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Diazinon is an organophosphorus pesticide widely used to control cabbage insects,
cotton aphids and underground pests. The continuous application of diazinon in
agricultural activities has caused both ecological risk and biological hazards in the
environment. Diazinon can be degraded via physical and chemical methods such
as photocatalysis, adsorption and advanced oxidation. The microbial degradation
of diazinon is found to be more effective than physicochemical methods for its
complete clean-up from contaminated soil and water environments. The microbial
strains belonging to Ochrobactrum sp., Stenotrophomonas sp., Lactobacillus brevis,
Serratia marcescens, Aspergillus niger, Rhodotorula glutinis, and Rhodotorula rubra
were found to be very promising for the ecofriendly removal of diazinon. The degradation
pathways of diazinon and the fate of several metabolites were investigated. In addition, a
variety of diazinon-degrading enzymes, such as hydrolase, acid phosphatase, laccase,
cytochrome P450, and flavin monooxygenase were also discovered to play a crucial
role in the biodegradation of diazinon. However, many unanswered questions still exist
regarding the environmental fate and degradation mechanisms of this pesticide. The
catalytic mechanisms responsible for enzymatic degradation remain unexplained, and
ecotechnological techniques need to be applied to gain a comprehensive understanding
of these issues. Hence, this review article provides in-depth information about the
impact and toxicity of diazinon in living systems and discusses the developed
ecotechnological remedial methods used for the effective biodegradation of diazinon
in a contaminated environment.

Keywords: diazinon, toxicity, abiotic degradation, microbial degradation, degradation pathways, catalytic
mechanisms

INTRODUCTION

With the rapid development of agriculture, organophosphorus pesticides (OPs) are characterized
by specificity, broad spectrum applicability, and high efficiency. They play a prominent role
in the control of agricultural pests and diseases. Since 1960, OPs have occupied the highest
market share of pesticides (19% of the world market) (Villiot et al., 2018). Diazinon (O,O-
diethyl-O-[6-methyl-2-(1-methyl-ethyl)-4-pyrimidine] thiophosphate) is a broad-spectrum, highly
effective, medium–low toxicity organophosphate insecticide. It is one of the most commonly
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detected OPs in groundwater, drinking water and surface water,
which is an especially serious problem (Cao et al., 2018; Glinski
et al., 2018). Environmental residues of diazinon can cause harm
to nontarget organisms through the air, water, soil, and food
chain (Figure 1).

During the application process, only 10% of the pesticides
used can reach the target organisms, and the remaining 90% is
distributed in the environment. High concentrations of diazinon
can be easily detected in the rivers of the United States,
Italy, Spain, China and other countries (Hajirezaee et al.,
2017; Al-Otaibi et al., 2019; Mena et al., 2020). Diazinon
has a thiophosphate backbone, which is metabolized by
cytochrome P450 to form the OP-oxon form, which inhibits
acetylcholinesterase (AChE), causes nerve tissue failure and kills
insects. After accidental exposure to diazinon, fish, shrimp,
shellfish and human children can develop neurological and
developmental disorders, so they are restricted by the U.S.
Environmental Protection Agency (Yen et al., 2011; Montuori
et al., 2016; Sharma et al., 2019). Clearly, there is an urgent need
to remove residual diazinon from the environment.

A high number of researchers have performed research studies
around this topic, and the previously established degradation
methods can be divided into abiotic degradation and microbial
degradation (Kumar et al., 2018; Mulla et al., 2018; Baharum
et al., 2020; Sikakwe et al., 2020). Diazinon can be further
degraded through continuous optimization of physical and
chemical conditions. Previous studies showed that copper-
doped ZnO nanorods could overcome the disadvantages of ZnO
nanoparticles as nanocatalysts and could perform photocatalytic
degradation of organophosphorus pesticides, such as diazinon,
with a degradation efficiency of 96.97%, which was more
valuable than the UV/ZnO process (Shirzad-Siboni et al., 2017).
Alalm et al. (2015) used a combination technique. In the
first stage, a solar heterogeneous TiO2 photocatalyst was used,
powdered activated carbon (PAC) was selected for adsorption,
and nearly 100% of diazinon was removed. Further study found
that there are three main byproducts, namely, diazoxon 7-
methyl-3-octyne, 2-isopropyl-6-methyl-4pyrimidinol and diethyl
phosphonate (Toolabi et al., 2018). However, abiotic degradation
still has some disadvantages, such as incomplete degradation,
high production cost, and complex operation (Arora, 2020; Saleh
et al., 2020). Thus, it is very important to develop cleaner, cheaper
and easier removal technologies.

Microbial degradation of pesticides has the characteristics
of high efficiency, low cost, environmental protection, and
sustainability, which has attracted the attention of researchers
(Mishra et al., 2020; Li et al., 2021; Lin et al., 2021). Many
previous studies have shown that biodegradation of diazinon
is a promising approach for the remediation of diazinon-
contaminated environments. These microorganisms include
Stenotrophomonas, Bacillus serrata, Burkholderia, Streptomyces,
and Aspergillus niger, which are highly effective in the removal
of diazinon when provided appropriate growth conditions
(Cycoń et al., 2009; Góngora-Echeverría et al., 2020; Hamad,
2020). The reason why these microorganisms can effectively
degrade diazinon lies in the various enzymes contained in
their bodies. These enzymes have high enzyme activity and a

variety of hydrolysis and oxidation functions, which can turn
the pollutants into short chain products with low toxicity.
However, the pH, temperature, and low stability properties of
these enzymes limit their use in industrial applications (Bhatt
et al., 2020b; Mishra et al., 2021). At present, people use the
immobilization technology of enzymes to improve the thermal
stability, reduce the inhibition of the product, and overcome
the common difficulty of solubility. However, researchers do
not have the complete system needed to define the effective
degrading enzymes contained in microorganisms. This increases
the difficulty of subsequent studies on the degradation of
diazinon. A review of relatively complete and clear degradation
pathways and construction of related degradation enzymes is of
great reference value.

This article will discuss both the role in and toxicity
of diazinon in life systems and explain the application of
microbial strains to the degradation of diazinon. In addition,
the mechanisms and kinetics of local microbial strains were
compared, and they were found to be effective for the
degradation of diazinon. We will focus on the degradation
pathways and catalytic mechanisms of diazinon to better
understand how microorganisms can enhance the degradation of
diazinon, thereby working towards rectifying its dispersion in the
natural environment.

TOXICITY OF DIAZINON

Diazinon is widely used in the control of various insects and
can be used as an insecticide in agricultural production systems.
The related properties of diazinon are shown in Table 1. In the
field of veterinary medicine (Mitra and Maitra, 2018), diazinon is
often used as an acaricide and as an insect repellent sprayed on
livestock and poultry. At the same time, it was also categorized
as a moderately hazardous pollutant of class II by the World
Health Organization (Pirsaheb et al., 2014; Jonidi-Jafari et al.,
2015). In the United States, the phasing-out of diazinon for
indoor and outdoor use began in 2002. Diazinon is highly
effective in pest control and is widely used in fruits, vegetables,
nuts, and ornamental products, and up to 100 tons can be
used per year (Shrestha et al., 2018). In Iran and other Middle
Eastern countries, it is used in grape cultivation to good effect
(Bakırcı et al., 2014; Pirsaheb et al., 2017; Philippe et al., 2021).
However, continuous use of diazinon causes it to accumulate in
the environment and damage the health of nontarget organisms
by entering the food chain.

Because of the trend towards large-scale usage of pesticides,
the pollution sources of pesticides are not only limited to
the intensive use of pesticides in urban areas but can also
be linked to the chemical industry and farmland (Liu et al.,
2015; Wee et al., 2016; Zainuddin et al., 2020). Pesticides and
their residues (metabolites) can condense into rain through
surface runoff, soil leaching and transpiration, be deposited
on the surface or in tissues of plants, enter drinking water
and groundwater, and eventually reach nontarget organisms,
including humans (Palma et al., 2014; Chaza et al., 2018;
Sumon et al., 2018; Villiot et al., 2018; Triassi et al., 2019).
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FIGURE 1 | The fate and occurrence of diazinon in the environment.

The levels of diazinon in several water sources have been
found to exceed the standard, and the treatment processes
used in diazinon agrochemical plants and sewage treatment
plants still cannot fully degrade pesticide residues (Fadaei
et al., 2012; Arellano-Aguilar et al., 2017; Hamad, 2020). Coming
into contact with diazinon triggers the phosphorylation of
cholinesterase in vivo (Glavan et al., 2018; Díaz-Resendiz et al.,

TABLE 1 | Physical and chemical properties and structure of diazinon
(Malakootian et al., 2020).

Description Properties

Molecular structure

IUPAC name O,O-Diethyl O-2-isopropyl-
6-methyl-4-pyrimidinyl
phosphorothioate

Molecular formula C12H21N2O3PS

Molar mass (g/mol) 304.3

Density 1.116–1.118 (20◦C)

Toxicity LD50 (mg/kg)

Octanol–water Partition
coefficient, logKow

3.81

Solubility in water 40 mg/L at 25◦C

Dissociation constant (pKa)
at 25◦C

2.6

2019). Acetylcholinesterase is inactivated and toxic. A large
number of pesticides in the environment continue to accumulate,
not only inhibiting insect acetylcholinesterase activity but also
interfering with the nervous system of various organisms,
causing neurotoxicity (Hajirezaee et al., 2017; Glavan et al.,
2018; Mena et al., 2020). Čolović et al. (2015) also found that
diazinon metabolites were nontoxic, but their stimulation by
superoxide dismutase was up to 30%, and a high concentration
of diazinon and its metabolites had a significant effect on lactate
dehydrogenase activity.

Diazinon is also very harmful to aquatic organisms, especially
local shellfish species in aquatic ecosystems (such as Digueti
and Daphnia); under the stress of diazinon, its potential acute
toxicity gradually reached a very high level (Arias-Andrés
et al., 2018; Chen et al., 2018). In addition, 4.5 mg/L diazinon
inhibited acetylcholinesterase in amphibian embryos, leading
to endothelial cell changes and body length shortening and
eventually leading to biological deformities (Aronzon et al.,
2014). Velki et al. (2017) used an in vivo model of zebrafish to
evaluate the effects of the commonly used insecticide diazinon
on the early life stages of zebrafish, and the results showed
that diazinon had influence on enzyme reactions and gene
expression changes. Toledo-Ibarra et al. (2016) evaluated lipid
and protein oxidative damage in Nile tilapia exposed to diazinon
and found that proteins in the gills and liver tissues were
more easily oxidized by diazinyl than lipids. In a recent study,
Hajirezaee et al. (2017) reported, for the first time, the adverse
effects of the exposure of Persian sturgeon larvae to diazinon
on their seawater adaptation. Intestinal microorganisms in
mice decompose organophosphates, including diazinon, into
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gluconeogenic substrates, which interfere with the normal
activities of intestinal microorganisms, leading to glucose
regeneration and glucose intolerance, thereby increasing the
incidence of diabetes (Gao et al., 2017; Velmurugan et al., 2017).

Pesticides can affect host health in many ways, such as altering
the composition of gut microbes and their metabolites. The
introduction of diazinon into mice significantly reduced the
bacterial population of the Lachnospiraceae family, which is
involved in the production of short-chain fatty acids, caused
bile acid disorder (Gao et al., 2017; Adamovsky et al., 2018),
and destroyed intestinal mucosa and intestinal cells (Groh,
2017; Gillois et al., 2018). With the destruction of the intestinal
flora balance and the enhancement of intestinal permeability,
more lipopolysaccharides (LPS) are introduced into the body,
ultimately triggering low-level inflammation (Ghetti, 2018; Liang
et al., 2019). Large amounts of organophosphorus pesticides can
inhibit acetylcholinesterase (AChE) in the central and peripheral
nervous systems and promote an increase in acetylcholine, which
can lead to nausea, headache, psychosis, depression, memory
loss, chronic fatigue syndrome, and respiratory problems
(Sultatos, 2006).

This series of environmental questions has constantly
perplexed modern human beings. Finding a treatment
technology with low price, complete degradation, and no
secondary pollution through sustainable development is
particularly important.

ABIOTIC DEGRADATION OF DIAZINON

Physical and Chemical Degradation of
Diazinon
With increasing interest in diazinon, many studies have
been carried out regarding its degradation. Physicochemical
degradation is one of the most widely used methods, including
photocatalyst treatment, advanced oxidation treatment,
biological treatment membrane filtration, and ion exchange
treatment (Hassan et al., 2017; Kumar et al., 2018; Pordel
et al., 2019). The physical and chemical degradation methods
of diazinon are shown in Table 2. Physical adsorption and
chemical degradation are the main techniques used for pesticide
degradation. A variety of adsorbents have been developed and
used, and the optimization conditions of photocatalysts have
also been archived. It has been proven that these methods are
effective, but the use cost is relatively high (Jonidi-Jafari et al.,
2015). In this type of experiment using TiO2, TiO2 particles
cannot be separated from a solution after treatment (Baharum
et al., 2020). The cost of the UV/ZnO photocatalysis process is
high, and the links to serious environmental problems include
the environmental hazards of mercury vapor lamps, including
the high toxicity of mercury and the short lifespan of the lamps
themselves (Hossaini et al., 2017). Considering the solubility and
persistence of diazinon, an appropriate technology can be used
to remove diazinon from water systems.

Considering the high content of diazinon in water, there
are many methods to improve the removal rate of diazinon by
optimizing the characteristics of adsorbents. The vast majority

TABLE 2 | Physical and chemical methods for diazinon degradation.

Processing
methods

Reaction
conditions

Comments References

Fe-TiO2/Bent-
Fe
photocatalysis

0.5 g/L of catalyst
Visible light (36-W

compact bulb)
pH = 5.6

58.3% of diazinon
(25 mg/L) was

degraded within 6 h

Phuong et al., 2019

WO3

photocatalysis
0.5 g/L of catalyst
UV light (125- W
medium-pressure
UVC lamp) pH = 3

99.88% of diazinon
(20 mg/L) was

degraded within 2 h

Mohagheghian
et al., 2016

Fe-TiO2

photocatalysis
0.1 g/L of catalyst
UV light (125-W

medium-pressure
UVC lamp) pH = 7

98.53% of diazinon
(50 mg/L) was

degraded within 2 h

Dehghani et al.,
2019

MgO
photocatalysis

0.1 g/L of catalyst
UV light (5 lamps)

pH = 7

99.46% of diazinon
(5 mg/L) was

degraded within 2 h

Ahmadifard et al.,
2019

Iron doped
TiO2

photocatalysis

0.4 g/L of catalyst
UV light (15-W low
pressure UV lamp)

pH = 5.5

76% of diazinon
(30 mg/L) was

degraded within
100 min

Tabasideh et al.,
2017

Cu-doped ZnO
nanorods

0.2 g/L of catalyst
Gasoxygen

gas = 2 L/min
pH = 7

96.97% of diazinon
(50 mg/L) was

degraded within 2 h

Shirzad-Siboni
et al., 2017

WO3

nanostructures
WO3

nanostructures:
sulfuric acid

(H2SO4) 1.5M,
nitric acid (HNO3)

1.5M,
methanesulfonic
acid (CH4O3S)
1.5M UV light

(500W xenon lamp)

90% of diazinon
(20 mg/L) was

degraded within
24 h

Roselló-Márquez
et al., 2021

WO3-doped
ZnO
photocatalysis

10 mg/cm2 of
catalyst UV light

(6-W low pressure
lamp) pH = 7

89% of diazinon
(20 mg/L) was

degraded within 2 h

Maleki et al., 2020

WO3-doped
ZnO
photocatalysis

10 mg/cm2 of
catalyst Sunlight

pH = 7

83% of diazinon
(20 mg/L) was

degraded within 2 h

Maleki et al., 2020

Chemically
modified
phosphoric
acid adsorption

5.0 g/L of
adsorbent pH = 7

98.96% of diazinon
(1.0 mg/L) was

degraded within 2 h

Baharum et al.,
2020

Adsorption of
multi-walled
carbon
nanotubes

0.1 g/L of
adsorbent pH = 4

99.1% of diazinon
(0.3 mg/L) was
degraded within

15 min

Dehghani et al.,
2019

of researchers use a mixture of biochar, activated carbon,
minerals, clays, and certain metal–organic frameworks (MOFs)
as adsorbents to remove pesticide residues (Abdelhameed et al.,
2017; Derylo-Marczewska et al., 2017; Abdelhameed et al.,
2019; Durán et al., 2019; Emam and Shaheen, 2019; Baharum
et al., 2020). Biochar is prepared from agricultural and forestry
production wastes such as raw biomass materials (Ponnam et al.,
2020). It has the advantages of loose and porous features, a large
specific surface area and high surface energy, which can greatly
improve the removal efficiency (Ding et al., 2017). It is one
of the adsorbents for pesticide removal (Baharum et al., 2020;
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Okoya et al., 2020). In addition, it can effectively remove organic
pollutants in water, such as dyes and drug compounds (Tran et al.,
2020; Wu et al., 2020).

Previous research has shown that organic materials play
an important role in the use of agricultural waste to remove
pesticides. Using waste coconut biomass for modification,
carbonized blonde shell biochar (BC1), activated blonde shell
biochar (BC2), chemically modified phosphoric acid (BC3), and
sodium hydroxide blonde shell biochar (BC4) were prepared as
adsorbents for the removal of diazinon (Baharum et al., 2020).
When the pH was 7, the dosage was 5.0 g/L, and the adsorbent
was BC3, the removal rate of diazine reached 98.96%. Similarly,
a large amount of agricultural waste can be used for pesticide
removal, such as corn stalks, rice stalks, discarded orange peel,
almonds, wood derivatives, birch and Norwegian spruce, bamboo
flakes, and even poultry dung, all of which have achieved good
results (Liu et al., 2015; Cederlund et al., 2016; Mandal et al., 2017;
Suo et al., 2019; Abdelhamid et al., 2020).

Due to the transfer of diazinon from the liquid phase to the
solid phase in the adsorption process, secondary contamination
can easily occur, which can increase the treatment cost.
Photocatalysis is a pesticide removal technology exhibiting
complete oxidation, a simple product structure, high efficiency,
and a low-cost catalyst, as well as reducing secondary pollution
and simultaneously destroying organic pollutants. Mirmasoomi
et al. (2017) reported a maximum photocatalytic degradation rate
of diazinon of up to 95.07% using a TiO2/Fe2O3 nanocomposite
as a catalyst under visible light conditions. Mohagheghian et al.
(2016) investigated the photodegradation of diazinon with nano-
WO3 powder as a catalyst under ultraviolet light irradiation, and
the removal efficiency was unexpectedly much higher. Phuong
et al. (2019) showed that the initial concentration was set at
25 mg/L and the degradation rate was 58.3 in Fe-TiO2/Bent-Fe
photocatalysis. Nakaoka et al. (2010) reported that the removal
rate of diazinon was approximately 88% after 30 h of treatment
with platinized TiO2 as the catalyst using UV irradiation.
Maleki et al. (2020) studied WO3-doped ZnO photocatalysis, in
which the mineralization rate of 20 mg/L diazinon under UV
irradiation reached 89%. The ozone degradation of diazinon is
performed using nanometal oxides as catalysts, and it generates
a variety of active free radicals, which accelerate the additional
reaction of hydroxyl radicals and the oxidation of the phosphate
group, which is, in turn, conducive to the removal of diazinon
(Malakootian et al., 2020). However, a change in external
conditions will cause a reduction in free radicals and stimulate
the reaction competition of hydroxyl radicals.

Recently, researchers not only continued to optimize the
treatment of diazinon but also carried out in-depth studies on
its degradation mechanism, which provides a greater scientific
basis for our review.

Physico-Chemical Degradation
Mechanism of Diazinon
With the increasing amount of attention being paid to
diazinon, abiotic hydrolysis has become one of its main
degradation pathways. Under acidic or alkaline conditions,
the nitrogen and phosphorus groups in diazinon are activated

by pyrimidine protons, which initiate nucleophilic attacks,
break the phosphorus and oxygen bonds, and eventually
cause rapid hydrolysis. At higher pH values, the excitor of
the nucleophilic attack may be one of the sulfur, benzene,
nitrooxy, or pyrimidine protons. The hydrolysates in these
cases are the less toxic 2-isopropyl-6-methyl-4-quill (IMP)
and diethyldithiophosphoric acid. Consequently, several
treatment methods for the degradation of diazinon have been
suggested, such as chlorination, ultrasonic irradiation, Fenton’s
reagent, photoFenton, UV/O3, UV/H2O2, UV/ZnO, UV/TiO2,
UV/ZnO/TiO2, and solar/advanced oxidation processes (AOPs),
each of which provide efficient degradation of diazinon (Li
et al., 2015; Alvarez-Corena et al., 2016; Soto-Vázquez et al.,
2016; Hossaini et al., 2017; Shirzad-Siboni et al., 2017; Tabasideh
et al., 2017; Ayoubi-Feiz et al., 2018). In AOPs, UV/H2O2
is considered to be an effective method for the treatment of
organophosphorus pesticide and other micro-organic pollutants
(Shemer and Linden, 2006). In the presence of ultraviolet light,
the hydrophobic part of natural organic matter (NOM) in
water was destroyed, and hydrophilic or polar degradants were
generated (Wols and Hofman-Caris, 2012), while haloacetic
acid formation increased upon chlorination, which was
conducive to the degradation of diazino-organic pesticides. In
addition, compared with direct UV photolysis, the UV/H2O2
combined process can mineralize diazinon to a higher degree
(Sarathy and Mohseni, 2010).

Sajjadi et al. (2019) used a Fe3O4@MOF-2 nanocomposite
(MOF: metal–organic framework) as a catalyst to excite persulfate
(PS) under ultrasonic radiation (US) and acidic conditions,
which increases the photocatalytic activity and enhances the
generation of hydroxyl sulfate radicals in an aqueous solution.
Combined with ultrasonic acoustic cavitation, hydroxy easily
reacts with H2O and O2 to generate H2O and H2O2, thus
promoting the decomposition of organic pollutants (Sajjadi
et al., 2019). Similarly, under UV and US irradiation, the
absorption of photons on the surface of the N-doped TiO2
catalyst increases, the availability of active sites on the surface
of TiO2 increases, and photoactivated light permeates into the
suspension, having a positive effect on the ACo photocatalytic
degradation of diazinon (Ayoubi-Feiz et al., 2018). In the
UV/Cu-doped ZnO process system, the shortcomings of ZnO
nanoparticles as nanocatalysts are overcome. The dissolved
oxygen is transformed into superoxide anion (O2·

−), and then,
the excited electrons in the photocatalyst react with the electrons
in the reaction system, inhibiting the recombination of positive
holes and electrons. The degradation efficiency is as high as
96.97%, which is more valuable than the UV/ZnO process
(Jonidi-Jafari et al., 2015). Hossaini et al. (2017) reported that
the cns-ZnO/LED process could reduce the accumulation of
diazinon in the environment as the system’s specific surface area
increased by approximately 30%, meaning that LED radiation
can activate more reaction sites. In addition, Liu et al. (2009)
found that acid sites were provided in the structure where
the catalyst existed, preventing the generation of electron–hole
compounds and improving the removal efficiency of organic
pollutants. At present, active photocatalysts for photocatalytic
degradation of organic and inorganic pollutants are limited to
certain metals and nonmetallic substances, such as titanium,
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tungsten oxide, zinc oxide, iron oxide, cadmium sulfide and
zinc sulfide, which are gradually introduced (Daneshvar et al.,
2007; Sajjad et al., 2018; Khoiriah et al., 2020; Maleki et al.,
2020). The ZnO@SiO2@Fe3O4/PMS/UV system is beneficial to
the decomposition of oxidizing agents, and a variety of reactive
oxidizing species (H·, HO·, O2·

−, SO4·
−) are involved in the

degradation of diazinon. H· and HO· species play a leading role in
diazinon degradation (Daneshvar et al., 2007; Rezaei et al., 2019;
Maleki et al., 2020). A number of studies have reported that ozone
is a strong oxidant with a redox potential of 2.07 V, which can be
combined with UV, H2O2 and other processes to destroy ozone
and generate more HO· radical oxidation of diazinon to form
short-chain compounds (Ayoubi-Feiz et al., 2019; El Hassani
et al., 2019; Malakootian et al., 2020).

These combined technologies have been tested and
successfully applied to the treatment of diazinon-contaminated
sites. Due to their high efficiency, high safety index and
positive environmental benefits, the degradation products and
pathways of diazinon have been explored (Badawy et al., 2006;
Alvarez-Corena et al., 2016; Soto-Vázquez et al., 2016; Orge
et al., 2017). The formation of intermediate products for the
degradation of diazinon has been widely reported. Arief et al.
(2015) showed that the intermediate diazoxon could be rapidly
hydrolyzed under both acidic and alkaline conditions, but it
was unstable under ultraviolet light conditions and could be
oxidized to form diazoxon, but that its toxicity was stronger
than that of the parent compound (Okoli et al., 2017). Li
et al. (2015) reported that diazinon is hydrolyzed to form
((Z)-3-((E)-1-hydroxy-2-methylpropylidene)amino)but-2-
enimidic acid (IMP) in a UV/H2O2 combination by means of
cleavage of the P-O bond (pyrimidine ring). With further
control of the system of the environmental conditions,
hydrogen base and oxhydryl participates in the additional
reaction of IMP, the formation structure is relatively simple,
2-isopropyl-6–4-ol methylhexahy- dropyrimidin-, (((Z)-3-(Z)-
1- hydroxy-2-methylpropylidene) amino) but-2-enoic acid,
6-methylhexahydropyrimidine-2,4-diol, (Z)-3-(((Z)-1-amino-
2-methylpropylidene) amino) but-2-enoic acid. Rezaei et al.
(2019) also reported another pathway of diazinon, in which
hydroxyl diazinon and 2-hydroxyl diazinon can be generated
by hydroxylating primary and tertiary carbon atoms of the
propyl group, and then the hydroxyl radical acts on the O
functional group and diazinon is hydrolyzed to produce diethyl
phosphate and IMP.

In general, the degradation pathway of diazinon is mainly the
substitution of sulfur by oxygen in the P = S bond, hydroxylated
oxidation of the C-N bond, and cleavage of the C-O bond.
Previously, the main degradation products of diazinon were
hydroxydiazoxon and IMP. The specific degradation path of
diazinon is shown in Figure 2.

MICROBIAL DEGRADATION OF
DIAZINON

Although the above abiotic degradation methods can achieve a
high removal efficiency, there are still some problems, such as

the high cost of equipment, uncertainty regarding intermediate
products and incomplete mineralization (Chen et al., 2012; Zhan
et al., 2018b; Bhatt et al., 2021a). Therefore, microbial degradation
technology is favored because of the distinct advantages of being
low-cost, safe, and effective, providing complete degradation and
producing no secondary pollution (Liu et al., 2007; Qiu et al.,
2018; Roman et al., 2019).

Bacteria, fungi, actinomycetes, and algae that can remove
diazinon were obtained by enrichment cultures (Cycoń et al.,
2009; Pourbabaee et al., 2018; Hamad, 2020). Diazinon-
specific degrading microorganisms are shown in Table 3.
Researchers have used enrichment techniques to search for
microorganisms that can be used to mineralize diazinon to
reduce the concentrations of diazinon in soil agricultural
wastewater discharge systems, seawater systems, and heavy
industry (Briceño et al., 2015; Wang and Liu, 2016).
However, only a small number of microorganisms have
been isolated and identified.

These toxic chemicals can be transformed/degraded by
bacteria and fungi to form microtoxic or nontoxic small
molecules (Dar et al., 2019; Huang et al., 2020; Zhang et al.,
2021). Bacteria have been widely used in the bioremediation
of pesticides because of their strong biochemical behavior,
multiadaptability, and reproductive ability (Dzionek et al.,
2016; Cycoń et al., 2017; Lin et al., 2020). Under normal
circumstances, a single strain can achieve complete degradation
of diazinon (Cycoń et al., 2009). Ralstonia sp. DI-3 is a
highly efficient diazinon-degrading bacterium isolated from
agricultural soil. It can completely degrade diazinon at an
initial concentration of 100 mg/L after just 60 h of liquid
culture (Wang and Liu, 2016). This result is similar to the
report of Abo-Amer (2012). When a small amount of glucose
is added exogenously, it can promote the biodegradation of
diazinon as a helper substrate (Cycoń et al., 2009). It has
been shown that Serratia liquifera, Serratia marcescens, and
Pseudomonas can use diazinon as the only carbon source in
a mineral salt medium (MSM) containing 50 mg/L diazinon.
These strains were able to degrade 80–92% of pesticides within
14 days (Cycoń et al., 2009). Bacillus amyloliquefaciens YP6,
a growth-promoting rhizosphere bacterium, has been reported
to effectively degrade organophosphorus pesticides (OPS). Seo
et al. (2007) reported that Arthrobacter and Mycobacterium
isolated from petroleum-contaminated soils were very effective in
increasing the rate of diazinon mineralization. It was also found
that Arthrobacter could not only hydrolyze diazinon but also
remove other organophosphorus pesticides (such as chlorpyrifos,
acetophosphorus, isophos and parathion).

For Serratia marcescens DI101 in a minimal salt medium,
50 mg/L diazinon was completely degraded in a period of
11 days compared to Stenotrophomonas sp. G1 strains, which
degraded 50 mg/L diazinon within 24 h (Deng et al., 2015).
Furthermore, it is worth noting that S. marcescens is key in the
generation of diethyl phosphate, with organic phosphorus sulfur
as a source of carbon bonds and phosphorus, such as chlorpyrifos
coumaric, phosphorus parathion, and different nitrogen and
phosphorus compounds in this category (Abo-Amer, 2011). The
specificity of Stenotrophomonas sp. G1 metabolism is also related
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TABLE 3 | Indigenous microbial strains involved in diazinon degradation.

Microbial strains Strain type Source Comments References

Lactobacillus brevis Bacterium Center of Lactic Acid Bacteria
in Key Laboratory of Dairy
Science, Northeast Agricultural
University, China

About 52% of diazinon (0.6 mg/L) was degraded within 24 h Zhang et al., 2014

Stenotrophomonas sp. Bacterium Industrial sludge (China) Nearly 100% of diazinon (50 mg/L) was degraded within 24 h Deng et al., 2015

Ochrobactrum sp. Bacterium Sludge from wastewater (China)

Serratia marcescens DI101 Bacterium Agricultural soil (Saudi Arabia) Diazinon (50 mg/L) was completely degraded within 11 days Abo-Amer, 2011

Leuconostoc mesenteroides, L. brevis,
L. plantarum, L. sakei

Bacterium Kimchi during fermentation
(Korea)

About 74% of diazinon (100 mg/L) was degraded within 12 days at
pH = 3.65-3.69

Cho et al., 2009

Serratia liquefaciens, S. marcescens,
Pseudomonas sp.

Bacterium Agricultural soil (Poland) (1) About 80-92% of diazinon (50 mg/L) was degraded within 14 days
(2) Utilizes diazinon as the sole carbon source
(3) Adding other carbon sources (glucose) increases the decomposition rate

Cycoń et al., 2009

Arthrobacter sp., Mycobacterium sp. Bacterium Petroleum-contaminated soil
(Hilo, Hawaii, United States)

These strains can utilize diazinon as growth substrate and transform diazinon. Seo et al., 2007

Streptomyces sp. AC1-6., Streptomyces
sp. ISP4

Bacterium Agricultural soil (Chile) (1) About 40-50% of diazinon (25 mg/L) was degraded within 24 h
(2) About 70-90% of diazinon (50 mg/L) was degraded within 96 h

Briceño et al., 2015

Flavobacterium
sp. ATCC 27551

Bacterium Agricultural soil (United States) About 95% of diazinon (50 mg/L) was degraded within 24 h Mulbry and Karns, 1989

Ralstonia sp. DI-3 Bacterium Agricultural soil (Huaibei, China) (1) Diazinon (100 mg/L) was completely degraded within 60 days
(2) Utilizes diazinon as the sole carbon source

Wang and Liu, 2016

Stenotrophomonas maltophilia Bacterium Paddy soils (Mazandaran, Iran) (1) Diazinon is the main carbon source (50 µg/mL)
(2) About 90% of diazinon was degraded within 15 days

Pourbabaee et al., 2018

Bacillus amyloliquefaciens YP6 Bacterium Rhizosphere of Lolium perenne
(Guizhou, China)

Increases soluble phosphorus, produces indole-3-acetic acid (IAA) and iron
carriers

Meng et al., 2019

Pseudomonas citronellolis strain ADA-23B Bacterium Soil-straw; 1:1, v/v (Mexico) About 40% of diazinon (50 mg/L) was degraded within 16 h Góngora-Echeverría et al., 2020

Bacterial endophytes in rice plant (Oryzia
sativa L.)

Bacterium Rasht, Iran (1) Diazinon (20 mg/L) is the sole carbon source
(2) About 3.79-58.52% of initial dose was degraded within 14 days

Nasrollahi et al., 2020

Pseudomonas putida D3 Bacterium Southeastern Iran About 91% of diazinon was degraded (40 mg/L) within 21 days Hassanshahian, 2016

Pseudomonas peli, Burkholderia
caryophylli, and Brevundimonas diminuta

Bacterium Soil sample Diazinon (20 mg/L) was completely degraded within 18 days Mahiudddin et al., 2014

Alcaligenes faecalis DSP3 Bacterium Chemical factory, China About 90% of diazinon (100 µg/mL) was degraded within 10 days Yang et al., 2005

Bacterium Enterobacter B-14 Bacterium Australian soil Diazinon (25 µg/mL) was completely degraded within 2 days Singh et al., 2004

Aspergillus niger MK640786 Fungus Lake Burullus About 82% of diazinon (1.25 mg/L) was degraded after 7 days
(2) Optimal conditions for metabolism are pH = 5, 30◦C

Hamad, 2020

Rhodotorula glutinis and Rhodotorula rubra Fungus Tomato plants (1) During the same period, the initial concentration of diazinon was reduced by
88% when R. glutinis was added compared with the control
(2) During the same period, the initial concentration of diazinon was reduced by
88% when R. rubra was added compared with the control

Bempelou et al., 2013

Saccharomyces cerevisiae Fungus Tehran, Iran About 96% of diazinon (2.5 mg/L) was degraded after 22.75 h Ehrampoush et al., 2017
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FIGURE 2 | Proposed physico-chemical degradation pathways of diazinon (Arief et al., 2015; Čolović et al., 2015; Malakootian et al., 2020). The thick black arrows
point to the major degradation products.

to pesticide structure, which is capable of degrading triphosphate
organophosphorus pesticides, such as phoxim methyl p-p-
parathion methyl p-p-parathion, while the degradation of
propiom bromophos and triazophos is relatively slow. Current
studies have shown that various bacterial genera, such as

Stenomonas, Serratia, Burkholderia, Rodanobacteria, Reisella,
and Pseudomonas, all use diazinon as the only carbon source,
which improves the reaction rate and promotes the degradation
of diazinon. In addition, bacteria B. altitudinis DB26-R and
B. subtilis subsp., isolated from various plant tissues (endophytic
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bacteria), have great potential to degrade various compounds
(Afzal et al., 2014). They have high degradability potential for
diazinon. In recent years and fungi have also been used in
the degradation of OPs. Ramadevi et al. (2012) reported that
they have broad-spectrum pesticide degradation characteristics,
as well as biological safety, economic feasibility and highly
efficient degradation activity tolerance and are widely used in
the pesticide bioremediation of contaminated soil water systems;
they can even grow in contaminated soil water systems with a
chlorpyrifos concentration of 700 mg. Optimized by response
surface methodology, Aspergillus niger MK640786 effectively
reduced diazinon and achieved a degradation rate of 82%
under incubation conditions of 30◦C, an initial concentration
of 25 mg/L, a pH value of 5 and an incubation time of
7 days (Chen et al., 2012; Carranza et al., 2016). Aspergillus
had different degradation efficiencies of diazinon under different
environmental conditions. Culturing in 30◦C liquid medium for
5 days was not conducive to the degradation of diazinon, and the
degradation rate was as low as 46%.

Debasmita and Rajasimman (2013) found that if Aspergillus
were incubated for 14 days, the hydrolysis of diazinon could
reach 90.02%. On the other hand, fungi, such as Anisoplia
bassiana, could degrade 72% of chlorpyrifos within 132 h
(Shah et al., 2017). The degradation rate was only 35.3% when
cultured in medium containing diazinon for 4 days (Fareed
et al., 2017). Ehrampoush et al. (2017) found that Saccharomyces
cerevisiae could use diazinon (initial concentration of 1000 mg/L)
as its carbon source. Diazinon was successfully degraded by
S. cerevisiae within 0.5 h by 85.23%. The degradation rate of
carmoisine dye was 96%.

In a pure culture of Streptomyces with a diazinon
concentration of 50 mg/L, only 32% degradation was found,
likely because its toxicity is greater than the original byproduct
of degradation compounds. As a result, people began to use
microbial populations of mixed culture alone or with other
populations of common culture techniques in order to avoid the
degradation process of the accumulation of toxic compounds,
and the degradation effect was better than that of pure culture
(Fuentes et al., 2011). When Streptomyces strains AC5, AC9,
GA11, and ISP13 were used in a mixed culture (SMC), the
degradation rate of diazinon reached the maximum (62%).
Briceño et al. (2016) also investigated the removal effect of
Streptomyces mixed cultures in 100 chlorpyrifos (CP)+ diazinon
(DZ)-contaminated liquid media. This will hopefully be an
alternative approach to removing DZ from the environment.
This approach uses an inorganic salt medium in which the
enrichment cycle is run multiple times and diazinon isolated
from paddy soil is mixed with degrading bacteria, consisting of
species from Burkholderia, Achromobacter, Hyphomicrobium,
Rhodanobacter, and so on. Within cultures of 16.81 and
19.60 days, pesticide degradation achieved favorable results,
and the removal rate reached 90%. There are many similar
situations reported. In the microbial remediation experiment, it
was found that when the mixture of strains degraded diazinon
(Briceño et al., 2016), the removal rate of the other four pure
strains was the highest (65%). Abo-Amer (2011) also observed
that the pesticide degradation rate of the mixed bacteria reached

99% within 11 days, which was most likely due to the presence
of different types of microorganisms in the mixed flora, such
as bacterial archaea and fungi. There were some synergistic
mechanisms among these bacteria to promote degradation.

In the process of pesticide degradation, hydrolysis is
the main method (Kumar et al., 2018). The possible
microbial degradation pathways of diazinon are shown in
Figure 3. Various bacterial enzymes, such as acid and alkaline
phosphatase, phosphodiesterase, phosphotriesterase (PTE), and
dehydrogenase, have the ability to form hydrolytic functional
groups in a short time. Combined microbial enzyme action
can also achieve a detoxification effect (Briceño et al., 2018).
The glutathione S-transferase superfamily is a key enzyme
in biological metabolism. The enzyme bmGSTu2 exists in
the silkworm Bombyx mori. It is a diazinon-metabolizing
enzyme that can combine with 1-chloro-2,4-dinitrobenzene
and contribute to the detoxification of diazine (Yamamoto
and Yamada, 2016). Carboxylesterase is very effective in
the detoxification of organophosphorus insecticides, and its
mechanism is mainly divided into the following steps (Wheelock
et al., 2008). It is first activated by a mixture of functional
oxidases (MFOs) to form an active form of oxon. Second,
organophosphorus insecticides combine with esterase and
hydrolyze to release nitrophenol. Phosphorylated esterases
may release phosphate groups to regain catalytic activity,
or they may form phosphate complexes and lose catalytic
activity (Wheelock et al., 2005). Both phosphorylase and
methylcarbamoylase are helpful in reducing the toxicity
of organophosphorus insecticides, but their stability is
much higher than that of methylcarbamoylase (Casida and
Quistad, 2004). Therefore, in terms of detoxification strength,
phosphorylase works better.

MOLECULAR MECHANISM OF
DIAZINON BIODEGRADATION

Microbe-mediated bioremediation and catalysis have been
confirmed by the previous literature, and a variety of strains
have been used to degrade organophosphorus pesticides and
have been found to achieve good remediation effects (Zhan
et al., 2018a; Mishra et al., 2020; Huang et al., 2021). The
root cause of this is that various strains contain a variety of
enzymes that detoxify organophosphorus pesticides, most of
which belong to phosphotriesterase (PTE) (da Silva et al., 2013;
Birolli et al., 2019). Among them, organophosphorus hydrolase
(OPH), methylparathion hydrolase (MPH), organophosphorus
anhydrase (OPAA), diisopropyl-fluorophosphatase (DFPase) and
paraoxonase 1 (PON1) are all classic degrading enzymes (da
Silva et al., 2013; Daczkowski et al., 2015). These enzymes have
their own characteristics. Figure 4 describes the evolutionary
relationships between the functional enzymes involved in the
degradation of diazinon.

To better study the degradation mechanism of enzymes, the
most important step is to understand the enzyme itself. OPH
is a zinc-containing homodimeric protein (Dumas et al., 1989).
OPH carries the OPD gene of Flavobacterium sp. ATCC 27551
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FIGURE 3 | Proposed microbial degradation pathways of diazinon in microorganisms (Wang and Liu, 2016; Zhao et al., 2020).
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FIGURE 4 | Phylogenetic tree of key diazinon-degrading enzymes constructed by the neighbor-joining method. The code before the strain name is the NCBI
accession number. Aminopeptidase P was isolated from Escherichia coli (Graham et al., 2005). Diisopropyl-fluorophosphatase was isolated from Loligo vulgaris
(Scharff et al., 2001). Organophosphate acid anhydrolase was isolated from Alteromonas sp. strain JD6.5 (Vyas et al., 2010). Paraoxonase 1 was isolated from
Oryctolagus cuniculus (Thakur et al., 2019). Phosphotriesterase was isolated from Pseudomonas diminuta (Benning et al., 2001). Organophosphorus hydrolase was
isolated from Pseudomonas pseudoalcaligenes (Gotthard et al., 2013). Methyl parathion hydrolase was isolated from Pseudomonas sp. WBC-3 (Dong et al., 2005).

and B. diminuta MG. It uses Co2+, Zn2+, Mg2+, Ca2+, and
Fe2+ for nucleophilic attack, thus hydrolyzing P-O, P-CN, P-F,
and S bonds (Ghanem and Raushel, 2005; Orbulescu et al.,
2006). MPH was isolated from Plesiomonas sp. M6 (M6-mph).
Organophosphorus anhydrase (OPAA) is a dipeptidase isolated
from Monomonas. With Mn2+ as the ligand, OPAA binds
with the substrate to degrade organophosphorus by nucleophilic
attack (Thakur et al., 2019). The degradation of DFP by the
DFP enzyme may be due to its three histidine residues acting on
the active sites of the substrate, of which two histidine residues,
H274 and H174, can act as stabilizers, and H287 can achieve
alkaline catalysis (Blum and Chen, 2010). The P-F bonds of the
substrate are hydrolyzed gradually, eventually releasing isopropyl
phosphate and fluoride (Jacquet et al., 2016). Paraoxonase 1
has the universality of a substrate, and it can degrade the
oxon metabolites of parathion, diazinon, and chlorpyriphos
(Draganov and La Du, 2004).

Diazinon belongs to the organophosphorus family and has
a similar functional group structure. In the degradation of
diazinon, each strain has its own degradation mechanism, and
the enzyme interaction plays an important role in the catalytic
degradation process (Chu et al., 2018; Vera et al., 2020; Zhao
et al., 2020). These phosphotriester hydrolases adapt to a wide
range of temperatures and pH values and are involved in
the degradation of various OPS substrates. They have been
reported to have great advantages in removing pesticides and
nerve agents (Kapoor and Rajagopal, 2011; Gao et al., 2012;
Lu et al., 2013). As an enzyme that catalyzes the stereoselective
hydrolysis of a large number of triphosphate esters (Elias et al.,
2008), triphosphoesterase (PTES, E.C. 3.1.8.1) can break the
P-O, P-N or P-S bonds (Sogorb et al., 2004). Subsequently,
microorganisms in nature use the hydrolysates of Ops as
carbon/nitrogen sources (Kumar et al., 2018). Researchers have
paid close attention to these hydrolases and proven their presence

in microorganisms. By purifying, identifying and cloning-
related genes, organophosphorus diminutases were isolated from
Brevundimonas sp., Pseudomonas diminuta, and Flavobacterium
sp. Paraoxonases are a class of interesting enzymes. According
to sequence homology, PON enzymes can be divided into three
groups: PON1, PON2, and PON3, among which PON1 has been
the most studied for the degradation of diazinon (Draganov and
La Du, 2004; Draganov et al., 2005). Paraoxonase 1 is a high-
density lipoprotein-associated esterase/lactonase, which is also a
monomer enzyme with calcium as the binding site. In the process
of enzyme catalysis, it preferentially hydrolyzes the bonds of P-O,
P-C, P-F, and P-CN.

The active site of an organophosphorus hydrolase contains
one or two metal ions. Catalytic degradation of the substrate
with metal ions is achieved through hydrogen bonding and
the interaction of two amino acid residues in two active sites,
followed by nucleophilic attack by hydroxide ions (Sethunathan
and Yoshida, 1973). This also provides some basis for the catalytic
triad previously mentioned. Organophosphorus hydrolases have
similar active site geometries. The most typical PTE was detected
in Flavobacterium sp. ATCC 27551 and P. diminuta, and
the sequence homology of OpdA detected by Astrobacterium
radiobacter was as high as 90% (Pedroso et al., 2014).
Organophosphorus hydrolases have been confirmed by previous
studies to have three amino acid residues to form a catalytic
triad, of which the most common is hydroxy-serine residues
that function as nucleophile attack substrates (Dar et al., 2019;
Bhatt et al., 2021b).

Three important amino acid residues (Ser-His-Thr or Glu)
in PTE form the catalytic triad (Bhatt et al., 2020a). First,
the substrate interacts with metal ions (hydrogen bonding) to
activate hydroxy-serine residues. The reactive oxygen atoms
on the serine residue nucleophilically attack the phosphorus
atoms on diazinon, forming the diazinon–hydrolase complex
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FIGURE 5 | The specific enzymatic catalytic process of diazinon. The active site of organophosphorus hydrolase contains three amino acids (serine, histidine,
threonine or glutamine) (Bhatt et al., 2020a; Huang et al., 2021). The hydroxyl group of serine takes part in nucleophilic reactions during diazinon biodegradation.

(Islam et al., 2010). In the second step, hydroxide in the water
molecule acts as a nucleophile, occupying the original active site
of serine, while histidine acquires hydrogen protons (Huang et al.,
2021). The remaining hydroxide continues to nucleophilically
attack the phosphorus–oxygen bond, releasing the intermediate
2-isopropyl-6-methylpyrimidin-4-ol. During the third step, the
serine activity decreased and returned to the resting state.
A complex intermediate is present in the system (Zhan et al.,
2020; Bhatt et al., 2021c). The oxygen atom in the phosphoric
acid group is connected to the nitrogen atom in the base by
a hydrogen bond, and the intermediate product is tetrahedral
in configuration. In the last step, alcohols and free amino acids
are separated from the complex through protonation, resulting
in the detoxification of the toxic organophosphorus pesticide
diazinon. The specific enzymatic catalytic process is shown in
Figure 5.

The aryl dialkyl phosphatase (ADPB) isolated from Nocardia
strain B-L is different from the former. Organic phosphate

dehydrogenase is a dipeptidase isolated from both Alteromonas
undina and Alteromonas haloplankton, and it has a relatively
low hydrolysis rate (Cheng et al., 1993). In addition, methyl
parathion hydrolase (MPH), isolated from Plesiomonas sp.
M6 plays an important role in the hydrolysis of many
OPS, including methyl parathion, chlorpyrifos, thiophos and
diazinon (Cui et al., 2001; Liu et al., 2005). Chu et al. (2010)
isolated another hydrolase from Pseudomonas pseudoaligenes
strain C2−1. Interestingly, this enzyme was encoded by the
ophc2 gene and had 46.4% similarity with the MPH gene.
Sogorb and Vilanova (2002) believe that amylase from Bacillus
amyloliquefaciens YP6 contains a variety of promising genes,
including soluble phosphorus and OPS degradation-related
genes. In the process of microalgae degradation of OPS, it was
observed that when the wavelength was 600 nm, the OD value
increased linearly with time and the activity of carboxylesterase in
microalgae increased, thus promoting OPS to generate phosphate
(Kumar et al., 2018).
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The existence of a variety of hydrolase genes (phoD, phoA,
phrC, phoE, ycsE, bcrC, and yvaK) in microbial cells proves
that microorganisms have potential advantages in agricultural
environmental remediation, along with biosynthesis-related
genes (amhX, cgeE and epsM) and iron carrier biosynthesis-
related genes (entB, menF, entC and entA) (Sogorb and Vilanova,
2002; Idris et al., 2007; Chu et al., 2018). At present, we have
found a variety of degrading enzymes and their related genes, but
most of them describe the degradation of a single enzyme. Some
individual enzymes were unstable and could not be developed
into industrial strains. Therefore, increasing efforts are required
to carry out genetic modification according to the characteristics
of these enzymes to improve their activity and tolerance to
ensure the efficient degradation of organic pollutants. The genetic
engineering mechanism of the strain needs to be further explored.

CONCLUSION AND FUTURE
PERSPECTIVES

In recent years, diazinon has occupied an important position
in the list of pesticides worldwide, and its high toxicity and
high residue cannot be ignored. Currently, many physical
and chemical methods have been applied to eliminate
diazinon, but some challenges remain, such as high equipment
cost, uncertainty regarding intermediates and incomplete
mineralization. Therefore, an eco-friendly, economic, and
feasible processing method is required for the sustainable
degradation of diazinon. Microorganisms, including bacteria,
fungi, and algae, are widely used in the degradation of diazinon.
Biochemical and genetic research into diazinon-degrading
microbes is necessary. The degradation ability of pure culture
strains was always limited, while the degradation effect of
microorganisms, including bacteria, fungi and algae, in a mixed

culture was more efficient. In the future, the application of gene
modification, mixed cultures of bacteria and immobilization
technology will be a relatively popular research field, which has
significance for the development of bioremediation strategies
for diazinon-contaminated soil. On the one hand, immobilized
enzyme technology will improve the stability of enzyme activity
and expand the pH value and temperature range of the enzyme
to adapt to better degradation of pollutants. On the other hand,
we can construct transgenic vectors to transfer biodegradable
genes into organisms that are easy to manipulate and stable. The
degradation gene can be fully expressed to effectively remove
pollutants. In addition, we can fully mobilize the synergistic
or antagonistic effects in the mixed bacteria to achieve efficient
degradation of organic pollutants. Furthermore, the development
of recent sequencing techniques could add to and accelerate
the prediction of the molecular-level mechanism involved in
diazinon degradation.
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