., bulk activated sludge, OMMCs
have additional important attributes which render them ideally
suited as a model for the development and implementation of
eco-systematic approaches. These include (i) limited species
richness, i.e., operational taxonomic unit (OTU) richness of
approximately 600 (Chao25 estimate from previous data24)
compared with more than 1,000 (ref. 26) for activated sludge;
(ii) high reproducibility between samples taken at the same
time point.4,27 Apart from these characteristics, the targeted
enrichment of OMMCs is of biotechnological interest as this would
allow the reclamation of a significant fraction of the chemical
energy contained within wastewater through lipid recovery and
subsequent biodiesel synthesis.28,29 However, for such enrichment
strategies to be successful, a detailed understanding of
community function is necessary.30 For example, identified key
functionalities may ultimately serve as driver nodes31 for
controlling these communities.

MATERIALS AND METHODS
Sampling
OMMCs were sampled from the anoxic tank of the Schifflange (Esch-sur-
Alzette, Luxembourg; 49°30′48.29″N; 6°1′4.53″E) BWWT plant as described
previously.4 Samples were taken on 4 October 2010 (referred to herein as
the autumn OMMC) and 25 January 2011 (referred to herein as the winter
OMMC; physico-chemical characteristics of the wastewater on the
sampling dates are provided in Supplementary Table 1). These dates were
chosen because they are representative of both extremes of OMMC-wide
phenotypes, whereby, during the autumn sampling date, the tank
exhibited only sparse amounts of OMMC biomass (Figure 2a) and, on
the winter sampling date, ample amounts of OMMC biomass were present
(Figure 2b).

Biomolecular extractions
A previously developed biomolecular isolation framework for community-
integrated omics4,27 was used to sequentially extract total RNA, genomic
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Figure 1. Criteria for defining keystone nodes in microbial species
interaction and community-wide metabolic networks. (a) Criteria for
identifying keystone species in reconstructed species interaction
networks. Nodes represent taxa and edges represent associations
between them. Node sizes reflect activity. (b) Criteria for identifying
genes encoding key functionalities in reconstructed community-
wide metabolic networks. Nodes represent enzyme-coding genes
and edges correspond to shared metabolites (either reactants,
products or educts). Node sizes reflect relative expression.
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DNA and proteins from single OMMCs based on the Qiagen AllPrep
DNA/RNA/Protein Mini kit (QA, Qiagen, Venlo, The Netherlands). The
quality and quantity of isolated biomacromolecules were assessed as
described previously4 (Supplementary Table 2, Supplementary Materials
and methods).

High-throughput sequencing
Total genomic DNA and ribosomal RNA-depleted retrotranscribed cDNA
from both samples were sequenced on an Illumina Genome Analyzer IIx
(Supplementary Materials and methods). Raw metagenomic and meta-
transcriptomic sequence data files are accessible in nucleic acid databases
under BioProject PRJNA230567, sample LAO-A01 (SRX612782 and
SRX612783) and LAO-A02 (SRX389533 and SRX389534).

Metagenomic and metatranscriptomic sequence assembly, gene
annotation and determination of gene abundances
Raw 100 nt paired-end sequencing reads from the metagenome and
metatranscriptome libraries from each of the two sampling dates were first
trimmed and quality filtered using the trim-fastq.pl script from the
PoPoolation package32 and overlapping read pairs were assembled using
the PAired-eND Assembler33 (PANDAseq). Non-redundant assembled
PANDAseq read pairs and non-assembled reads from metagenomic and
metatranscriptomic data sets of both sampling dates were then used as a
single input for the MOCAT assembly pipeline.34 The resulting non-
redundant contigs and PANDAseq-assembled read pairs that had not been
used were then combined and filtered with a minimum length threshold
of 150 bp. Protein-coding genes were predicted using the Prodigal gene
finder35 (v2.60, contigs above 500 bp) or FragGeneScan36 (contigs between
150 and 500 bp). The resulting amino acid sequences from both contig
sets were merged and made non-redundant using CD-HIT.37 All predicted
gene sequences are accessible through MG-RAST38 as ID MGM4550606.3.
The Kyoto Encyclopedia of Genes and Genome39 database version 64.0
was used to functionally annotate genes with Kyoto Encyclopedia of Genes
and Genome orthologous groups (KOs) for ensuing metabolic network
reconstruction (Supplementary Materials and methods, Supplementary
Figure 1).
To allow meaningful comparisons between gene copy and transcript

numbers from the two seasons, identical numbers of reads were sampled

from the metagenomic and the metatranscriptomic libraries of both
seasons (Supplementary Materials and methods) using an in-house
developed Perl-script. The resulting reads were then mapped to the
annotated gene sets. Cross-mapping reads were equally weighted
according to the number of genes they mapped to and mapped
reads were counted per gene. Finally, metagenomic and metatranscrip-
tomic counts were normalised by the effective length of the gene
sequence,40 yielding normalised gene copy abundances and normalised
transcript abundances, respectively. KO abundances were inferred
from the sums of normalised gene copy or transcript abundances of all
genes belonging to a given KO (Supplementary Materials and methods).
Relative gene expression values were determined per KO by calculating
the ratio of normalised transcript abundances to normalised gene copy
abundances (Supplementary Materials and methods, Supplementary
Dataset 3).

Metaproteome processing and analysis
Isolated and purified protein fractions were separated using one-
dimensional SDS polyacrylamide gel electrophoresis. The proteins were
reduced, alkylated, and digested with trypsin. The resulting peptides were
then analysed by liquid chromatography coupled to tandem mass
spectrometry. Peptide identification was carried out by database searching
using the X!Tandem software41 with the amino acid sequence database
generated from the genes predicted from the combined metagenomic
and metatranscriptomic assembly. Protein identification was carried out
using peptide-spectrum matches using the Trans-Proteomic Pipeline,42

with a probability of being correctly assigned to each protein determined
by PeptideProphet.43 The protein inferences from each fraction were
determined using ProteinProphet and then combined with iProphet44 to
obtain a master set of identified proteins at a 1% false discovery rate. All
proteomic data have been deposited in the PeptideAtlas mass spectro-
metry raw file repository at http://www.peptideatlas.org/PASS/PASS00512.
Identified proteins were assigned KO numbers using BLAT-based45

alignment against the Kyoto Encyclopedia of Genes and Genome database
v64.0 (Supplementary Materials and methods). Relative protein abun-
dances were obtained using the normalised spectral index, as described
previously24 (Supplementary Materials and methods, Supplementary
Figure 4).

Community-wide metabolic network reconstructions
Community-wide metabolic networks were reconstructed from the KOs
with metabolic functions identified in the predicted gene sets from the
combined metagenomic and metatranscriptomic assembly. The network
reconstructions were rendered season-specific by using only KOs with
mapped metatranscriptomic reads from each of the two sampling dates.
The reconstructed networks reflect a connectivity-centred view of
metabolism whereby enzymes grouped by KOs are represented by
nodes and metabolites are represented by undirected edges, which
represent either substrate or products of reactions catalysed by the
respective KOs.12 Each KO was assigned a pair-set of substrate and product
metabolites according to the RPAIR46 annotation in Kyoto Encyclopedia of
Genes and Genome database version 67.1 (Supplementary Materials and
methods).

Topological network analysis and selection criteria for genes
encoding key functionalities
To carry out a topological analysis of the reconstructed metabolic network,
nodes and edges were rendered non-redundant, by representing multiple
KOs with identical substrate and product metabolites as a single node. A
comparison between the non-redundant network and a redundant version
was also carried out (Supplementary Materials and methods). As most of
the nodes that regroup several KOs represent subunits of the same
enzyme, the small changes incurred on betweenness centrality and load
by making the nodes non-redundant enhance the ability of these
topological measures to identify key enzymes in the reconstructed
community-wide metabolic networks (see also Supplementary Results
and Discussion). Key functionalities were identified on the basis of
topological criteria and relative gene expression. The topological selection
criterion was defined in analogy to ‘load points’ as defined by Rahman and
Schomburg19 in the context of reconstructed single-cell metabolic
networks. Load points have the highest ratio of betweenness centrality
(the number of valid shortest paths passing through them) relative to node
degree (the number of neighbouring nodes; referred to as ‘neighbourhood

Figure 2. OMMC composition in autumn and winter seasons.
Photographs of the OMMCs located at the water surface of the
anoxic tank at the Schifflange BWWT plant in (a) autumn and (b)
winter sampling dates. Abundance of genera of dominant commu-
nity members based on reconstructed 16S rRNA gene sequences
from metagenomic data in (c) autumn and (d) winter. OMMC,
oleaginous mixed microbial community; rRNA, ribosomal RNA.
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connectivity’ by Rahman and Schomburg19). Node degree and between-
ness centrality, among other topological measures, of each node were
computed using the Cytoscape Network-Analyzer plug-in,47 considering the
reconstructed network as undirected. These parameters were used to
calculate load scores as defined in Equation (1).

load scoren ¼
P

s≠n≠ tðσstðnÞ=σstÞ
knP

e

ð1Þ

where s and t are nodes in the network different from n, σst is the number
of shortest paths from s to t, and σst(n) is the number of shortest paths
from s to t that n lies on, kn denotes the node degree of n, and Σe denotes
the total number of edges in the network. Thus, load score describes the
number of reaction paths or conversions between metabolites that utilise a
given enzyme, relative to its connectivity. It therefore serves as a proxy for
an enzyme’s contribution to the metabolic fluxes of the overall community.
We prioritised the nodes with the top 10 per cent of load scores. In

addition to this topological criterion, the relative gene expression of a
node (either from a single KO or nodes regrouping several KOs) was
also taken into account, such that only KOs with a high relative
expression (top 10 per cent) were regarded as genes encoding key
functionalities (Supplementary Materials and methods). Key functionalities
were analysed for their involvement in the metabolism of uniquely
occurring metabolites, i.e., to assess whether they represent ‘choke points’
as defined by Rahman and Schomburg.19 For the calculation of an
alternative load score weighted according to the occurrence of the
metabolites which should restrict ‘load points’ to nodes within pathways46

and a detailed analysis of sensitivity to the chosen cut-offs, see
Supplementary Materials and methods.

Linking genes encoding key functionalities to specific organisms
The presence of the identified genes in genomes of bacterial isolates was
determined by aligning contigs bearing these genes to the contigs from
genome assemblies of these strains using BLAST (Supplementary Materials
and methods).

Isolate strain culture and whole-genome sequencing
OMMC biomass sampled on 12 October 2011 was cultured on different
growth media recommended for the culture of bacteria from water and
wastewater and isolation procedures followed (Supplementary Materials and
methods). In all, 140 pure bacterial cultures were obtained and screened for
lipid inclusions using the Nile Red fluorescent dye.48 Following DNA
extraction using the Power Soil DNA isolation kit (MO BIO, Carlsbad,
CA, USA), the genomes of 85 Nile Red-positive isolates were sequenced
on an Illumina HiSeq Genome Analyzer IIx using the same sequencing
approach as described for the metagenomic samples. The resulting
sequencing reads were assembled using either the Abyss49 or the
SPAdes50 assemblers (Supplementary Materials and methods). Based
on the presence of a gene encoding a key functionality, one isolate
(Isolate LCSB065) was selected for refinement of genome assembly as
well as phylogenetic and genomic analysis (Supplementary Materials and
methods).

Code availability and computational resources
All in-house developed scripts are available from the authors upon request.
In silico analysis results were obtained using the high performance
computing facilities of the University of Luxembourg.51

RESULTS AND DISCUSSION
Identification of functions encoded and expressed in OMMCs in
autumn and winter
High-resolution coupled metagenomic, metatranscriptomic and
metaproteomic data were generated from the OMMCs sampled in
autumn and winter. A total of 16.2 gigabases (Gb) of shotgun
metagenomic paired-end 100 nt read sequence data as well as
38.6 Gb of metatranscriptomic sequence data were obtained.
6.5 million genes were predicted from a 6.7 million contigs of a
combined assembly (1.6 Gb total length) of all metagenomic and
metatranscriptomic reads (Supplementary Table 3). Based on
reconstructed 16S ribosomal RNA gene sequences from the

metagenomic data (Supplementary Materials and methods), the
autumn and winter communities are dominated by Perlucidibaca
spp. and Microthrix spp., respectively (Figure 2c,d, Supplementary
Dataset 1). A total 830,679 predicted genes were annotated with
KOs and regrouped (Materials and methods), yielding a total of
7,270 unique KOs. In the autumn sample, 10,074 protein groups
(identified proteins grouped together because they share
detected peptides) were identified using 19,248 non-redundant
peptides out of a total of 727,155 mass spectra. In the winter
sample, 7,106 protein groups were identified from 15,966 non-
redundant peptides out of a total of 620,488 tandem mass spectra.
A total 4,906 and 5,007 proteins were unambiguously identified in
the autumn and winter samples, respectively.
The congruency between the metagenomic and metatranscript-

omic data was high, as 92% of KOs represented in the
metagenomic data are also present in the metatranscriptomic
data for both autumn and winter data sets (Supplementary
Dataset 2). The coverage of KOs was lower in the proteomic data,
as 1,357 KOs (26% of KOs annotated in the metagenomic data set)
and 1,236 KOs (23%) were identified in autumn and winter
OMMCs, respectively. These proportions were mirrored by KOs
within metabolic pathways (Figure 3a,b). This comparatively low
metaproteomic coverage is due to current limitations in
proteomic technologies for metaproteomic analyses.52

Analysis of highly expressed genes in winter and autumn
communities
Given the limited depth of coverage in the proteomic data, we
mainly focused our subsequent comparative analyses on the
metagenomic and metatranscriptomic data. Metaproteomic
results were, however, used to corroborate and validate inter-
pretations based on the analysis of the metatranscriptomic data.
The comparison of KOs present in the metagenomic and
metatranscriptomic data sets highlighted 757 (12%) and 210
(4%) unique KOs in autumn and winter OMMCs, respectively.
Similar results were found in the comparison of KOs from
metabolic pathways (Figure 3c). This analysis highlights a relatively
limited difference in terms of genetic potential and gene
expression between the two seasonally distinct OMMCs despite
stark differences in community structure (Figure 2c,d).
For each identified KO, we calculated relative gene expression,

which is considered to be more informative than simple transcript
abundance because expression levels are normalised to metage-
nomic gene copy numbers.53 Furthermore, it allows quantitative
insights into the contribution of low abundance members (such
populations may be potential keystone species) to overall
community activity to be obtained.54 KOs with high relative
expression in both seasons (Figure 3d,e, Supplementary Dataset 3)
were further analysed, as these are good candidates for genes
which likely affect the overall community phenotype. Among
these, enrichments were found in KOs linked to nitrogen
metabolism, as well as oxidative phosphorylation and non-
ribosomal peptide synthesis in both seasons (Supplementary
Dataset 3). The highly expressed KOs involved in nitrogen
metabolism represent enzymes for ammonium assimilation and
oxidation, denitrification and nitrification. In particular, they
include genes encoding likely subunits of ammonia mono-
oxygenase (AMO; K10944, K10945 and K10946). AMO has a key
role in the first step of nitrification carried out by aerobic
ammonia-oxidising bacteria, mainly belonging to Nitrosomonas
spp. and Nitrosospira spp.54 AMO was previously found to be
highly expressed in BWWT biomass.55 In addition to the nitrogen
metabolism enzymes expressed at a high level in both seasons, a
nitrite reductase gene (K00363) was highly expressed in the
autumn sample.
In the winter sample, the glycerolipid metabolism was enriched

within highly expressed KOs. In particular, triacylglycerol lipase
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(K01046) exhibited pronounced transcript levels and its expression
was also confirmed at the protein level (Supplementary Dataset 2).
The most highly expressed genes of the 6,222 genes belonging to
this KO could be matched to Acinetobacter spp., which are known
to occur in BWWT plants and accumulate triacylglycerols.56

Furthermore, out of the genes with detectable expression, the

two gene sequences with the highest gene copy numbers (i.e.,
abundance in the metagenomic data) were matched to the
genome sequence of Microthrix parvicella BIO17-1 (ref. 57), which
is enriched in KOs involved in lipid metabolism57 (11.3% of its
annotated genes). The presence of these enzymes was recently
suggested to be essential for lipid accumulation in a metabolic

Figure 3. Integration of metagenomic, metatranscriptomic and metaproteomic data. (a) Venn diagram highlighting subsets of KEGG
orthologous groups (KOs) in metabolic pathways present in the metagenomic (dark brown), metatranscriptomic (orange) and metaproteomic
(pale brown) data from the autumn sample. (b) Subsets of KOs in metabolic pathways present in the metagenomic (dark blue),
metatranscriptomic (cyan) and metaproteomic (pale blue) data from the winter sample. (c) Comparison of occurrence of KOs in metabolic
pathways in metagenomic and metatranscriptomic data sets from autumn and winter. (d) Comparison of KO gene copy abundance (KOGA)
and transcript abundance (KOTA) of KOs in metabolic pathways in the autumn data set. (e) Comparison of KO gene copy abundance (KOGA)
and transcript abundance (KOTA) in metabolic pathways in the winter data set. In d and e, highly expressed KOs are highlighted in red.
(f) Simplified autumn-specific metabolic network reconstruction. (g) Simplified winter-specific metabolic network reconstruction. In f and g,
size of nodes represents KO abundance at metagenomic (blue), metatranscriptomic (green) and metaproteomic (magenta) levels, respectively.
KEGG, Kyoto Encyclopedia of Genes and Genome.
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model reconstruction of Microthrix parvicella,58 but not until now
were they found to be expressed in biological wastewater
treatment communities. The pronounced expression of the
aforementioned KOs involved in ammonium oxidation and the
hydrolysis of triacylglycerols during both seasons emphasises the
capability of the OMMCs to remove two of the main compounds
present in wastewater, i.e., ammonia59 and lipids.60

In the winter sample, KOs from the TCA cycle were also
strongly expressed and the majority could be detected at the
proteome level. Rather surprisingly, in the autumn sample,
photosynthesis KOs were enriched. Expression of photosystem I
in autumn was also confirmed by proteomics suggesting that
phototrophic organisms are part of the floating OMMC during this
season.

Reconstruction of a generalised and season-specific OMMC-wide
metabolic networks
A community-wide metabolic network was reconstructed using
the KOs expressed in the autumn and winter samples (Materials
and methods, Supplementary Figure 5, Supplementary Dataset 4).
The reconstructed network comprised 1,432 KO nodes with 29,988
edges representing non-unique metabolites.
Season-specific networks were reconstructed analogous to the

generalised OMMC-wide network, but by only using the 1,885 KOs
or 1,775 KOs expressed in autumn or winter, respectively
(Figure 3f,g, Supplementary Datasets 5 and 6). This yielded
networks comprising 1,298 nodes with 25,842 edges and 1,375
nodes with 27,370 edges forming a connected network for winter
and autumn, respectively.
Among the KOs specific to the autumn network, functions in

the metabolic pathways for porphyrin and chlorophyll
metabolism, sesquiterpenoid, triterpenoid and carotenoid
biosynthesis pathways (ko00860, ko00909 and ko00906) were
found to be enriched. This reinforces the notion that photosynth-
esis occurs in the OMMC sampled in autumn, while photosyn-
thetic gene appear to be below the detection limit in the winter
sample.

Identification of season-specific metabolic traits
The autumn- and winter-specific community-wide metabolic
network reconstructions exhibit similar structures (Figure 3f,g)
and represent 1,605 common KOs (i.e., 88 or 94% of the KOs
included in the autumn or winter network reconstructions,
respectively). Based on the reconstructed networks, a detailed
network topological analysis was carried out (Supplementary
Dataset 7).
Load scores (Equation 1) were determined in the reconstructed

season-specific community-wide metabolic networks (Materials
and methods). Most of the nodes in both the autumn- and winter-
specific networks, which feature a high degree, represent KOs
involved in amino acid synthesis. The relative small average
shortest path lengths of 3.21 and 3.29 in the autumn and winter
network reconstructions demonstrate that these represent ‘small
world’ networks.61 Among the nodes with the highest between-
ness centrality, i.e., the highest number of shortest paths passing
through a node,62 in both metabolic reconstructions, KOs with
functions in pyruvate metabolism, glycolysis or gluconeogenesis
and glycerolipid metabolism were enriched (false discovery rate-
adjusted P value o0.05). In contrast, relatively higher between-
ness centrality of the nodes representing KOs in fatty acid
metabolism pathway (ko01212) was observed in the network
reconstruction from the winter data set (median fold change of 4;
Wilcoxon signed rank test P value o0.001; enriched with false
discovery rate-adjusted P value o0.00001; Supplementary
Figure 6, Supplementary Dataset 7) suggesting distinct substrate
usage in both seasons. Other functions, in which this subset of
KOs was enriched, included porphyrin and chlorophyll

metabolism, biotin metabolism, polyketide sugar unit biosynth-
esis, lipoic acid metabolism and fluorobenzoate degradation
(ko00860, ko00780, ko00523, ko00785 and ko00364), while only
phosphoinositol metabolism (ko00562) was significantly enriched
among the functions of the nodes with a higher betweenness
centrality in the autumn network.

Identification of genes encoding key functionalities
Keystone species occupy topologically important positions in
species interaction networks63 and are characterized by a high
relative activity.17 Within a community-wide metabolic network
reconstruction, key functionalities contributed by keystone
populations should be encoded by genes which exhibit a high
relative gene expression and these genes should also occupy
important topological positions in relation to the community-wide
metabolic network, i.e., they should represent ‘load points’19

(Figure 1b). Herein, we therefore identify genes having a high load
score (Equation 1) within the season-specific metabolic networks
as well as high relative expression in the respective data sets
(Figure 2b, Figure 4, Materials and methods). Selected genes
are reported and potential ‘choke points’ are indicated in
Supplementary Dataset 7. According to Rahman and Schomburg,
choke points are special cases of load points, which consume
and/or produce unique metabolites. Given that uniqueness of a
metabolite is a strong claim in the context of the reconstructed
community-wide metabolic networks as much of community
metabolism remains unknown (only 13% of the predicted genes
could be confidently annotated with a function), the identification
of key functionalities by using load points was chosen as a more
robust and appropriate measure in the present case. The positions
of the key functionalities within the networks as per our criteria
(Figure 1b) are indicated in Figure 4 and Supplementary Figure 7.
KOs involved in porphyrin and chlorophyll metabolic pathways are
enriched among the selected genes in the autumn community, as
are KOs with a function in degradation of aromatic compounds.
Among the genes encoding key functionalities in the winter
OMMCs, no significant enrichment among KOs from a particular
pathway could be observed. However, one of these genes is
K03921, coding for an acyl-[acyl-carrier-protein] desaturase,
which is part of the biosynthesis pathway for polyunsaturated
fatty acids.
In both the autumn and winter sets of season-specific key

genes, the subunits of ammonia or methane monooxygenase
(AMO or MMO) stand out. As discussed above and given the
sampling from a nitrifying–denitrifying wastewater treatment
plant, this is likely an AMO which catalyses the first essential step
of nitrification by converting ammonia to hydroxylamine.64 In
contrast, MMO is involved in methane oxidation, which is less
likely to be expressed in the sampled environment.

Linking genes encoding key functionalities to community
members
Having selected genes encoding key functionalities within the
sampled OMMCs using the reconstructed community-wide
metabolic networks (Supplementary Dataset 7), we were inter-
ested in revealing which organisms expressed these genes within
the community. As these genes contribute essential functionalities
to the community and are characterized by relatively high
expression, they are likely to be encoded by keystone species.
Contigs containing genes annotated with one of the genes
encoding key functionalities were selected from the combined
metagenomic and metatranscriptomic data sets. These contigs
were aligned to the NCBInr nucleotide database (Supplementary
Dataset 7) to identify organisms encoding genes with similarity to
the expressed genes of interest.
For five such genes (K03921, K01186, K01576, K01709 and

K03335), no significant matches could be identified. On the other
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hand, three of these key genes from the winter-specific network
(K01251, K00789 and K03527) were expressed from a multitude of
contigs, which could be aligned well to over 50 different species.
Half of the matched contigs encoding the five autumn key genes
from the chlorophyll- and porphyrin-synthesis pathway (K03403,
K03404, K03405, K04034, K04035) were most similar to sequences
encoded by the genome of the cyanobacterium Oscillatoria
nigro-viridis PCC 712. The relative expression of these genes
accounted for 85% of the expression of these genes in autumn
(Supplementary Dataset 7). Some Oscillatoria spp. are found in
wastewater, where they have been found to participate in nitrate
removal.65

From the list of genes encoding key functionalities, we further
selected the acyl-[acyl-carrier protein] desaturase (K03921) and the
three subunits of AMO or MMO (K10944, K10945 and K10946)
for further analysis. In all, 922 out of 1,067 contigs belonging to
the AMO or MMO complex matched best to sequences of
Nitrosomonas spp. a well-known genus of nitrifiers. The other

contigs matched sequences from uncultured organisms or, in two
cases, to a MMO from Methylovulum miyakonense. These two
cases only represented 0.1% of the total contig length of the
KOs K10944–K10946. Furthermore, less than 1% of the metatran-
scriptomic reads mapped to these two contigs, suggesting that
the major function of these KOs is in ammonia rather than
methane oxidation. In addition, a refined assembly of contigs
belonging to K10944–K10946 using additional metagenomic data
from a third sampling date (Supplementary Materials and
methods) yielded a new contig containing complete sequences
for amoA (an established phylogenetic marker for nitrifying
microorganisms66), and amoB, both also matching best to
Nitrosomonas spp. A phylogenetic tree was reconstructed using
the predicted amino acid sequence of AmoA from this contig and
the tree clearly places it closest to sequences of Nitrosomonas spp.
(Figure 5a, Supplementary Table 4). To estimate the abundance of
Nitrosomonas spp. in the sampled OMMCs, metagenomic and
metatranscriptomic reads were mapped against the genome

K10944-K10945-K10946 
K10944-K10945-K10946 

K09321 

a b

c d

Figure 4. Topological analysis of the reconstructed season-specific community-wide metabolic networks and assessment of relative gene
expression. (a) Autumn- and (b) winter-specific networks. In (a) and (b) node colours refer to load score and node sizes represent relative gene
expression. KOs encoding key functionalities are encircled and highlighted by arrow heads. (c and d) Results of the topological analysis of KOs
in simplified season-specific networks for (c) autumn and (d) winter. Highly expressed genes are indicated as black dots and KOs encoding key
functionalities are indicated by brown (autumn) or cyan (winter) asterisks. Dotted red lines indicate minimal load score of KOs deemed to
encode key functionalities.
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sequence of Nitrosomonas sp. Is79 (ref. 67), yielding approximately
twice as many metagenomic reads in winter compared with
autumn (Supplementary Table 5). The ratio of metatranscriptomic
to metagenomic coverage was four times higher in winter than
in autumn, indicating a higher general level of activity of
Nitrosomonas spp. in the winter OMMC, although AMO activity
was high in both seasons.
In contrast to the compelling link between the putative AMO

genes and Nitrosomonas spp., linking the acyl-[acyl-carrier protein]
desaturase unambiguously to an organismal group could not be
achieved by simple alignment to reference genomes in public
databases. Of the 14 contigs which harboured genes annotated with
K03921 expressed in the winter sample, 9 did not yield any hits with
a percentage identity 480% and query coverage 450%. The
remaining five contigs yielded hits with 82 to 86% identity

to sequences from Rhodococcus erythropolis, Amycolatopsis mediter-
ranei and Nocardia cyriacigeorgica. As none of these alignments
were of high confidence, we aligned the contigs encoding acyl-[acyl-
carrier protein] desaturases to genomes of an in-house bacterial
isolate collection from the same BWWT plant. Three of the contigs
containing expressed genes matched to the same gene of the
genome of Isolate LCSB065 with 88 to 100% identity over a total of
459 nt of the combined metagenomic contig length of 678 nt.
Isolate LCSB065’s 81 contigs contain an almost complete 7.67Mbp
genome with a GC-content of 62.4% (Figure 5b, Supplementary
Dataset 8). Based on the use of 31 bacterial protein coding marker
genes, this isolate was identified as a Rhodococcus sp.68

(Supplementary Dataset 8). A detailed genomic analysis revealed a
high number of genes involved in lipid metabolism encoded by this
organism (Supplementary Results and Discussion) and non-polar

>90% 
>75% <90% 

>60% <75% 

Branch support value legend: a

b 

Rhodococcus sp. 
LCSB065 

PHB metabolism 
TAG metabolism 
Extracellular lipase 

% Identity  
(tracks A & B) 

100 – 95 

95–90 

90–80 

80–70 

70–60 

60–50 

50–40 

40–30 

30–0 

Figure 5. Linking key functionalities to important community members. (a) Phylogenetic tree based on the AmoA amino acid sequence
derived from a contig extended using combined metagenomic and metatranscriptomic data (K10944_ctg_3). (b) Circos plot of the genome of
Isolate LCSB065, highlighting amino acid similarity of encoded proteins to the Rhodococcus erythropolis PR4 genome and genes involved in
poly-hydroxybutyrate (PHB) and TAG accumulation as well as encoded extracellular lipases. From the outside to the inside track: contigs
(green) arranged by size; A: open reading frames in forward direction; B: open reading frames in reverse direction; colours in tracks A and B
indicate %-similarity to the Rhodococcus erythropolis PR4 genome; C: %G+C in 1,000 bp sliding windows. Highlighted rays indicate the location
of genes involved in PHB metabolism (violet), genes involved in TAG metabolism (blue) and extracellular lipase genes (green). TAG,
triacylglycerol.
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storage granules were also observed microscopically
(Supplementary Figure 8). As Rhodococcus spp. are known to exhibit
lipid accumulation phenotypes,69 it is likely that this organism is a
keystone species within the OMMC. Recruitment of metagenomic
and metatranscriptomic reads to the isolate’s genome
(Supplementary Dataset 8) revealed a low abundance of this
organismal group in both autumn and winter, with a relative high
transcriptional activity only in winter (Figure 5b, Supplementary
Table 5) potentially directly linking its activity to the high
community-wide lipid accumulation phenotype observed in
winter.24 Low abundance combined with an activity with a great
impact on their environment are hallmarks of keystone species and
the Rhodococcus population fulfils these criteria in the context of the
sampled OMMC.

CONCLUSION
Despite stark differences in the appearance and structure of the
sampled autumn and winter OMMCs, the comparative analysis of
integrated metagenomic, metatranscriptomic and metaproteomic
data contextualised in reconstructed community-wide metabolic
networks uncovered surprisingly few global differences in terms of
functional genetic potential and gene expression between the
two communities. This result confirms previous observations that
taxonomic profiles can be very variable whereas global functional
profiles are typically more conserved.70,71 Nonetheless, our
approach highlighted genes coding for essential enzymes
involved in nitrogen metabolism (genes involved in nitrification,
denitrification and ammonium oxidation) as being relatively
highly expressed in both seasons despite exhibiting only low
gene copy numbers. Identified differences between the two
seasons include a marked expression of enzymes involved in
glycerolipid metabolism in winter when OMMC biomass is most
pronounced (Figure 2a,b) and lipid accumulation is higher.24 In
particular, our analyses highlight the importance of triacylglycerol
lipases, which are essential for hydrolysis of lipids into long-chain
fatty acids and their subsequent assimilation and intracellular
storage. The pronounced expression of this particular enzyme
group suggests the possibility to enrich for lipid accumulating
organisms (LAOs) in BWWT plants through lipase supplementation
and environmental biocatalysis. Enhancing the growth of LAOs
through such a strategy would result in the availability of excess
amounts of lipid-rich biomass at the air–water interface of anoxic
tanks and this could, for example, be transesterified to biodiesel,
thereby allowing recovery of a significant fraction of the chemical
energy contained within wastewater.28,29

The topological analysis of the OMMC-wide metabolic networks
confirms the metabolic similarity of both autumn and winter
communities, with a high centrality of central carbon metabolism.
The measure of betweenness centrality demonstrates seasonal
variability in fatty acid metabolism, which is more enriched in the
sampled winter OMMC. The identification of genes encoding key
functionalities involved the detailed analysis of topological
features within the reconstructed community-wide metabolic
networks as well as an assessment of relative gene expression by
enzyme-coding genes. This analysis highlighted genes such as
AMO, expressed by Nitrosomonas spp., and an acyl-[acyl-carrier
protein] desaturase, expressed by Rhodococcus spp., as fulfilling
key functions in OMMCs.
The developed framework allows the integration of structural

and functional measurements through contextualisation in
reconstructed community-wide metabolic networks to result in
the identification of genes encoding key functionalities, which can
in turn be linked to functionally important community members.
These potential ‘keystone genes’ could ultimately serve as driver
nodes31 for controlling such complex microbial ecosystems.
Therefore, the application of our methodological framework to
other microbial communities for the identification of keystone

species may allow community-wide control strategies to be
formulated where other community-wide phenotypic outcomes
may be desirable, e.g., in the human gastrointestinal
tract. In silico analysis results presented in this paper were
obtained using the high performance computing facilities of the
University of Luxembourg51.
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