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Hypothalamus is a brain region that controls food intake
and energy expenditure while sensing signals that convey
information about energy status. Within the hypothalamus,
molecularly and functionally distinct neurons work in concert
under physiological conditions. However, under pathological
conditions such as in diet-induced obesity (DIO) model, these
neurons show dysfunctional firing patterns and distorted
regulation by neurotransmitters and neurohormones.
Concurrently, resident glial cells including astrocytes
dramatically transform into reactive states. In particular, it
has been reported that reactive astrogliosis is observed in
the hypothalamus, along with various neuroinflammatory
signals. However, how the reactive astrocytes control and
modulate DIO by influencing neighboring neurons is not well
understood. Recently, new lines of evidence have emerged
indicating that these reactive astrocytes directly contribute
to the pathology of obesity by synthesizing and tonically
releasing the major inhibitory transmitter GABA. The released
GABA strongly inhibits the neighboring neurons that control
energy expenditure, These surprising findings shed light on
the interplay between reactive astrocytes and neighboring
neurons in the hypothalamus, This review summarizes recent
discoveries related to the functions of hypothalamic reactive
astrocytes in obesity and raises new potential therapeutic
targets against obesity.
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INTRODUCTION

The major causes of metabolic disorders such as obesity
are associated with the hypothalamus, which is crucial for
bodyweight control (Thaler et al., 2012; Thorburn and Proi-
etto, 1998). Hypothalamus consists of several small nuclei
with various functions that communicate via different neu-
rotransmitters and neuropeptides or hormones (Horvath et
al., 2004; Quadt et al., 2018). It has been established that
arcuate nucleus (ARC) of the hypothalamus firstly senses
metabolic signals and hormones, which are then conveyed
to the second-order hypothalamic regions of paraventricular
nucleus (PVN) and lateral hypothalamic area (LHA) of the hy-
pothalamus (Bouret et al., 2004; Yaswen et al., 1999). ARC,
PVN, LHA, ventromedial hypothalamus (VMH), and dorso-
medial hypothalamus (DMH) contain most of the neurons
involved in feeding and body weight control (Gold, 1973;
Gooley et al., 2006; King, 2006; Schneeberger et al., 2014,
Timper and Bruning, 2017; Waterson and Horvath, 2015).

In these hypothalamic regions, numerous types of neu-
rons can be classified using various cellular markers with
corresponding functional properties as follow: orexigenic
(promoting appetite) properties of neuropeptide Y (NPY)-
(Tatemoto et al., 1982) and Agouti-related peptide (AgRP)-
positive neurons (Miltenberger et al., 1997) and anorexigenic
(suppressing appetite) properties of pro-opiomelanocortin
(POMC) (Cowley et al., 2001) and cocaine- and amphet-
amine-regulated transcript (CART) (Kristensen et al., 1998).
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In addition, CART neurons in the ARC decrease adiposity
and increase energy expenditure (Lau et al., 2018). POMC/
CART neurons secrete an a-melanocyte-stimulating hor-
mone (a-MSH), which suppresses appetite via melanocortin
4 receptor (MC4R) (Baltatzi et al., 2008; Fan et al., 1997;
Gantz et al., 1993; Huszar et al., 1997). In addition to ARC,
PVN mediates many diverse functions via secretion of cor-
ticotropin-releasing hormone (CRH), thyrotropin-releasing
hormone (TRH), oxytocin, and vasopressin (Konturek et al.,
2005). Inputs from NPY neurons in ARC regulate energy
intake via TRH secretion (Beck, 2006; Konturek et al., 2005;
Nillni, 2010). Interestingly, ARC projections affect appetite
through MC4R-expressing oxytocin neurons (Qin et al.,
2018). Also, vasopressin cells are involved in brown fat ther-
mogenesis (Hill, 2012). LHA occupies a large portion of the
hypothalamus and contains melanin-concentrating hormone
(MCH) which is an orexinergic peptide (Barson et al., 2013),
and hypocretin/orexin. Hypocretin/orexin neurons in LHA
increase food intake while regulating brown adipose tissue
activity to enhance energy expenditure (Martins et al., 2016;
Tupone et al., 2011). VMH also contains many distinct neu-
ronal populations. Among them, steroidogenic factor 1 (SF-
1) neurons have anorexigenic properties (Zhang et al., 2020).
Lastly, DMH cholinergic neurons increase food intake (Jeong
etal., 2017), whereas TrkB-expressing neurons suppress food
intake (Liao et al., 2019). When animals are challenged by
high-fat diet (HFD) feeding, neurons that are homeostati-
cally regulated in the hypothalamus lose metabolic control
(Moraes et al., 2009) and start to show dysfunctional firing
patterns and distorted regulation by neurotransmitters and
neurohormones (Beutler et al., 2020; Sa et al., 2022). It has
been further reported that with chronic feeding of 20 weeks
of HFD, markers of neuronal injury become evident in the
neurons of the hypothalamus (Thaler et al., 2012).

Before hypothalamic neurons show dysfunctional firing
patterns and markers of neuronal injury, hypertrophic and
hyperplasic astrocytes are concurrently observed in the hy-
pothalamus even 1 day after HFD feeding (Buckman et al,,
2013; Thaler et al., 2012). Astrocytes normally participate in
brain energy metabolism by controlling glycogen storage,
sensing glucose, and supplying fuel to neurons under physi-
ological conditions (Belanger et al., 2011; Choi et al., 2012;
Fuente-Martin et al., 2012; Garcia-Caceres et al., 2016; Tim-
per et al., 2020). In addition, astrocytes secrete chemokines,
cytokines, and neurotrophic factors to promote neuronal
development, neuroplasticity, and synaptic plasticity (Casse
et al, 2018; Jo et al., 2014). Reactive astrocytes appearing
in short-term HFD act to reduce HFD overload and return to
normal (Thaler et al., 2012), whereas reactive astrocytes ap-
pearing in chronic HFD produce inflammatory factors and el-
evate inflammatory signals such as kB kinase- (IKKp)/nuclear
factor ¥B (NF-«B) signaling (Douglass et al., 2017; Zhang et
al., 2008; 2017). Furthermore, reactive astrocytes have been
reported to release gliotransmitters such as vascular endo-
thelial growth factor (VEGF) and y-aminobutyric acid (GABA)
under DIO (Gruber et al., 2021; Zhang et al., 2017). VEGF
inducese hypothalamic angiopathy and systemic hyperten-
sion. However, little is known about the effect of GABA from
reactive astrocytes on the surrounding hypothalamic neurons
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in DIO. Increasing lines of evidence suggests that elevated
levels of GABA from reactive astrocytes act as a common
molecular mechanism in other neuroinflammatory diseases,
such as Alzheimer’s disease, Parkinson’s disease, white matter
stroke, inflammation-induced anxiety, and epilepsy (Chun et
al., 2020; Heo et al., 2020; Jo et al., 2014; Nam et al., 2020;
Pandit et al., 2020; Shim et al., 2019). Recently, GABA from
hypothalamic reactive astrocytes under chronic HFD has been
shown to contribute to the pathology of obesity by inhibiting
the excitability of neighboring neurons facilitating energy
expenditure (Sa et al., 2022). In this review, we summarize
recent discoveries related to the causes of reactive astrogliosis
and the consequences of reactive astrocytes in the hypothala-
mus in an attempt to gain insights into the interplay between
reactive astrocytes and neurons under DIO.

REACTIVE ASTROCYTES IN THE HYPOTHALAMUS

Astrocyte hypertrophy has been recognized as an almost uni-
versal sign of central nervous system (CNS) pathology (Escar-
tin et al., 2021). Neuroglial proliferation has been thought to
accompany CNS lesions (Escartin et al., 2019). Astrocyte reac-
tivity is observed in various pathological contexts under acute
or chronic conditions and, in many situations, is reversible
(Escartin et al., 2019; 2021). Reactive astrocytes are defined
as astrocytes that undergo morphological, molecular, and
functional remodeling in response to injury, disease, or infec-
tion of CNS, including neurodegenerative and demyelinating
diseases, epilepsy, trauma, ischemia, infection, cancer, and
obesity (Bedner et al., 2015; Brusilow et al., 2010; Buckman
etal., 2013; Escartin et al., 2019; 2021; Garcia-Caceres et al.,
2019; Michetti et al., 2019; Sa et al., 2022; Verkhratsky et al.,
2017; Xu et al., 2010). Glial fibrillary acidic protein (GFAP) is a
major protein constituent of astrocytic intermediate filaments
and the most widely used marker of reactive astrocytes (Ben
Haim et al., 2015; Eng and Ghirnikar, 1994). As summarized
in Table 1, numerous lines of evidence point to the involve-
ment of hypothalamic reactive astrocytes in the pathogenesis
of DIO (Fig. 1).

Reactive astrocytes have been observed in various hypotha-
lamic regions in rats and mice after HFD feeding (Buckman et
al., 2015; Lee et al., 2013; Thaler et al., 2012). Among them,
most studies on reactive astrocytes after HFD have focused
on ARC (Table 1). This is probably because ARC provides a
positional advantage at the ventral border of the hypothala-
mus for rapid nutrient sensing. Therefore, most studies have
investigated reactive astrocytes in ARC after HFD feeding
(Gonzalez-Garcia et al., 2017, Miyata, 2015; Moulle et al.,
2014; Myers et al., 2009). When mice are fed HFD for ap-
proximately 1 week, the observed reactive astrocytes in ARC
tend to be reversible (Buckman et al., 2015; Thaler et al,
2012). However, after chronic HFD feeding over 8 months,
the severe reactive astrocytes are observed in the mediobasal
hypothalamus, as similarly observed in obese humans (Thaler
etal., 2012). These reactive astrocytes in ARC after HFD feed-
ing appear to be the fastest players to be observed, yet their
functional roles remain unclear. It has been proposed that
reactive astrocytes under acute HFD act to re-establish ho-
meostasis, whereas severe reactive astrocytes under chronic
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Fig. 1. Regional reactive astrocytes in hypothalamus. Distribution of reactive astrocytes in coronal sections of hypothalamus along the
AP axis in chow diet versus high fat diet-fed rodents. AP, anterior-posterior; 3V, third ventricle; FX, fornix.

HFD act to further exacerbate the dysregulated homeostasis
(Buckman et al., 2015; Thaler et al., 2012).

In other hypothalamic regions such as PVN and DMH, re-
active astrocytes are readily found after chronic HFD feeding
for 20 weeks in female DIO mice, whereas comparatively
fewer reactive astrocytes are seen in the VMH (Buckman et
al., 2013). Most studies on the DIO mouse model have been
conducted with C57BL/6J mouse, as it is the most susceptible
mouse line to obesity and obesity-related phenotypes (Mont-
gomery et al., 2013). Additionally, male mice have been
used in most studies (Table 1). This is because they are more
susceptible to weight changes during the same period than
females (Arcones et al., 2019; Hong et al., 2009). However,
the previous study comparing GFAP immunoreactivity in the
hypothalamus between chow-fed and HFD-fed mice has
been performed with females (Buckman et al., 2013). There-
fore, reactive astrocytes in PVN, DMH, and VMH need to be
re-examined in male DIO mice. Moreover, functional studies
on reactive astrocytes in these areas are very few so future
studies are needed.

Astrocytic VEGF
Chronic HFD over 20 weeks induces reactive astrocytes that

affect the structure of blood-brain barrier (BBB), which makes
it difficult for POMC and NPY cell bodies and dendrites to
access blood vessels (Horvath et al., 2010; Yi et al., 2012).
POMC neurons have been shown to lose excitatory synapses
in DIO with a significantly greater number of inhibitory inputs
and increased glial coverage (Horvath et al., 2010). Astro-
cytes in ARC secrete VEGF under chronic HFD feeding, and
this VEGF signaling increases BBB permeability (Argaw et al.,
2012; Lee et al., 2020). This profound remodeling of glio-
vascular interface after chronic HFD has been reported to be
driven by elevation of HIF1a-VEGF signaling and leptin levels
(Gruber et al., 2021).

Astrocytic NF-<B

In ARC, astrocytic leptin receptors have been associated with
the reactivity of astrocytes in DIO (Liu and Zheng, 2019).
After short-term HFD feeding for 10 days, reactive astro-
cytes have been observed without altered leptin sensitivity
(Balland and Cowley, 2017), whereas chronic HFD feeding
over 2 months induces upregulation of leptin receptor-pos-
itive reactive astrocytes (Hsuchou et al., 2009). In contrast,
astrocyte-specific deletion of leptin receptors attenuates
hypothalamic pSTAT3 signaling, but still induces astrogliosis
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and promotes the development of DIO (Wang et al., 2015),
suggesting that astrocytic leptin receptors might not be the
cause of astrocytic reactivity and that pSTAT3 signaling may
not mediate the astrocytic reactivity. Therefore, the involve-
ment of leptin receptors and pSTAT3 signaling in reactive
astrogliosis of ARC remains controversial in DIO.

Unlike that of astrocytic leptin receptors, the involvement
of astrocytic NF-xB signaling has been more clearly demon-
strated. Inhibition of NF-xB signaling in astrocytes prevents
reactive astrogliosis after HFD feeding (Buckman et al.,
2015). Further, conditional deletion of astrocytic IKKp in mice
after 6 weeks of HFD reduces the reactivity of astrocytes and
neuroinflammation in ARC, which results in a reduction in
food intake and an increase in energy expenditure (Douglass
et al,, 2017). Furthermore, astrocytic reactivation via IKKp/
NF-kB signaling modifies the astrocytic morphology and
elevates extracellular GABA level with decreased BDNF ex-
pression within mediobasal hypothalamus after 5 months of
HFD feeding (Zhang et al., 2017). However, how elevated
extracellular GABA level leads to a reduction in food intake
and an increase in energy expenditure is still unknown. Con-
ditional deletion of astrocytic myeloid differentiation primary
response 88 (Myd88), which can activate intracellular in-
flammatory signaling cascades such as NF-xB pathways (de
Git and Adan, 2015; Santamarina et al., 2018), ameliorates
the reactive astrogliosis and neuroinflammation induced by
chronic HFD and results in resistance to DIO (Jin et al., 2020).
Based on these findings, it has been proposed that activation
of neuroinflammatory signaling pathways such as Myd88 and
IKKB/NF-kB signaling disrupt the leptin signaling pathways,
thereby hampering the sensing of metabolic signals (Cai and
Liu, 2011; Lee et al., 2020). However, further investigations
are needed to better understand the involvement of leptin
signaling in reactive astrogliosis under various neuroinflam-
matory conditions.

Astrocytic MAOB-dependent GABA

LHA occupies a relatively large portion of the hypothalamus
and polysynaptically innervates adipose tissues, indicating
that it is an important region for energy balance and fat
storage. However, it has received little attention from the
perspective of reactive astrocytes in DIO. From the neuronal
perspective, it has been reported that chronic HFD feeding
reduces orexin-positive neuronal population with a selective
loss of neurons with relatively large volumes (Lemus et al,,
2015). Orexin-expressing neurons contribute to increased
food intake (Baird et al., 2009), regulate brown adipose
tissue activity, and enhance energy expenditure (Martins et
al., 2016; Tupone et al., 2011). In Wistar rats fed with HFD
for 8 weeks, it has been consistently found that apoptosis is
significantly increased, whereas synaptic input is significantly
decreased in LHA (Moraes et al., 2009). Moreover, neuronal
dysfunction and decreased neuronal activity after chronic
HFD exposure have been reported (Moraes et al., 2009; Sa
et al., 2022). Recently, a unique population of GABRA5-pos-
itive neurons in LHA has been discovered, and these neurons
display pacemaker firing activity, which is decreased after
HFD feeding in LHA (Sa et al., 2022). These GABRA5-positive
neurons are tonically inhibited by astrocytic GABA, which is
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synthesized by monoamine oxidase-B (MAOB) in reactive as-
trocytes (Lee et al., 2010; Sa et al., 2022; Yoon et al., 2014).
Astrocyte-specific MAOB knockdown in LHA reduces weight
gain without altering food intake after HFD feeding (Sa et al.,
2022). Moreover, pharmacological inhibition of MAOB leads
to significant weight loss without changing food intake in
chronic HFD-fed mice and reduces reactive astrogliosis in LHA
(Sa et al., 2022). These discoveries call for a drastic paradigm
shift in molecular targets for the treatment of obesity towards
reducing reactive astrocytes.

CAUSES OF REACTIVE ASTROCYTES

What causes reactive astrogliosis? One obvious candidate is
the fatty acid itself in HFD, which acts as a triggering mole-
cule. It is well known that chronic overnutrition increases pe-
ripheral fat levels, as well as free fatty acids from the plasma
to the brain (Karmi et al., 2010; Wang et al., 1994). High lev-
els of circulating saturated free fatty acids have been found
to activate inflammatory signaling in cultured astrocytes
(Gupta et al., 2012). In addition, enrichment of saturated fat-
ty acids causes lipid accumulation in the hypothalamus (Borg
et al., 2012; Giles et al., 2016; Posey et al., 2009). Among
the various types of saturated fatty acids, palmitic acid (16:0),
which is the predominant saturated fatty acid in the circula-
tory system and tissues, is the most common free fatty acid
accounting for 21%-30% of human deposited fat (Bysted et
al., 2005; de Almeida et al., 2002; Firl et al., 2013; Kingsbury
et al, 1961; Liu et al., 2015). Notably, it has been demon-
strated that palmitic acid treatment by intracerebroventricular
cannulation induces reactive gliosis in the hypothalamus (Jin
et al., 2020). Interestingly, long-term treatment of fatty acids
increases GABA production in cultured hypothalamic astro-
cytes, indicating that astrocytes turn into reactive astrocytes
(Lee et al., 2018). These studies raise a strong possibility that
fatty acids in HFD can cause reactive astrogliosis.

What is the triggering mechanism of reactive astrocytes? In
our previous studies, we have demonstrated how common
molecular pathways such as MAOB-dependent putrescine
degradation and GABA production are shared, even though
the triggering factors are different (Chun and Lee, 2018;
Chun et al., 2020; Heo et al., 2020; Jo et al., 2014; Nam et
al., 2020; Pandit et al., 2020; Shim et al., 2019). We have
reported that autophagic degradation pathway is commonly
triggered by pathogenic molecules such as diphtheria toxin,
AP, cytokines, damaged tissue debris, and viral infections,
which usually accompany neuroinflammation (Chun et al.,
2020; Ju et al.,, 2021). Under pathological conditions, astro-
cytes take up or internalize these toxic molecules to degrade
them and subsequently turn on the urea cycle to convert the
accumulating toxic ammonia to less toxic urea (Cohen, 1981;
Ju et al., 2021; Meijer et al., 1990; Morris, 2002). The net
consequence of this degradation and turning-on of the urea
cycle is the production of putrescine, which further turns on
MAOB-dependent production of GABA (Ju et al., 2021).
Of note, a recent study has reported that MAOB, which is
mainly expressed in astrocytes, is elevated in transcriptionally
profiled hypothalamic cells of DIO mice (Rossi et al., 2019).
In addition to GABA, excessive hydrogen peroxide (H,0,),



a reactive oxygen species (ROS) originating from MAOB in
reactive astrocytes, has been shown to cause glial activation
and neuronal death (Chun et al., 2020). It is highly likely that
the same common molecular mechanism working in the hy-
pothalamus causes reactive astrogliosis and the production of
GABA and H,0, in a MAOB-dependent manner (Chun et al.,
2020; Sa et al., 2022). Therefore, elevated free fatty acids,
acting as pathogenic molecules during chronic HFD, may pro-
duce putrescine by activating the urea cycle of astrocytes and
MAOB produces GABA and H,0, in astrocytes, the process
by which astrocytes turn into reactive astrocytes (Fig. 2). This
interesting hypothesis needs to be further investigated and
validated in the future.

CONSEQUENCES OF REACTIVE ASTROCYTES

What are the functional consequences of reactive astrocytes?
It is well known that chronic HFD induces metabolic damages
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in hypothalamic neurons. For example, POMC neurons in
ARC have shown elevated autophagy, an independent mark-
er of neuronal stress or injury, in mice fed HFD for 8 months
(Thaler et al., 2012). In other hypothalamic regions, signs
of neuronal injury, including long-lasting desensitization of
neurons and a reduction in synaptic inputs, have also been
observed in DIO (Beutler et al., 2020; Moraes et al., 2009).
In response to chronic HFD, homeostatic circuits of neuronal
activity are disrupted (Beutler et al., 2020). Moreover, chronic
HFD impairs neuronal responses to nutrients and hormones
in a way that is expected to promote weight gain, which lasts
for weeks after mice have been returned to a low-fat diet
and lost weight (Beutler et al., 2020).

Long-lasting damage to hypothalamic neurons could be a
direct consequence of reactive astrocytes. Reactive astrocytes
produce and release inflammatory factors including tumor
necrosis factor-a. (TNF-o) and Interleukin-6 (IL-6) in response
to fatty acid treatment (Gupta et al.,, 2012). However, the

Reactive astrocytes in DIO
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Fig. 2. Molecular mechanisms of causes and consequences of reactive astrocytes in DIO. Astrocytes express several receptors, such
as toll-like receptor 4 (TLR4), leptin receptor (LepR), and insulin receptor (Insulin R). High levels of circulating fatty acids (FAs) in DIO
can induce TLR4 activation. MyD88, an adaptor for TLRs, can activate IKKb/NF-xB pathways, which in turn trigger the downstream
activation of cytokines such as TNF-o. and IL-6. Long-form leptin receptor (LepR,) activates pSTAT3 signaling, which triggers downstream
transcriptions. Short-form leptin receptor (LepR,) activates HIF1a. to increase VEGF, which increases BBB permeability. Circulating FAs can
be taken up by astrocytes, which can turn on the urea cycle. Putrescine, produced from ornithine via ornithine decarboxylase 1 (ODC1), is
converted to GABA. Excessive GABA and H,0O, via MAOB can induce neuronal death and decrease neuronal excitability. These cascades

eventually lead to obesity.
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consequences of these pro-inflammatory factors are rather
contradictory. It has been reported that high concentrations
of TNF-o injection lead to weight loss in mice, whereas low
concentrations of TNF-o injection result in sufficient changes
to cause obesity (Arruda et al., 2011). Along with these con-
flicting results, mice with astrocyte-specific overexpression
of IL-6 exhibit reactive astrocytes, but no weight change in
response to HFD (Hidalgo et al., 2010). From these reports,
it is possible to conclude that pro-inflammatory factors from
reactive astrocytes might not directly cause long-lasting neu-
ronal damage.

Intriguingly, mice with astrocytic IKKB/NF-kB activation af-
ter chronic HFD feeding not only show increased expression
of several pro-inflammatory genes such as TNF-o. and IL-6
(Liu et al., 2017), but also a significantly elevated level of ex-
tracellular GABA in the hypothalamus (Gonzalez-Garcia and
Garcia-Caceres, 2021; Zhang et al., 2008; 2017). Astrocytes
release numerous neuroactive molecules, including the clas-
sical inhibitory neurotransmitter GABA (Garcia-Caceres et al.,
2019; Lee et al., 2010; Yoon and Lee, 2014). Accumulating
evidence suggest that elevated levels of GABA in reactive
astrocytes act as a common molecular mechanism in various
neuroinflammatory diseases (Chun and Lee, 2018), such as
Alzheimer's disease (Chun et al., 2020; Jo et al., 2014), Par-
kinson’s disease (Heo et al., 2020), recovery after stroke (Nam
etal., 2020), stab-wound injury (Chun et al., 2022), epileptic
seizure (Pandit et al., 2020) and inflammation-induced anx-
jety (Shim et al., 2019). Consistently, it has been reported
that extracellular GABA in mediobasal hypothalamus (ARC
and VMH) is elevated in DIO mice (Zhang et al., 2017). In our
recent study, we have demonstrated that GABA from reac-
tive astrocytes in LHA after chronic HFD feeding contributes
to exacerbation of obesity (Sa et al., 2022). Mechanistically,
MAOB-dependent GABA from reactive astrocytes tonically
and strongly inhibits the excitability of the newly identified
GABRAS5-positive GABAergic pacemaker firing neurons that
facilitate energy expenditure, resulting in increased fat mass
and body weight in DIO mice (Sa et al., 2022). Along with
elevated GABA production, MAOB-dependent production of
H,0, is the key common molecular switch that turns on a dis-
tinct state of severe reactive astrocytes, and the toxic level of
H,0, is sufficient for neurodegeneration (Chun et al., 2020).
Taken together, these recent discoveries strongly suggest that
the accumulation of toxic H,O, in hypothalamic reactive as-
trocytes might directly contribute to the long-lasting impair-
ment and loss of neighboring neurons in the hypothalamus
(Fig. 2). This exciting possibility awaits future investigation.

CONCLUSIONS AND FUTURE QUESTIONS

We have comprehensively reviewed the role of hypothalamic
reactive astrocytes (Table 1), the regional distribution of re-
active astrocytes in the hypothalamus (Fig. 1), the triggering
mechanisms of reactive astrocytes, and the consequences of
reactive astrocytes in DIO (Fig. 2). Indeed, reactive astrocytes
are actively involved in the pathogenesis of DIO. Mechanisti-
cally, elevated free fatty acids during chronic HFD feeding ac-
tivate inflammatory signals via IKKB/NF-xB pathway and pro-
duce putrescine possibly by turning on the urea cycle in reac-
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tive astrocytes. The putrescine produced is then degraded by
MAOB to GABA in reactive astrocytes. This GABA is tonically
released and inhibits the excitability of neighboring neurons,
especially those of the newly identified GABRA5-positive
neurons, which facilitate energy expenditure. This cascade
of events leads to the exacerbation of obesity in DIO. In ad-
dition, the role of MAOB-dependent H,0O, is still unknown
and further investigation is needed to clarify the relationship
between toxic H,0O, from reactive astrocytes and the loss of
hypothalamic neurons.

Although the presence of reactive astrocytes in the hypo-
thalamus after HFD has been observed for a long time, the
role of reactive astrocytes in DIO has only recently been in-
vestigated. Moreover, most studies have focused on reactive
astrocytes in ARC in response to HFD. Since overall metabolic
signals from ARC are conveyed to and act on other hypotha-
lamic regions, it is necessary to deeply understand the role of
reactive astrocytes in other regions of the hypothalamus, as
has been recently discovered in LHA. These newly developed
approaches and tools will be very useful for developing po-
tentially effective therapeutic strategies to fight against obesi-
ty with minimal side effects.
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