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Abstract: Rapid industrialization is leading to the pollution of underground natural soil by alkali
concentration which may cause problems for the existing expansive soil in the form of producing
expanding lattices. This research investigates the effect of stabilizing alkali-contaminated soil by
using fly ash. The influence of alkali concentration (2 N and 4 N) and curing period (up to 28 days)
on the unconfined compressive strength (UCS) of fly ash (FA)-treated (10%, 15%, and 20%) alkali-
contaminated kaolin and black cotton (BC) soils was investigated. The effect of incorporating different
dosages of FA (10%, 15%, and 20%) on the UCSkaolin and UCSBC soils was also studied. Sufficient
laboratory test data comprising 384 data points were collected, and multi expression programming
(MEP) was used to create tree-based models for yielding simple prediction equations to compute
the UCSkaolin and UCSBC soils. The experimental results reflected that alkali contamination resulted
in reduced UCS (36% and 46%, respectively) for the kaolin and BC soil, whereas the addition of FA
resulted in a linear rise in the UCS. The optimal dosage was found to be 20%, and the increase in
UCS may be attributed to the alkali-induced pozzolanic reaction and subsequent gain of the UCS
due to the formation of calcium-based hydration compounds (with FA addition). Furthermore, the
developed models showed reliable performance in the training and validation stages in terms of
regression slopes, R, MAE, RMSE, and RSE indices. Models were also validated using parametric
and sensitivity analysis which yielded comparable variation while the contribution of each input was
consistent with the available literature.

Keywords: black cotton soil; kaolin soil; alkali contamination; MEP modeling; unconfined
compression strength; curing

1. Introduction

The natural soil–water system can be altered by the interaction of pollutants released
from mining, agricultural, and industrial activities. Rapid industrialization has manifested
in the form of an exponential rise in the usage of chemical agents which include hydroxides
and carbonates and bicarbonates [1,2]. Among the various pollutants, the adverse effects
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of alkali contamination on the soil–water system have been well established by earlier
researchers [3,4]. The lower concentrations of alkali can alter the structure of the soil [5], and
at higher concentrations, alkali can augment the formation of new compounds in the form of
zeolites and ettringite [4,6]. The alkali interactions with the expansive clays and subsequent
swelling are a natural phenomenon primarily driven by the presence of smectite group clay
minerals (montmorillonite, illite, and vermiculite) with expanding lattices [5,7]. However,
Rao et al. [1] identified the heaving of foundations resting on non-swelling soils contributed
by acid and alkali contamination. The incidence of geotechnical failures induced by alkali
interaction reported by Rao et al. [1] confirmed the adverse effects of alkali contamination.
Traditionally, the swelling of soil was addressed by the utilization of conventional binders
such as lime and cement. However, the efficiency of traditional binders was contradicted
by Hunter (1990), who reported 3.2 m heave of lime-treated soils. Further, with the growing
impetus to promote sustainable binders with relatively lower carbon emissions, the usage of
industrial by-products has gained momentum. Among the various industrial by-products,
the efficiency of fly ash (FA) as a sustainable stabilizer/binder has been broached by recent
researchers [8–12]. Fly ashes inherently do not exhibit unconfined compressive strength
(UCS) due to lack/loss of cohesion in either dry or fully saturated conditions [13,14].
However, the UCS of FA is derived either from the difference in capillary action between
the coarse and fine fractions [15–17] or due to internal friction [18]. Though the studies
related to FA treatment on alkali-induced swelling are well documented, the attempts to
quantify the variation in strength characteristics are sparse [4,19]. Hence an attempt has
been made to evaluate the influence of alkali contamination on the UCS of two types of
clay soils, i.e., expansive black cotton (BC) soil and non-expansive kaolin soil, for varying
curing periods (1, 7, 14, and 28 days). Further, the effectiveness of FA (10%, 15%, and 20%
dry weight) as a stabilizer to enhance the UCSkaolin and UCSBC soils was also evaluated for
the aforementioned varying curing periods.

To overcome the limitation of the laborious and time-consuming nature of labora-
tory studies for the evaluation of engineering characteristics, there is a growing trend of
developing numerical models for solving engineering problems [20–22] and prediction
models for swift estimation of engineering characteristics of soils [23,24]. Initially, most of
the prediction models were developed on the basis of regression analysis with relatively
limited databases. To overcome this limitation, the advent of artificial intelligence (AI)-
based models is being promoted primarily due to their ability to estimate/predict results
even for larger databases. Sinha et al. [25] are among the early researchers to introduce
artificial neural networks (ANNs), a machine learning language of MATLAB, for the es-
timation of compaction characteristics for a database of 55 soil samples. The advent of
the ANNs has resulted in their consistent usage in dealing with complex physical and
mathematical problems [26,27]. Along similar lines, there has been a recent advancement
in genetic programming (GP)-based models in the form of gene algorithms (GAs) with the
objective of identifying optimized solutions. Cramer (1985) was the first to introduce GP,
which was subsequently improved by Koza [28] with varying sizes and shapes. The most
advanced methods among the existing linear-based GP techniques are genetic expression
programming (GEP) and multi expression programming (MEP); both are genotype compu-
tation programming methods that generate tree-like models/programs. The limitations
of GAs and GP are addressed by both the methods, which manifests in their efficiency
and swift execution (2 to 4 times faster) [29–31]. Their unique feature is their ability to
learn and adapt by varying their shape, size, and composition, which is akin to living
organisms [32,33]. However, unlike GEP, MEP adopts a demonstrative approach and
utilizes linear chromosomes for the encoding of programs/solutions. However, the final
solution (chromosome) is chosen based on the fitness value of an individual chromosome.
In general, the governing parameters in MEP include subpopulation size and number, code
length, function set, and crossover probability. Recently, this approach has gained greater
applications in the geotechnical engineering field for addressing varied problems which
include the prediction of compaction characteristics [34,35], compressive strengths [36,37],
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permeability and compressibility characteristics [38], deformation modulus [39], soil water
characteristic curves, and peak ground acceleration [40]. However, attempts to generate
models for the prediction of geotechnical characteristics of the contaminated soils are scarce.
Moreover, considering the greater uncertainty associated with clayey soils, there is a need
to develop a more realistic MEP model to estimate their strength characteristics. Thus, in
the present study, attempts were made to develop an MEP model for the prediction of the
UCS of alkali-contaminated clayey soils. For the development of the model, a compre-
hensive database of 384 soil samples was considered (part of the data was sourced from
Ashfaq et al. [19]), and a brief description of the results and the contributing mechanism is
presented in the following sections.

2. Materials and Methods
2.1. Laboratory Studies

The physical properties of the kaolin and BC soils are presented in Table 1, and it can be
noted that inherently both the soils are classified as CH (highly plastic clays). The kaolin soil
was commercially procured from Heilen Biopharm Pvt. Ltd. The FA considered in the study
is sourced from Kakatiya Thermal Power Station (18◦23′00.8′′ N; 79◦49′33.6′′ E) Bhupalpally,
Telangana, India, and its mineral composition is presented in Table 2 and is classified as
class F (due to <30% CaO content). On the other hand, the BC soil was procured from the
National Institute of Technology, Warangal (campus), by open excavation at a depth of 1 m
(soil profile studies confirmed the presence of BC soil up to a depth of 1.8 m from the ground
level), as shown in Table 1. The samples were oven-dried, and a 0.425 mm passing fraction
was considered for the UCS tests. Firstly, the soil samples were inundated at varying
concentrations of alkali for predetermined curing periods followed by UCS testing. Prior
to the UCS testing, the samples were compacted to 95% of MDD of the respective soils, and
the strain rate of 0.35 mm/min was applied in accordance with ASTM D2166. To maintain
consistency and repeatability, the alkali dosage was maintained at OMC (presented in
Table 3) for all the soil–alkali combinations. For the stabilized case, varying dosages of FA
(10%, 15%, and 20% by dry weight) were added to the alkali–soil combinations.

Table 1. Physical properties of kaolin and BC soils used in the current study.

Property Kaolin Soil BC Soil

Specific gravity 2.56 2.65
pH 7.3 7.1
USCS classification CH CH
Liquid limit (%) 41 62
Plasticity index (%) 19 28
Optimum moisture content (%) 17 23
Maximum dry density (g/cc) 1.81 1.67

Table 2. Chemical composition of fly ash in the current study.

Chemical Constituents Value (%)

Silica (SiO2) 62.9
Alumina (Al2O3) 21.7
Ferric oxide (Fe2O3) 4.5
Calcium oxide (CaO) 6.8
Magnesia (MgO) 1.08
Titanium (TiO2) 0.06
Potash (K2O) 0.04
Sulfur (SO3) 0.7
Loss on ignition 2.21
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Table 3. Experimental database of the input parameters and output parameters in the current study.

S. No. Fly Ash
Dosage (%)

Alkali Concentration
(N)

Curing Age
(Days)

UCSBC
(kPa)

UCSkaolin
(kPa)

1 0 0 1 280 255
2 0 0 1 271 261
3 0 0 1 269 259
4 0 0 1 286 275
5 0 0 1 278 268
6 0 0 1 288 277
7 0 0 7 272 262
8 0 0 7 274 264
9 0 0 7 281 270

10 0 0 7 286 275
11 0 0 7 289 278
12 0 0 7 280 269
13 0 0 14 300 265
14 0 0 14 280 262
15 0 0 14 298 279
16 0 0 14 285 266
17 0 0 14 301 281
18 0 0 14 296 277
19 0 0 28 310 270
20 0 0 28 286 267
21 0 0 28 296 277
22 0 0 28 308 288
23 0 0 28 301 281
24 0 0 28 296 276
25 0 1 1 267 236
26 0 1 1 260 231
...

...
...

...
...

...
378 20 4 14 631 851
379 20 4 28 729 998
380 20 4 28 732 987
381 20 4 28 750 996
382 20 4 28 745 1040
383 20 4 28 732 1012
384 20 4 28 740 1004

2.2. MEP Model Development

As stated earlier, the MEP approach is among the most significant linear configura-
tions of the genetic programming (GP) series since it has the ability to deliver simplistic
mathematical formulae to forecast a particular prediction model [35,41]. Therefore, the
formulization of the UCSkaolin and UCSBC soil was performed in the Multi-Expression
Programming X (MEPX version 2021.08.28.0-beta) by incorporating experimental records,
as shown in Table 3. Sufficient laboratory test data of 384 different soils for the UCS predic-
tion of FA-treated alkali-contaminated soils were collected by performing an experimental
study [42]. The MEP genes are the substrings of varying lengths that keep the chromosomal
length constant and equivalent to the total genes on each chromosome. Each gene provides
instructions for making a function or a terminal sign, whereas a gene encoding a function
includes addresses to the function parameters. The function arguments always have lower
parameter estimates than the location of the function on that chromosome [41]. A detailed
methodology for generating equations is provided here, and details of the advanced GP
approach (MEP simulation) can be found elsewhere [34,35,39,42–45].

Two-thirds of the entire data was considered for the MEP model development, whereas
one-third was utilized to validate the formulated model. Table 4 shows the maximum
and minimum values of the input (FA dosage, alkali concentration, and curing days)
and output parameters (UCSkaolin and UCSBC) used to perform strength prediction of
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FA-treated alkali-contaminated soils in the case of both training and testing data. The
maximum as well as the minimum values of all the input and output characteristics have
been tabulated in Table 4. Figure 1 shows the frequency histograms (i.e., the scatter of the
data) of the input attributes considered in the current study. The curves are smooth and
uniformly distributed, which shows a good type of data. In addition, standard deviation
(SD), kurtosis, and skewness for all the parameters are given. A smaller SD shows that
the parameters are near the respective average value. The kurtosis value represents the
sharpness of the peak of a frequency distribution curve. It clarifies the shape of probability
distribution [34]. It is pertinent to mention that the kurtosis value is only useful when used
in conjunction with the SD value. It is possible that an attribute might have a high kurtosis
(bad), but the overall standard deviation is low (good). A kurtosis value of±1 is considered
very good for most psychometric uses, but ±2 is also usually acceptable. The kurtosis
values of FA dosage, alkali concentration, curing days, and UCSkaolin approach zero and
therefore represent a mesokurtic distribution which can be seen in the histogram plot, i.e.,
Figure 1. However, the kurtosis value in the case of UCSkaolin is comparatively higher,
which represents a leptokurtic distribution (Figure 1). Lastly, the skewness depicts the
extent to which a distribution of values deviates from symmetry around the mean. Bryne
(2010) argued that data are considered to be normal if skewness is between −2 and +2.

Table 4. Statistical description of input and output parameters used for MEP modeling.

Fly Ash
Dosage (%)

Alkali
Concentration (N)

Curing Age
(Days)

UCSBC
(kPa)

UCSkaolin
(kPa)

Minimum 0 0 1 44 119
Maximum 20 4 28 750 1040

Mean 11.25 1.75 12.5 379.51 369.06
Median 12.5 1.5 10.5 365 325.5

SD 7.40 1.48 10.06 109.14 183.30
Kurtosis −1.1537 −1.1537 −1.1427 1.1374 2.2691

Skewness −0.4364 0.4364 0.5025 0.8667 1.4534

Furthermore, Table 5 shows the Pearson correlation coefficient values (represented by
‘r’) for the input parameters and the two output parameters, i.e., UCSkaolin and UCSBC. It
can be seen that the impact of all the three input parameters is linearly increasing (because
r-values are positive). In the case of both UCSkaolin and UCSBC, the order of increasing
impact of parameters follows the order: FA dosage > alkali concentration > curing age.

Table 5. Pearson correlation coefficient values for the input parameters and the UCS of alkali-
contaminated soils.

Fly Ash
Dosage (%)

Alkali
Concentration (N)

Curing
(Days)

UCSkaolin,BC
(kPa)

Fly ash dosage (%) 1
Alkali concentration (N) 0 1

Curing age (days) 0 0 1
UCSkaolin (kPa) 0.589906 0.508303 0.185189 1

UCSBC (kPa) 0.724809 0.270496 0.321986 1
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Figure 1. Frequency histograms of the input and output parameters: (a) fly ash dosage (%), (b) alkali
concentration (N), (c) curing age (days), (d) UCSkaolin, and (e) UCSBC.

The details of 36 different trials (18 for each type of soil) undertaken to develop a
model for the UCSkaolin and UCSBC with an optimal combination of hyperparameters are
provided in Table 6. The set of hyperparameters (i.e., number of subpopulations, size of
subpopulations, code length, tournament size, and number of generations) was varied in
this study to achieve the optimal performance of models. A single parameter was modified
whereas the rest were kept unchanged (as shown in Table 7) in an attempt to investigate
the effect of different code settings on the correlation coefficient (R) and the mean squared
error (MSE), as shown in Figures 2 and 3, respectively.



Materials 2022, 15, 4025 7 of 20

Table 6. Parameter setting for MEP algorithm settings for strength prediction of fly-ash-treated
alkali-contaminated soils.

Parameters Kaolin Soil BC Soil

Number of subpopulations 20 100
Subpopulation size 1000 2000

Code length 100 80
Crossover probability 0.9 0.9

Crossover type Uniform
Mutation probability 0.001

Tournament size 2
Operators 0.5
Variables 0.5
Constants 0

Number of generations 150
Function set +, −, ×, /
Terminal set Problem input

Replication number 10
Error measure Mean squared error
Problem type Regression

Simplified Yes
Random seed 0

Number of runs 10
Number of threads 1

Table 7. Details of trials undertaken in selecting the best MEP models.

MEP
Trial

No. of Sub-
population

Subpopulation
Size

Code
Length

No. of
Generations

Tournament
Size R2 R Avg.

MSE
Time
(min)

Kaolin Soil

1 10 100 20 100 2 68.54 82.79 8148 1

2 20 69.28 83.23 7489 1

3 70 66.27 81.41 7177 2

4 100 66.27 81.41 4436 3

5 200 64.57 80.36 5209 6

6 100 500 77.20 87.86 2937 25

7 1000 79.09 88.93 2521 48

8 1500 78.89 88.82 2562 72

9 2000 80.34 89.63 2485 85

10 30 82.60 90.88 2109 130

11 50 83.66 91.47 1951 220

12 80 87.19 93.38 1527 300

13 100 87.65 93.62 1474 429

14 150 88.98 94.33 1455 667

15 200 88.00 93.81 1315 925

16 20 1000 150 87.19 93.37 1551 40

17 4 89.33 94.51 1895 106

18 6 89.58 94.65 1245 102
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Table 7. Cont.

MEP
Trial

No. of Sub-
population

Subpopulation
Size

Code
Length

No. of
Generations

Tournament
Size R2 R Avg.

MSE
Time
(min)

BC Soil

1 10 100 20 100 2 72.45 85.12 14,697 1

2 20 2 78.02 88.33 10,980 1

3 70 2 77.81 88.21 11,187 2

4 100 2 77.56 88.07 9578 3

5 200 2 76.39 87.40 9804 8

6 100 500 2 79.19 88.99 8733 23

7 1000 2 80.26 89.59 8486 52

8 1500 2 81.13 90.07 8105 100

9 2000 2 80.88 89.93 8026 145

10 30 2 79.26 89.03 7993 190

11 50 2 78.80 88.77 7256 330

12 80 2 80.55 89.75 6592 357

13 100 2 80.00 89.44 7633 393

14 80 150 2 93.54 96.72 2220 552

15 200 2 92.19 96.02 2638 549

16 70 500 100 100 2 70.11 83.73 8450 90

17 4 87.66 93.63 5976 110

18 6 90.97 95.38 4400 112
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Figure 2. Comparison of normalized averaged MSE and correlation for the developed MEP model
for kaolin soil.
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In order to evaluate the UCSkaolin, the best performance was noted in the case of Trial
18 (R = 0.9465, Averaged MSE = 1245), wherein the number of subpopulations, size of
subpopulation, code length, number of generations, and tournament size were kept as 20,
1000, 100, 150, and 6, respectively. On the other hand, in determining the UCSBC, the best
performance was noted in the case of Trial 14 (R = 0.9672, Averaged MSE = 2220), wherein
the number of subpopulations, size of subpopulation, code length, number of generations,
and tournament size equal 100, 2000, 80, 150, and 2, respectively.

Using the above-mentioned adjusted hyperparameter setting, the simplified mathe-
matical expressions given for the UCSkaolin (Equation (1)) and UCSBC (Equation (2)) were
obtained, via C++ code, in order to predict the targeted UCS.

UCSKaolin = 7 ∗ X0 − 10 ∗ X1 + X2 −
(5 ∗ (X0 − X1))

X1 + 2 ∗ X2
+

(
X1 ∗ X2 +

(2 ∗ X0 ∗ X1)
X2

)
X0 − X2

+ X0 ∗ X1 +
(X0 ∗ X1 ∗ X2)

8
+ 258 (1)

UCSBC = 9 ∗ X0 − X1 + 2 ∗ X1 ∗ (X1 + X2 + 1) − (4 ∗ (X2 + 1))
X0 − 1 + X1 ∗

(
X1 +

(4 ∗ (X2 + 1))
X0 − 1 + X1 ∗ (X0 − 1)

)
− (X0 ∗ X1)

X2
+ 162

(2)

where X0, X2, and X3 represent fly ash dosage (%), alkali concentration (N), and curing
period (days), respectively.

3. Results and Discussion
3.1. Strength Characteristics
3.1.1. Effect of Alkali Contamination

The variation in the UCSkaolin and UCSBC with curing periods and alkali concentra-
tions is presented in Figure 4. The UCSkaolin and UCSBC linearly decreased with the rise in
alkali concentration, and BC soil exhibited a relatively greater fall in the UCS compared
to kaolin soil. With the increase in curing periods, both the soils increased linearly for the
controlled case. However, under the contaminated case, the kaolin soil exhibited a slight
increase in the UCS, whereas the UCSBC remained constant at lower curing periods and was
drastically reduced at higher curing periods. The variation in UCSkaolin and UCSBC in the
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untreated case can be attributed to their inherent mineralogical difference which enables the
formation of primary hydration compounds [4]. Under a contaminated scenario, the linear
decrease in UCSkaolin and UCSBC soils may be attributed to the increase in charge of clay
particles with the pH of the soil. The rise in pH contributes to the subsequent dissolution
of silica which varies with the size and crystallinity of quartz, a commonly found mineral
in both the soils [4]. Furthermore, an increase in the UCSkaolin with the curing period
may be attributed to the precipitation of hydration compounds such as nontronite and
sodium silicate hydrate. Similar observations for clayey soils were made by Sivapullaiah
and Reddy [4].
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Figure 4. The variation in UCSkaolin and UCSBC with curing period and concentration of alkali after
a 28-day curing period.

3.1.2. Effect of FA Dosage and Curing Period

The variation in the UCSkaolin and UCSBC with the alkali concentrations and FA dosage
is presented in Figure 5. Considering brevity, the results pertaining to a 28-day curing period
have been presented here. It is evident from the results that the FA addition has contributed
sufficiently to the linear increase in the UCSkaolin and UCSBC for both the controlled and
alkali-contaminated cases. In contrast to the contaminated case, the increase in the UCSBC
is substantially higher with an increment of more than 900% compared to the 350% increase
noted for kaolin soil. The increase in UCSkaolin and UCSBC is more pronounced at higher
concentrations. The linear increase in UCS of both soils is attributed to the decrease in
clay content with the FA addition [2]. The greater increment at higher concentration is
attributed to the greater affinity of dissolved silica (due to higher concentration of alkali)
to react with calcium from FA and subsequent formation of pozzolanic compounds. The
pozzolanic compounds formed not only resist alkali attack on mineral phases of soil but
also offer greater resistance to compressive loading which is manifested in the form of
increased UCS [4,19].
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3.2. Comparison between Experimental and Predicted Results

This segment focuses on efficacy examination and relative study of the MEP models
generated to compute the UCSkaolin and UCSBC, using a variety of performance indices. To
evaluate the prediction efficiency and accuracy of the proposed MEP models using MEPX
software, eight analytical standard indicators, namely regression line slope, correlation
coefficient (R), root mean squared error (RMSE), mean absolute error (MAE), root squared
error (RSE), relative root mean square error (RRMSE), Nash–Sutcliffe efficiency (NSE) and
performance index (ρ) were used in this study [46,47]. These performance measures are
defined by the following Equation (3) to Equation (9):

R =
∑n

i=1
(
Ei − Ei

)(
Pi − Pi

)√
∑n

i=1(Ei − Ei)
2 ∑n

i=1
(

Pi − Pi
)2

(3)

RMSE =

√
∑n

i=1(Ei − Pi)
2

n
(4)

MAE =
∑n

i=1|Ei − Pi|
n

(5)

RSE =
∑n

i=1(Pi − Ei)
2

∑n
i=1
(
E− Ei

)2 (6)

RRMSE =
1∣∣E∣∣
√

∑n
i=1(Ei − Pi)

2

n
(7)

NSE = 1− ∑n
i=1(Ei − Pi)

2

∑n
i=1
(

Pi − Pi
)2 (8)

ρ =

(
1
|E|

√
∑n

i=1(Ei−Pi)
2

n

)
1 + R

(9)
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where Ei and Pi are the ith actual and predicted output values, respectively; Ei and Pi are
the average values of the actual and predicted output values, respectively; and n is the
number of samples. In addition, the objective function (OBF), as given in Equation (10),
shall have a minimum value for better formulation of the model. A smaller OBF helps
in overcoming the overfitting problem. A value approaching zero exhibits an excellent
predictive capability.

OBF =

(
ntrain − nvalid

n

)
ρtrain + 2

(nvalid
n

)
ρvalid (10)

To construct accurate and robust AI-based predictive models, the ratio of experimental
values and inputs in the experimental database (as shown in Table 3) must be greater
than 3 and ideally greater than 5 [48]. In the current investigation, the prescribed ratio
is 269/3 = 89.66 (training set) and 115/3 = 38.33 (validation set), which is significantly
within safe limits and therefore depicts the robustness and superiority of the developed
MEP models for the kaolin and BC treated soils. The observed (actual) and forecasted
UCSkaolin and UCSBC in the training and validation phases, as well as the efficacy metrics
(i.e., slope, R, RMSE, MAE, RSE, RRMSE, and ρ), are shown in Figure 6a,b, respectively.
The 45◦ regression line with a horizontal axis depicts the ideally fit (1:1) line having an
inclination corresponding to 1 [49,50]. For good, reliable, and highly correlated models,
the dispersion pattern of the data points should be closer to the diagonal line crossing the
origin, with a trend line of slope approximately equaling unity, R-value greater than 0.8,
and reduced error measurements (i.e., R, RMSE, MAE, RSE, RRMSE, and ρ), as shown
in Figure 6 and Table 8. For both the kaolin and BC soil, the slopes of the trend lines are
closer to 1 (0.90: training, 1.01: validation; 0.97: training, 0.96: validation, respectively). In
addition, the R is above 0.8 (closer to 1) for both types of soils, which reflects a reasonably
strong correlation between the model predicted outputs (i.e., UCSkaolin and UCSBC) and
experimental observations. Furthermore, the OBF value of kaolin soil was 0.025694481,
whereas that of BC soil was 0.025050897 in the current study.

Table 8. Performance index values of the final MEP models for alkali-activated soils.

Dataset Performance Index Kaolin Soil BC Soil

Training

R 0.93713 0.95661

RMSE 18.271 17.151

MAE 19.6 30.0

RSE 0.1280 0.1078

RRMSE 0.0543 0.0564

NSE 0.8720 0.8922

ρ 0.0280 0.02882

Testing

R 0.90014 0.96243

RMSE 21.987 22.995

MAE 30.5 54.7

RSE 0.1972 0.0841

RRMSE 0.0458 0.0441

NSE 0.8028 0.9159

ρ 0.0241 0.0225

Only a higher R-value is not the sole indication of the reliability and accuracy of the
machine learning models [34]. Therefore, a number of error measurements were considered
to validate the robustness of the developed models. These error metrics include R, RMSE,
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MAE, RSE, RRMSE, and ρ. The optimizer of the MEP algorithm was set to minimize
the MSE while increasing the R statistic. In each model (kaolin or BC soil), the MSE and
MAE were relatively low as compared to the maximum expected output, while the RSE
reached zero. The optimized UCSkaolin model has MSE and MAE equaling 1245 and 19.6
and 2220 MPa and 30 for the training and validation phases, respectively. Likewise, the
discussed attributes are also lower for the optimized UCSBC model. Furthermore, for both
optimized models, the RSE tends to approach zero in each phase (i.e., training and valida-
tion), confirming their superior functionality. The consistent and accurate performance of
the developed models is due to the structural flow of the MEP algorithm. The MEP follows
the reproduction procedure to move the relevant information to the subsequent generation
and uses the mutation function for optimization inside the chosen chromosomes.
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Figure 6. Comparison of experimental and predicted results to evaluate the UCS in the case of
(a) kaolin soil and (b) BC soil.

Thus, the predefined configuration of the function is not taken into consideration [51,52].
In addition, the MEP technique produces randomized functions and selects the one that
best fits the experimental results [33,40,53].

It is essential to further validate the accuracy of the developed MEP models using the
values of the residual error, i.e., the difference between the model-estimated and experi-
mental UCS [54,55]. The positive/negative minimum and maximum error obtained for
the UCSkaolin model (Figure 7a) are −160 kPa and 100 kPa, respectively, and are ±130 kPa
for the UCSBC model (Figure 7b). The majority of the error readings run along the x-axis,
indicating a significant frequency of low error values. In conjunction with significantly
higher correlations and reduced error measurements, the proposed models could be advan-
tageously employed for the prediction of UCSkaolin and UCSBC, assisting practitioners and
designers to save time and skip costly laboratory tests.

The plot of actual experimental values and the ultimate response of the MEP model
for estimation of UCSkaolin and UCSBC can be seen in Figure 8a,b, respectively. In each
case, the modeled values of the training and validation phases almost go along the ob-
served (experimental) output, which shows the efficiency and accuracy of the formulated
MEP models.
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Figure 8. Tracing of experimental results by predicted values to evaluate the UCS in the case of
(a) kaolin soil and (b) BC soil.

For the kaolin soil, the MAE and RMSE of the validation dataset are 6.31% and 7.94%
lesser than the training dataset, respectively, and 9.28% and 26.66% lesser, respectively, in
the case of BC soil. The improved performance in the testing stage depicts that the proposed
MEP models have effectively learned the non-linear relationships among the inputs and
response parameters with considerably lower error statistics and higher generalization
capability [56,57]. Thus, the proposed model can be used for the prediction of UCSkaolin
and UCSBC soil, which will aid in avoiding the heavy testing process.
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3.3. Model Validity

The validity of the model is an important aspect of the AI modeling process. The
model may perform better during the training stage for one set of data, whereas it may
yield decreased performance for a new dataset. Therefore, the AI model shall be validated
using an unused dataset to investigate the accuracy of the developed model for future
applications [46,58,59]. As described in Section 3.2, the developed MEP model was vali-
dated using 30% of the experimental data; however, for further validation, the simulated
dataset was created to evaluate the effect of contributing parameters on UCSkaolin and
UCSBC shown as sensitivity and parametric analysis.

Sensitivity Analysis and Parametric Study of MEP Model

The testing of ML-based simulations is critical to ensuring that the recommended
models are trustworthy and continue to perform well over a variety of datasets. The
goal of sensitivity and parametric research is to confirm the efficacy of the proposed
MEP models in terms of their interdependency on physical events [60–62]. The sensitivity
analysis (SA) of the models on the complete dataset demonstrates how sensitive a generated
model is to a change in the input variable in question [57,61,63]. The SA is being used to
evaluate the impact of the input factors employed in this study on the anticipated UCS of
contaminated soils.

For a specific independent variable (Yi), the SA is carried out with Equations (11)
and (12) for the overall experimental database considered in the current research. This
means that one of the independent variables was changed between its extreme values while
keeping the remaining input variables at their average values, and the output was recorded
in the form of f (Yi). Next, the second independent variable was changed and the output
was monitored.

Rk = fmax(Yk)− fmin(Yk) (11)

Relative Importance (%) = SA (%) =
Rk

∑
j=1
n Rj

∗ 100 (12)

fmin(Yk) and fmax(Yk) are the minimum and maximum values of the anticipated results
based on kth domain of the input variable in the preceding equations, with the remaining
inputs kept at their mean. The results of SA can be observed in Figure 9, which shows
that the curing period and alkali concentration have almost equal contributions to yielding
UCS. The FA dosage contributes 13.37% among the three attributes. In the case of BC
soil, the curing period significantly outperforms the other two variables; however, alkali
concentration and fly ash dosage also contribute 22.96 and 7.73%, which is an important
aspect to consider when investigating FA-incorporated alkali-contaminated soil.

To begin, Figure 10 visually represents the parametric analysis of the inputs used in
this work (FA dosage, alkali content, and curing duration) for the prediction of UCS of
kaolin and BC soil. The UCS of kaolin soil varies linearly with the amount of fly ash and
alkali content, and a second-order polynomial trend is detected for the curing duration. In
the case of BC soil, a straightforward linearly rising trend is found for each input (FA dose,
alkali content, and curing duration). The increase in UCS of both types of soils with the
curing duration is obviously according to the physical process involved, correctly captured
by the MEP models, thus validating the models in this respect. Zha et al. [64] found a
significant increase in UCS up to 28 days of curing while investigating the stabilization
of metal-contaminated soil by alkaline residue. A similar increasing trend in UCS with
an increase in curing duration was observed by Fasihnikoutalab et al. [65]. An increase in
UCS was also observed with a rise in alkali content and fly ash while investigating alkali-
activated geopolymer-incorporated kaolin soil [65]. Therefore, the developed models are
deemed validated on the basis of the new experimental dataset and simulated data, which
shows the model behavior similar to that of the physical process involved in alkali-activated
kaolin and black cotton soil.
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Figure 10. Parametric study of input variables for kaolin and BC soil MEP models: (a,d) fly ash
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4. Conclusions

In the present experimental-cum-modeling study, the effect of alkali contamination on
the strength characteristics of two clayey soils (i.e., kaolin and BC soil) has been evaluated.
The efficiency of FA in remediating the alkali-induced effects was also assessed. Finally,
the results were utilized by formulating MEP-based computational prediction models
for computing the UCS of both types of the soils (UCSkaolin and UCSBC) to overcome the
demerits of laborious laboratory testing, cost, and time. The following conclusions can be
drawn from the study:

• The inundation of kaolin and BC soils in alkali solution caused the UCS property
to decrease. The higher concentrations posed a significant impact in lowering the
UCSkaolin and UCSBC. On the contrary, the FA treatment of alkali-contaminated soils
resulted in a linear increase in the UCSkaolin and UCSBC, and an increase of 7-fold was
witnessed for the BC soil. Hence, it is concluded that the alkali contamination acted as
an activator for a subsequent pozzolanic reaction when FA was incorporated.

• In order to obtain the optimal MEP model for predicting the UCSkaolin and UCSBC, a
total of 18 trials (each) were undertaken while considering the variation in (a) number
of subpopulations, (b) subpopulation size, (c) code length, (d) tournament size, and
(e) number of generations. The corresponding performance of all the trials was
evaluated using a variety of performance indices, i.e., correlation coefficient and
averaged MSE value. The best MEP model (kaolin and BC soil) was achieved in the
case of 20 and 70 subpopulations, 1000 and 50 subpopulation size, 100 each code length,
6 each tournament size, 150 and 100 number of generations, 0.9465 and 0.9538 R-value,
and 1245 kPa and 4400 kPa averaged MSE value, respectively.

• Simple regression equations developed in this study (Equations (1) and (2)) for kaolin
and BC contaminated soils can readily be used to forecast the UCS property. The
equations have been generated from relatively high accuracy models evaluated using
R, MAE, RMSE, and RSE (0.937, 19.6, 18.271, 0.128 and 0.956, 30, 17.151, 0.108) for the
training data of kaolin and BC soils, respectively.

• The generated models were evaluated using parametric and sensitivity analysis as
second-level validation. The results obtained from the parametric study manifested a
variation in UCS conforming to the literature for kaolin and BC soil with the change
in the given input parameters. The sensitivity analysis of kaolin soil showed that
curing period and alkali concentration had comparable contributions, followed by the
FA dosage, whereas for BC, soil the following increasing trend was observed: curing
period > alkali concentration > FA dosage.
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