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The public and social health burdens of ischemic stroke have been increasing worldwide.

Hyperglycemia leads to a greater risk of stroke. This increased risk is commonly seen

among patients with diabetes and is in connection with worsened clinical conditions

and higher mortality in patients with acute ischemic stroke (AIS). Therapy for stroke

focuses mainly on restoring cerebral blood flow (CBF) and ameliorating neurological

impairment caused by stroke. Although choices of stroke treatment remain limited,

much advance have been achieved in assisting patients in recovering from ischemic

stroke, along with progress of recanalization therapy through pharmacological and

mechanical thrombolysis. However, it is still necessary to develop neuroprotective

therapies for AIS to protect the brain against injury before and during reperfusion, prolong

the time window for intervention, and consequently improve neurological prognosis.

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are broadly regarded as effective

drugs in the treatment of type 2 diabetes mellitus (T2DM). Preclinical data on GLP-1 and

GLP-1 RAs have displayed an impressive neuroprotective efficacy in stroke, Parkinson’s

disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and other

neurodegenerative diseases. Based on the preclinical studies in the past decade, we

review recent progress in the biological roles of GLP-1 and GLP-1 RAs in ischemic

stroke. Emphasis will be placed on their neuroprotective effects in experimental models

of cerebral ischemia stroke at cellular and molecular levels.
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HIGHLIGHTS

- Glucagon-like peptide 1 (GLP-1) is a target for the treatment of diabetes mellitus.
- GLP-1 and GLP-1 receptor agonists (GLP-1 RAs) have protective effects in stroke models.
- Many studies have revealed that GLP-1 and GLP-1 RAs can reduce infarct volume, improve
neurological symptoms and prognosis.

- These neuroprotective effects may be mediated by GLP-1 receptors or other pathways.
- GLP-1 RAs are very potential for stroke and more studies are needed to elucidate the
mechanisms underlying neuroprotection.
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INTRODUCTION

Stroke is a main reason of mortality and disability, there are 80.1
million prevalent cases of stroke around the world (1), resulting
in an annual economic burden worldwide. Stroke is clinically
defined as a neurological deficit attributed to an acute focal injury
of the central nervous system (CNS) (i.e., brain, spinal cord, or
retina) by a vascular cause (i.e., infarction, hemorrhage) (2). The
burden of disability due to stroke is highest in Asia, the stroke
belt of the United States and low- and middle-income countries
(3). Acute ischemic stroke (AIS) is known to account for 84.4% of
prevalent strokes (4). Results from the Global Burden of Diseases,
Injuries, and Risk Factors Study 2015 (GBD 2015) demonstrate
that although the prevalence of stroke and age-standardized
death rate have decreased as time goes by, there has recently
been a significant increase in the numbers of people dying from
and affected by stroke, resulting in greater loss of health over the
lifespan (5).

For a quarter century, thrombolysis has become a standard of
care treatment for AIS (6). Tissue plasminogen activator (tPA)
is one of the most biologically effective thrombolytic agents for
AIS (7). Nevertheless, this treatment benefits <10% of patients
suffered AIS, because tPA must be given within 4.5 h of stroke
onset (8). For about 20 years, intravenous tissue plasminogen
activator (IV-tPA) remained the dominant treatment until 2015,
when more complex clinical trials showed favorable results
in endovascular therapy (EVT) (9). Studies have shown that
EVT of ischemic stroke with intra-arterial thrombolysis (IAT)
and/or the utility of clot-retrieval, stent retriever, and thrombus
aspiration devices produced early recanalisation and reperfusion
and improved neurological prognosis (10). The therapy of AIS
has evolved in the last 5 years with the recognition of the value
of endovascular thrombectomy (that is, mechanical clot-retrieval
via catheter angiography) (11) in properly selected patients,
or the utility of brain imaging techniques to individualize the
use of thrombectomy up to 24 h after stroke onset including
wake-up stroke (WUS) (12, 13). While the value of these
major advances is indisputable, actually few patients with
ischemic stroke receive endovascular thrombectomy, and fewer
than half of those who received treatment show everlasting
benefits (14–17). Even with endovascular thrombectomy and/or
intravenous thrombolysis, the reduction of disability is highly
time-dependent. Controversially, some patients cannot benefit
from this therapy because they are treated too late and they have
little or no ischemic penumbra to salvage at the time of treatment.
Therefore, there is still a great need to develop neuroprotective
agents for AIS to protect the brain against injury before and
during reperfusion, prolong the time window for interventional
treatment as well as further ameliorate functional outcomes.
Diabetes is an independent risk factor for stroke, tripling the
risk of stroke in diabetics, and stroke accounts for about 20%
of deaths in people with diabetes (18). This association suggests
that there is a shared mechanism between diabetes and stroke.
A combination of medical therapy and behavioral modification
has been proven to lower stroke risk in diabetics (19, 20). It
is interesting to note that controlling glucose merely does not
reduce the risk in diabetics which can be reduced by behavior

modification plus medical intervention (21, 22). Recent studies
indicate that drugs targeting the glucagon-like peptide-1 receptor
(GLP-1R) have neuroprotective effects against stroke.

GLUCAGON-LIKE PEPTIDE-1 AND
GLUCAGON-LIKE PEPTIDE-1 RECEPTORS

Glucagon-like peptide-1 (GLP-1), a product of the cleavage of
proglucagon in L cells of intestinal epithelium, is mainly secreted
as GLP-1(7-36) NH2, an amidated 30-amino acid peptide (23,
24). It acts by binding to the GLP-1 receptor (GLP-1R) which
belongs to the G protein-coupled receptor family. The multiple
metabolic effects of the drug GLP-1 include the promotion
of insulin secretion in a glucose- dependent way (25, 26),
inhibition of appetite and ingestion (27), reduction of gastric
emptying (27, 28), stimulation of rodent ß-cell proliferation
(29), and increase of natriuretic (30), and diuretic processes
(31). Meanwhile, GLP-1 has neuro- and cardioprotective effects,
such as inhibiting apoptosis (32) and inflammation (33), and
has an impact on memory and learning (34, 35), palatability
and reward behavior (36). The beneficial effects of GLP-1
on the CNS are mainly shown in rodent models of stroke,
PD, AD, and ALS (37–39). However, it has been claimed
that GLP-1 still acts on some extrapancreatic tissues in the
absence of the GLP-1R, implying that the hormone can exert
effects through presently unidentified receptors or mechanisms
as well.

Unlike many gastrointestinal peptides previously found to
be insulinotropic in healthy humans or in vitro, but without
effect in diabetes (24, 40), GLP-1 has a potent antidiabetic
effect. Natural GLP-1 has a very short half-life of around 1–
2min (41–43), depending on the species and results from
the effects of the enzyme dipeptidylpeptidase-4 (DPP-4) and
renal elimination. With enhanced potency and persistence
through biochemical modification, GLP-1 receptor agonists
(GLP-1 RAs) have become effective agents for treating T2DM
and are widely used worldwide. At present, the GLP-1
receptor agonists exendin-4 (Exenatide, Byetta R©, Bydureon R©)
(44, 45), liraglutide (Victoza R©) (46), albiglutide [Eperzan R©

(EU) Tanzeum R© (US)] (47, 48), dulaglutide (TrulicityTM R©)
(49), lixisenatide (Lyxumia R©, Adlyxin R©) (50), semaglutide
(Ozempic R©, Rybelsus R©) (51, 52), are approved to treat
T2DM (53) (see Table 1). These analogs are administered
orally or subcutaneously and are well-tolerated by patients.
In addition, other relevant therapies based on incretins,
including GIP receptor (GIP-R) agonists, dual GLP-1R/GIPR
agonists, GLP-1R/GIPR/Glucagon receptor (GCGR) triagonists,
and oxyntomodulin (OXM), have been shown to improve
outcomes of T2DM in a series of preclinical trials (55, 56).

It has been proven that the native peptide GLP-1, GLP-1
receptor agonists and GIP-1 receptor agonists can cross the
blood-brain barrier (BBB) (57–61). There is also a rising interest
in dual GLP-1R/GIPR agonists as neuroprotective drugs that
act on respective homoreceptors located in the central nervous
system (CNS), with proof that these peptides could also pass
through the BBB (62–64).
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TABLE 1 | Characteristics of GLP-1 RAs that have been approved to treat type 2 diabetes as of 2021, modified from Li et al. (54).

Generic name Proprietary name Half-life Frequency/administration Company Approved by

Exenatide Byetta® 2.4 h Twice daily/s.c. Amylin-Astra Zeneca U.S.FDA, 2005; EMA, 2006

Exenatide LAR Bydureon® ∼2w Once weekly/s.c. Amylin-Astra Zeneca U.S.FDA, 2012

Liraglutide Victoza® 13h Once daily/s.c. Novo Nordisk U.S.FDA, 2010; EMA, 2009

Albiglutide Tanzeum(US)® 5 d Once weekly/s.c. Glaxo SmithKline U.S.FDA, 2014

Eperzan(EU)® 5 d Once weekly/s.c. Glaxo SmithKline EMA, 2014

Dulaglutide Trulicity® 5 d Once weekly/s.c. Eli Lilly U.S.FDA, 2014

Lixisenatide Lyxumia® 3h Once daily/s.c. Sanofi-Aventis EMA, 2013

Adlyxin® 3h Once daily /s.c. Sanofi-Aventis U.S.FDA, 2016

Semaglutide Ozempic® 5.7–6.7 d Once weekly/s.c. Novo Nordisk U.S.FDA, 2017; EMA, 2019

Rybelsus® 5.7–6.7 d Once daily/Oral Novo Nordisk U.S.FDA, 2019

FDA, The Food and Drug Administration; EMA, European Medicines Agency; s.c.,subcutaneous; LAR, long-acting release.

The GLP-1 receptor belongs to the G protein-coupled
receptor (GPCR) B family, consisting of seven transmembrane
helices (TMH) interconnected by intracellular loops, with a C-
terminal intracellular domain and a large (∼120 amino acid) N-
terminal extracellular domain (ECD) (65). GLP-1 receptors are
substantively expressed and are most abundant in the pancreas,
gut and the CNS, but also in the peripheral nervous system (PNS),
heart, vasculature, kidneys, and lungs (66).

GLP-1 receptor is widely distributed in the CNS, including
the striatum, hypothalamus, cortex, subventricular zone, and
substantia nigra, as well as in the brain stem (67–69). In the
mammalian brain, including humans and rodents, the expression
of GLP-1 receptors has been detected in endothelial cells,
microglia, astrocytes, and neurons (70–74). Because the GLP-1
receptors are highly conserved across species, the physiological
importance of the peptide and its receptor in a wide range
of mammal species is emphasized. Under normal physiological
conditions, the expression of the GLP-1 receptor is largely
confined to large output neurons, clustered in Purkinje cells,
pyramidal cells, and dentate granule cells, where it particularly
located on dendrites and on or near synapses (69).

Studies have revealed that the expression of GLP-1 receptor
is increased in neurons, GABAergic interneurons, microglia,
astrocytes, and endothelial cells in the brain following the AIS
(68, 75–77). GLP-1 RAs can alleviate brain inflammation by
inhibiting the activation and recruitment of glial cells both in vivo
and in vitro following a variety of injury paradigms (38, 78–84).
Activation of GLP-1 receptors also results in nonglycemic effects
in a variety of tissues, by acting directly on tissues expressing
incretin receptors, as well as through indirect mechanisms
regulated by endocrine and neuronal pathways.

The most common side effects of the GLP-1 RAs are
gastrointestinal (GI)-related adverse events (AE), such as
diarrhea, emesis, and nausea (85), which usually occur during the
up-titration phase and are dose-dependent.

GLP-1 AND GLP-1 RECEPTOR AGONISTS
FOR THE TREATMENT OF STROKE

Over the past several years, neuroprotective effects of GLP-1
and GLP-1 Ras have been shown in animal models of stroke,

and advances in this area have now been updated. In particular,
we focus on data showing GLP-1 and the GLP-1 RAs mediated
efficacy against stroke.

Search Strategy and Selection Criteria
We searched the PubMed (https://pubmed.ncbi.nlm.nih.gov)
for English language manuscripts. We used the search terms
“stroke,” “GLP-1,” “GLP-1 receptor agonist,” “diabetes,” and
“neuroprotection” from 1 January 2011 to 1 August 2021. We
mainly selected publications from the past 10 years, but also
included highly regarded older and frequently cited publications.
Moreover, we also searched the reference lists of articles identified
by the search strategy and selected those we judged relevant, and
Major trials or studies are referenced to support level 1 evidence
and review articles are referenced to provide readers with details.
A total of 45 papers were included (see Tables 2A–H).

GLP-1, RhGLP-1 (Recombinant Human
GLP-1), and ProGLP-1 (Long Acting
GLP-1RA)
Because GLP-1 receptors are expressed in the CNS andGLP-1 has
also been revealed to play a protective role in cerebral ischemia,
GLP-1 may be a promising drug for stroke. However, the short
half-life and dose-limited adverse gastrointestinal effects of GLP-
1 have limited its clinical application. Some forms of GLP-1,
which are processed from proglucagon, differ in the potency to
increase glucose-induced insulin secretion.

One study (87) provides evidence that pro-GLP-1 prevented
apoptosis induced by oxygen-glucose deprivation (OGD) in
cultured cortical neurons, and exerted neuroprotective effects
through the cAMP/PKA and PI3K/Akt signaling pathways
but not the ERK pathway in mice against cerebral ischemia.
Since pro-GLP-1 made no difference to levels of insulin and
blood glucose, and the neuroprotective effect was blocked when
knocked down the GLP-1 receptor in the hippocampus, it can be
inferred that pro-GLP-1 exerted neuroprotective effects against
cerebral ischemia via activation of the GLP-1 receptor.

The recombinant human GLP-1(7-36) [RhGLP-1 (7-36)],
a biosynthetic agent belonging to the GLP-1 RAs, is also
applied to treat T2DM clinically. Without amidation in the C-
terminal, RhGLP-1 (7-36) is the complete amino acid sequence
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TABLE 2A | A review of preclinical studies of GLP-1 and GLP-1RAs in stroke.

References Substance Stroke

model

Occlusion

time (min)

Species Timing of administration Comorbidity Main outcomes

Pre-ischemia Post-ischemia

Zhao et al. (86) RhGLP-1

(7–36)

pMCAO Permanent Rat Before reperfusion, i.p. Diabetic RhGLP-1: Infarct volume↓, neurological deficit↓, MDA↓, eNOS↑, SOD↑, iNOS↓, GSH-PX↑.

Nimodipine Before reperfusion, i.p. Nimo: Neurological deficits↓, infarct volume↓, MDA↓, SOD↑, GSH-PX↑, iNOS↓, eNOS↑.

Zhang et al. (87) Pro-GLP-1 tMCAO 90 Mice 1w, qd, i.p. – – GLP-1↑, neurological deficits↓, infarct volume↓, Bax↓, Bcl-2↑, caspase-3↓.

Jiang et al. (88) RhGLP-1 tMCAO 90 Rat 2w, tid, i.p. – Diabetic RhGLP-1: FBG↓, neurological deficits↓, infarct volume↓, S100B↓, NSE↓, MBP↓.

Nimodipine 2w, tid, i.p. – Nimo: Neurological deficits↓, infarct volume↓, S100B↓, MBP↓.

Insulin aspart 2w, tid, i.p. Ins: FBG↓, neurological deficits↓, infarct volume↓.

Fang et al. (89) RhGLP-1 tMCAO 120 Rat – 2 h→ 3 d, tid, i.p. Diabetic RhGLP-1: FBG↓, Neurological deficits↓, infarct volume↓, Nrf2↑, HO-1↑, p-PI3K/PI3K↑, SOD↑,

MDA↑.

Nimodipine – 2 h→ 3 d, tid, i.p. Nimo: Neurological deficits↓, infarct volume↓, Nrf2↑, HO-1↑, SOD↑, MDA↑.

Insulin – 2 h→ 3 d, tid, i.p. Ins: FBG↓, Nrf2↑, HO-1↑, p-PI3K/PI3K↑, SOD↑, MDA↑.

Fang et al. (90) RhGLP-1 tMCAO 90 Rat 2w, tid, i.p. – Diabetic RhGLP-1: Neurological deficits↓, FBG↓, infarct volume↓, MDA↓, GSH↑, SOD↑, EAAT2↑,

cleaved caspase-3↓, Bcl-2/Bax↑.

Nimodipine 2w, tid, i.p. – Nimo: Infarct volume↓, neurological deficits↓, MDA↓, GSH↑, EAAT2↑, SOD↑, cleaved

caspase-3↓, Bcl-2/Bax↑.

TABLE 2B | A review of preclinical studies of GLP-1 and GLP-1RAs in stroke.

References Substance Stroke

model

Occlusion

time (min)

Species Timing of administration Comorbidity Main outcomes

Pre-ischemiaPost-ischemia

Huang et al. (91) GLP-1 (9–36) tMCAO 60 Mice 1w, qd, i.p. – – Neurological deficits↓, infarct volume↓, NF-κB-p65↓, p- AKT↑.

Lee et al. (77) Exendin-4 BCCAO 5 Gerbil 2 h, i.p. 1 h, i.p. – Neuronal death delay, GLP-1R↑, Iba-1↓, and independent of endothelin receptor.

Teramoto et al.

(78)

Exendin-4 tMCAO 60 Mice – Onset, 1, 3 h, i.v. – Infarct volume↓, neurological deficit↓, inflammatory response (Iba-1↓, iNOS↓), cell death↓,

cAMP↑, p-CREB↑, oxidative stress markers (8-OHdG↓, HHE↓).

Briyal et al. (92) Exendin-4 pMCAO Permanent Rat 1w, bid, i.p. – – Oxidative stress markers (SOD↑,MDA↓, GSH↑), infarct volume↓, neurological deficit↓.

Darsalia et al.

(93)

Exendin-4 tMCAO 90 Rat 4w, bid, i.p. 2/4w, bid, i.p. Diabetic NeuN↑, Iba-1↓, ED1↓, Ki67↑, DCX↑.

Darsalia et al.

(94)

Exendin-4 tMCAO 30 Mice – 1.5/3/4.5 h→ 1w, qd, i.p. Diabetic/obese Proinflammatory markers (MCP-1↓, IL-1β↓), NeuN↑, M2 markers (CD206↑, Arg1↑, YM1/2↑).

Jin et al. (95) Exendin-4 BCCAO 7 Gerbil 30min, i.p. 30 min→ 2 d, bid, i.p. – NeuN↑, Fluoro-Jade B↓, Bcl-2/Bax↑, HIF-1α↓.

Jia et al. (76) Exendin-4/ tMCAO 60 Rat 15min, i.c.v. – – Infarct volume↓, neurological deficit↓, β-endorphin↑.

Exendin

9-39

15 and 15min after first one, i.c.v. – Ex 9–39: Prevented neuroprotection of Ex-4.

Chien et al., (96) Exendin-

4/PEx-4

BCCAO 10 Rat – 24h, s.c. Diabetic Ex-4: Cerebral blood flow and microcirculation↑, gp91↓, CHOP↓, GFAP↓, ICAM-1↓, NF-κB↓,

cognition deficit↓, p-eNOS↑, TUNEL↓, caspase-3↓, p-Akt↑, PARP↓, Bax/Bcl-2↓, ICAM-1↓.

PEx-4 was more effective than Ex-4.
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TABLE 2C | A review of preclinical studies of GLP-1 and GLP-1RAs in stroke.

References Substance Stroke

model

Occlusion

time (min)

Species Timing of administration Comorbidity Main outcomes

Pre-ischemia Post-ischemia

Zhang et al. (97) Exendin-4 tMCAO 90 Mice 1w, q d, i.n./i.p.– – Infarct volume↓, neurological deficit↓, cAMP/PKA/p-CREB↑, PI3K/p-Akt↑, caspase-3↓,

neuroprotection of intranasal Ex-4 depended on activation of GLP-1R.

Kuroki (98) Exendin-4 tMCAO 60 Mice – 60min, i.p. Hyperglycemia Infarct volume↓, edema volume↓, neurological deficit↓, survival rate↑, MMP-9↓, BBB

permeability↓, Iba-1↓, neutrophil infiltration↓, TNF-α↓, oxidative stress markers (DNP↓).

Li et al. (99) Exendin-4/ tMCAO 60 Mice – Onset/3/6/12 h,i.p.Diabetic Ex-4: Oxidative stress markers (ROS↓, ICAM-1↓, MDA↓ DHE↓), edema volume↓, cerebral

microcirculation↑, apoptosis markers (TUNEL↓, caspase-3↓), MnSOD↓, PARP↓,p eNOS↑,

Bax/Bcl-2↓, NF-κB p50 and p65↓, p-Akt↑, voiding impairments↓, cognition deficit↓.

Liraglutide – Onset/3/6/12h,i.p. Lir: Oxidative stress markers (ROS↓, ICAM-1↓, MDA↓ DHE↓), edema volume↓, cerebral

microcirculation↑, apoptosis markers (TUNEL↓, caspase-3↓), MnSOD↓, PARP↓,p eNOS↑,

Bax/Bcl-2↓, NF-κB p50 and p65↓, p-Akt↑, voiding impairments↓, cognition deficit↓.

Chen et al. (71) Exendin-4 tMCAO 45 Mice – Onset, i.v. Hemorrhagic transformation Infarct volume↓, neurological deficit↓, PI3K/Akt/GSK-3β↓, claudin-3↑, p-β-catenin/β-catenin↓,

TNF-α↓, claudin-5↑, ICAM-1↓, IL-1β↓, IKK-β↓, VCAM-1↓, 8-OHdG↓, HHE↓, MPO↓,

Iba1+/TNF-α↓, NF-κB↓.

TABLE 2D | A review of preclinical studies of GLP-1 and GLP-1RAs in stroke.

References Substance Stroke

model

Occlusion

time (min)

Species Timing of administration Comorbidity Main outcomes

Pre-ischemia Post-ischemia

Yang et al. (100) Exendin-4 tMCAO 60 Rat – 1/2/3/4/5/7/10d, qd, i.v.– APE1↑, γH2AX↓, PI3K/p-AKT↑/p-CREB↑.

Kim et al. (73) Exendin-4/ tMCAO 60 Rat 30min, i.c.v. – – Ex-4: Infarction volume↓, GLP-1R↑, cAMP↑, IB1/JIP1↑, p-SAPK↓/p-JNK↓, COX-2↓, PGE2↓.

Exendin 9-39 30min, i.c.v. – – Ex 9-39: infarction volume↓, GLP-1R↓, p-JNK↑.

Shan et al. (101) Exendin-4/ tMCAO 90 Rat – Onset, i.p. – Ex-4: Neurological deficit↓, infarct volume↓, MCP-1↓, MMP-9↓, IL-1β↓, CXCL-1↓, VEGF-A↓,

IL-6↓, ZO-1↑, PLCγ↓/PKCα↓/eNOS↓, p-JAK2↓/p-STAT3↓.

Exendin 9-39 – Onset, i.p. – Ex 9-39: neuroprotection of Ex-4 was blocked by combination with Ex 9-39.

Zhang et al.

(102)

Exendin-4 tMCAO 60 Mice 1/3/7/14 d, qd, i.p.– – Infarct volume↓, neurological deficit↓, p-PI3K↑/p-AKT↑, p-mTOR↑, HIF-1α↑.

Augestad et al.

(103)

Exendin-4 tMCAO 30 Mice – 3 d→ 6/8w, qd, i.p. Diabetic/obese Insulin sensitivity↑, Iba-1↓, CD68↓, vessel density↑, CD13+↑, neurological deficit↓.

Nizari et al. (104) Exendin-4/ tMCAO 90 Rat 20/10min before reperfusion; i.v . RIC RIC: Infarct volume↓, neurological deficit↓. Ex-4: GLP-1R↑, PO2↑, PtO2↑.

Exendin 9-39 10min prior to the first episode of RIC Ex 9-39: blocked the neuroprotective effect of RIC.

Sato et al. (105) Liraglutide tMCAO 90 Rat – 1 h, i.p. – Neurological deficit↓, oxidative stress markers (d-ROMs↓), infarct volume↓, VEGF↑.
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TABLE 2E | A review of preclinical studies of GLP-1 and GLP-1RAs in stroke.

References Substance Stroke

model

Occlusion

time (min)

Species Timing of administration Comorbidity Main outcomes

Pre-ischemia Post-ischemia

Briyal et al. (106) Liraglutide pMCAO Permanent Rat 2w, s.c. – Diabetic Infarct volume↓, oxidative stress markers (MDA↓, GSH↑, SOD↑), apoptosis-related protein

(Bcl-2↑, Bax↓), neurological deficit↓.

Zhu et al. (107) Liraglutide pMCAO Permanent Rat – 1/2/7 d, qd, s.c. – Neurological deficit↓, infarct volume↓, Bcl-xl/Bad↑, p-P38↓, JNK↓, Bcl-2/Bax↑, TUNEL↓,

caspase-3↓/−8↓/-9↓, PARP↓, p-ERK↑, ROS↓, p-AKT↑.

Dong et al. (108) Liraglutide tMCAO 90 Rat – 1 d→ 4w, qd, s.c. – Neurological deficit↓, glucose metabolism (18F FDG↑), GFAP↓, GLP-1R↑, NeuN↑, vWF↑.

Deng et al. (109) Liraglutide pMCAO Permanent Rat 1w, bid, i.p. 1w, bid, i.p. Diabetic Neurological deficit↓, infarct volume↓, HO-1↓, Nrf2↓, oxidative stress (MPO↓, SOD↑).

Chen et al. (110) Liraglutide pMCAO Permanent Mice – 1 d→ 2w, qd, i.p. – Infarct volume↓, neurological deficit↓, VEGF↑, BrdU+/CD31+ ECs↑.

Zhu et al. (111) Liraglutide pMCAO Permanent Rat – 1 h→ 1w, qd, s.c. – Sensory impairment↓, Aβ↓, NeuN↑, GFAP↓, Iba-1↓, TUNEL↓, Bcl-2↑, Bax↓.

Filchenko et al.

(112)

Liraglutide tMCAO 30 Rat 1w, qd, s.c. – Diabetic Infarct volume↓, neurological deficit↓.

He (113) Liraglutide pMCAO Permanent Mice – 1w, qd, s.c. – Neurological deficit↓, BDA-labeled axons↑, mitochondrial activities (ICDH↑, α-KG↑, DH↑,

SDH↑), oxidative stress markers (cell viability, ATP levels↑, NeuN↑, LDH release↓, GAP-43↑,

ROS↓, MMP↑, Fis1↓, complex mitochondrial-I↑).

TABLE 2F | A review of preclinical studies of GLP-1 and GLP-1RAs in stroke.

References Substance Stroke

model

Occlusion

time (min)

Species Timing of administration Comorbidity Main outcomes

Pre-ischemia Post-ischemia

Basalay et al.

(114)

Liraglutide / tMCAO 90/120/180 Rat – Onset, i.v. – Lir: Infarct volume↓, neurological deficit↓.

Semaglutide 5min before reperfusion, s.c. – Sema: Infarct volume↓, neurological deficit↓.

Exendin 9-39 15min before Sema, i.v. – Neuroprotection by Sema was abolished by Ex 9-39.

Shi et al. (115) Liraglutide pMCAO Permanent Rat – 1 h, i.p. Diabetic Lir: Blood glucose↓, neurological deficit↓, infarct volume↓, oxidative stress (SOD↑, MPO↓),

Kir6.2↑, SUR1↑.

Insulin – 1 h, i.p. Ins: Blood glucose↓.

Li et al. (116) Liraglutide tMCAO 120 Mice – Onset→ 2 d, q4 h Diabetic Infarct volume↓, PAWR↑, Haptoglobin (Hp)↓, Bcl-2↑, Bax↓, Serum amyloid A protein (SAA)↓,

synapsis-related proteins↑ (Dpysl2, Syn1, Bsn, Map1b, Nf1, and Pde2a).

Abdel-latif et al.

(117)

Lixisenatide BCCAO 30 Rat – 1 and 24 h, i.p – Lixi: Neurological deficit↓, GSH↑, catalase enzyme↑, MDA↓, caspase-3↓, TNF-α↓, VEGF↑,

infarct volume↓, eNOS↑, exerted effects via GLP-1R dependent and independent pathways.

Exendin 9-39 – 1 and 24 h, i.p. – Ex 9-39: Reversed some of the protective effects of Ex-4.
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of GLP-1 (7-36)-NH2 and is more homologous to human
as compared to other GLP-1 RAs such as exenatide (122).
However, RhGLP-1 (7-36) is a short-acting dosage form and
its effects could be terminated more promptly when adverse
events occur than long-acting GLP-1 RAs. Pretreatment with
rhGLP-1 for 2 weeks can reduce blood glucose, body weight, and
infarction volume, improve neurological deficits in diabetic rats
after stroke compared to insulin (88). More concretely, RhGLP-
1 lowered blood glucose in a dose-dependent manner while
decreased the blood levels of biomarkers S100 Calcium Binding
Protein B (S100B), major basic protein (MBP), and neuron
specific enolase (NSE) which reflect cerebral damage (90) when
administration implemented 2 weeks before transient middle
cerebral artery occlusion (tMCAO) in diabetic rats. RhGLP-
1 also decreased the level of cleaved caspase-3 and increased
the expression of excitatory amino acid transporter 2 (EAAT2)
and the ratio of Bcl-2/Bax from the level of protein (90). In
another study (86), RhGLP-1 significantly increased the density
of surviving neurons, alleviated oxidative stress parameters, and
promoted vascular proliferation when pretreated with only a
single dose before performing permanent middle cerebral artery
occlusion (pMCAO) in rats with diabetes. In a separate study,
Similar results were found by a second study (89) when rhGLP-
1 was administrated from 2 h to 3 days after MCAO. The
neuroprotective effect of rhGLP-1 might be based on promoting
expression of the phase II detoxification enzymeHO-1, activating
PI3K to up-regulate expression of antioxidant enzyme SOD, and
nuclear transfer of Nrf2 proteins.

GLP-1(9-36) NH2 is formed by the DPP-4 enzyme cleaving
the N-terminal dipeptide His-Ala of GLP-1(7-36) NH2 (123),
which is a ligand for GLP-1 receptor with low affinity. Not
much is known about the underlying mechanisms and efficacy
of GLP-1 (9-36) in cerebral ischemia and reperfusion (CIR)
injury (that is, middle cerebral artery was obstructed for some
time and then achieved reperfusion). Studies have been shown
that reperfusion has the potential to cause subsequent injury
in ischemic tissue, which is called ischemia and reperfusion
injury (124). It was reported that GLP-1 (9-36) decreased the
level of nuclear factor kappa-B (NF-κB) in astrocytes after
oxygen-glucose deprivation/reoxygenation (OGD/R) damage
and inhibited neuronal apoptosis around the infarct area against
CIR, the mechanism of which might be relying on the activation
of the IGF-1 receptor rather than the GLP-1 receptor (91).

Exenatide
Exenatide (Byetta R© and Bydureon R©, AstraZeneca), originally
discovered as Exendin-4 (Ex-4) in the saliva of the gila monster
(Heloderma suspectum), is a synthetic peptide with 39 amino
acids (129). There is about 53% homology of amino acid sequence
between the first 30 amino residues of Ex-4 and mammalian
GLP-1, nevertheless, there is no similarity in the C-terminal non-
apeptide extension. In contrast with GLP-1, there is a glycine
at the second amino acid position in the N-terminus of Ex-4
that can protect the peptide against inactivation and degradation
mediated by DPP-4 (130).

There has been evidence that intraperitoneal injection of
Ex-4 protected against ischemia-induced neuronal apoptosis
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TABLE 2H | A review of preclinical studies of GLP-1 and GLP-1RAs in stroke.

References Substance Stroke

model

Occlusion

time (min)

Species Timing of administration Comorbidity Main outcomes

Pre-ischemia Post-ischemia

Han et al. (125) DA tMCAO 60 Rat – 1 h, i.p. – DA: Neurological deficit↓, infarct volume↓, Bcl-2↑, TUNEL↓, Bax↓, iNOS↓.

Val(8)GLP-1-

Glu-PAL

– 1 h, i.p. – Val(8): Infarct volume↓, neurological deficit↓, Bcl-2↑, TUNEL↓, Bax↓, iNOS↓.

Bai et al. (126) DA3-CH tMCAO 120 Rat 2w, qd, i.p. – Diabetic DA3: Neurological deficit↓, infarct volume↓, CHOP↓, NeuN↑, GRP78↓, Bax↓, Bcl-2↑,

caspase-12↓.

Liraglutide 2w, qd, i.p. – – Lir: Neurological deficit↓, infarct volume↓, Bcl-2↑, NeuN↑, GRP78↓, CHOP↓, Bax↓,

caspase-12↓.

Li et al. (127) OXM tMCAO 60 Rat 15min, i.c.v – – CAMP↑, GLP-1R↑, p-CREB/CREB↑, PKA↑, MAPK, cell viability↑, infarct volume↓,

neurological deficit↓.

Wang et al. (128) P7C3 tMCAO 40 Mice – 2 h→ 3 d, qd, i.v. – P7C3: Survival rates↑, neurological deficits↓, infarct volume↓, BBB leakage↓, p65 NF-κB↓,

iNOS↓, caspase-3↓, a-caspase-3↓, DCX↑, β-tub3, ki67, BrdU↑, adam11↑, adamts20↑,

SpGSK-3↑, Bcl-2↑, p-PKA↑, p-Akt↑, p-catenin↑, cAMP↑, and dependent of GLP-1R.

Exendin-4/

Exendin 9-39

–/ 15min, i.v. 2 h→ 3 d, qd, i.v./2 h, i.v. – Ex-4: Survival rates↑, cAMP↑.

Ex 9-39: blocked protective effects of P7C3.

↑, enhancement; ↓, reduction; i.p., intraperitoneal; s.c., subcutaneous; i.c.v., intracerebroventricular; i.n., intranasal; t.v., transvenous; p.o., oral; MCAO, middle cerebral artery occlusion; p/tMCAO, permanent/transient; BCCAO, bilateral

common carotid artery occlusion; TUNEL, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling; ROS, reactive oxygen species; M2, anti-inflammatory macrophages: marked by CD206, arginase1 and

YM1/2; VEGF, vascular endothelial growth factor; p-Akt, phosphorylated protein kinase B; ED1, a marker of activated microglia; 8-OHdG, 8-hydroxy deoxyguanosine; p-CREB, phosphorylated cyclic AMP (cAMP) response element

binding protein; COX-2, cyclo-oxygenase-2; MDA, malondialdehyde; PKA, protein kinase A; DCX, doublecortin; NSE, neuron specific enolase; MCP-1, monocyte chemotactic protein 1; iNOS, inducible nitric oxide synthase; SOD,

superoxide dismutase; Bax, Bcl-2-associated X protein; DNP, dinitrophenol; GSH, reduced glutathione; GFAP, glial fibrillary acidic protein; PI3K, phosphoinositide 3-kinase; γH2AX, Histone H2A (Lys119); NeuN, neuronal nuclei protein;

APE1, apurinic/apyrimidinic endonuclease 1; CHOP, CCAAT/-enhancer-binding protein homologous protein; GSK3β, glycogen synthase kinase 3β; NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells; IL-1β, Interleukin-1

beta; Bcl-2, B-cell lymphoma 2; HIF-1α, hypoxia-inducible factor 1-alpha; gp91, glycoprotein91; p-eNOS, phosphorylated endothelial nitric oxide synthases; ICAM-1, intercellular adhesion molecule 1; HHE, 4-hydroxy 2-hexenal; DHE,

dihydroethidium; cAMP, cyclic adenosine monophosphate; PARP, poly ADP-ribose polymerase; BBB, blood brain barrier; 8-OHdG, 8-Oxo2’-deoxyguanosine; MPO, myeloperoxidase; HO-1, heme oxygenase-1; MBP, myelin basic

protein; Nrf2, nuclear factor erythroid-2; Ki67, nuclear proliferation antigen; Iba-1, ionized calcium-binding adapter molecule-1; SDF-1, stromal cell derived factor-1.
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potentially by upregulating expression of the GLP-1R mainly in
GABAergic interneurons or astrocytes in the hippocampal CA1
region of gerbils (77). In a separate study, Gong et al. (131) proved
the neuroprotective efficacy of intracerebroventricular injection
(i.c.v.) of Ex-4 exerted after transient ischemia/reperfusion in
rats and first suggested that Ex-4 played a neuroprotective role
probably by stimulating the GLP-1R/β-endorphin signal pathway
in hippocampal microglia (76).

Another study (78) showed that Ex-4 improved neurological
deficits after stroke in mice, and the neuroprotective effects of
Ex-4 were achieved when administrated intravenously acutely
at the onset of stroke or 1 h later, but were lost at 3 h. It
must be pointed out that the dose of Ex-4 administrated in the
study (∼400 mg/kg) was much higher than a clinical dose of
Ex-4 taken by patients with T2DM (0.1–0.2 mg/kg). Another
group (93) showed that clinical dose of Ex-4 also reduced
neuronal damage, arrested microglial infiltration, and increased
stroke-induced neuroblast formation and proliferation of neural
stem cell (NSCs) when administrated 4 weeks before and 2–
4 weeks after inducing stroke in diabetic rats. In the latter
study (94), Ex-4 was found to exert neuroprotective effects in
both aged T2DM/obese and healthy mice by administrating
a dose of 50 mg/kg Ex-4 from 1.5 or 3 h after MCAO. The
difference between these outcomes and the experiment by (78)
at 3 h possibly results from different methods of evaluation for
stroke. Microglia/macrophages assume a diversity of phenotypes
depending on the microenvironment, such as the classical
pro-inflammatory M1 phenotype and the regulatory or anti-
inflammatoryM2 phenotype, respectively (132, 133). After stroke
there is an early/acute polarization to the anti-inflammatory M2
phenotype, nevertheless, there is an increased transition to the
pro-inflammatory M1 phenotype over time (134). Interestingly,
the up-regulation of M2 markers demonstrates that Ex-4
promotes the polarization toward the anti-inflammatory M2
phenotype post MCAO in both aged T2DM/obese and normal
mice, implying a new mechanism based on Ex-4- mediated
neuroprotective efficacy (94, 135). From the clinical perspective,
the advantage of this finding is that diabetics can receive a
treatment based on activation of GLP-1R targeting their diabetes
(i.e., antihyperglycemic), as well as improving the prognosis of
stroke. Intranasal administration of Ex-4 at a dose of 0.5 µg/kg
daily for 7 days beforeMCAO inmice, rather than intraperitoneal
administration at an equivalent dose, exerted neuroprotective
effect by reducing infarct volume and neurological deficits which
were blocked by knocking down GLP-1 receptor with shRNA
(97). Following activation of the GLP-1 receptor, the main signal
pathway includes activation of adenylyl cyclase by stimulating
Gα, which in turn stimulates the both the PI3K/Akt and
cAMP/PKA/CREB pathways that regulate functions of various
cells (136). The study indicates that intranasal administration
(i.n.) may be a more effective mode of administration against
cerebral ischemia as Ex-4 could be transported across the BBB
by fast anterograde axonal transport. Their results also showed
Ex-4 (50 µg/kg) had neuroprotective effects at 1.5 and 3 h after
stroke. Therefore, the difference between this study and that
of Darsalia et al. was potentially due to the different modes
of administration.

Though GLP-1 RAs have been recognized to improve
glucose tolerance and induce sustained secretion of insulin after
discontinuing therapy, yet no study has been conducted to
determine whether Ex-4 plays a continuing role in protecting
against stroke after cessation of therapy and the potential
mechanisms. Zhang et al. (102) demonstrated that pretreatment
with Ex-4 for a week, induced tolerance to cerebral ischemia
that lasted for at least 6 days in the mouse brain after MCAO
and this neuroprotective state was related to upregulation of
IGF-1R which was mediated by GLP-1R and, following by
activation of the IGF1R-regulated the PI3K/AKT/mTOR/HIF-1
pathway by binding to IGF-1. Another study (95) found that
Ex-4 downregulated the level of hypoxia-inducible factor-1α
(HIF-1α) under hypoxic conditions in vivo (SH-SY5Y cells and
primary cortical neurons) and ischemic state in vivo (transient
ischemia model of gerbil) in vitro. These studies suggest that Ex-
4 regulates the level of HIF-1α in the nerve cell which may play a
significant part in the neuroprotection of Ex-4 against hypoxic-
ischemic. Ex-4 exerted neuroprotective effects independent of
endothelin receptor in a similar experiment (92). Furthermore,
GLP-1 and its analog (Ex-4) enhanced DNA repair and protected
cortical neurons in brains of rats after ischemia which were
due to up-regulation of apurinic/apyrimidinic endonuclease 1
(APE1) mediated by PI3K/AKT/CREB pathway (100). APE1 is
the most abundant apurinic endonuclease in human cells (137).
Previous studies demonstrated that DNA repair efficiency of
base excision repair can be improved by up-regulated APE1
(138, 139). In a similar study (103), chronic activation of GLP-
1 receptors by Ex-4 promoted the recovery of forepaw grip
strength correlated with counteracted atrophy of parvalbumin+
interneurons, normalized glycaemia, and insulin sensitivity as
well as the pericyte coverage and density of microvessels, and
restored formation of fibrotic scar at the stage of recovery in
diabetic mice after stroke. The results proves that GLP-1 RAs are
effective in trials of post-stroke rehabilitation in T2DM.However,
the Ex-4-mediated rehabilitation was minor in non-diabetic
mice. In effect, these mice make a quick recovery after stroke
and, as a result, there is little chance that further improvement
in recovery may be offered through pharmacological treatment.

Oxidative stress is one of the mechanisms underlying
neuronal damage which may be caused by the acute brain
ischemia (ABI) (140). Ex-4 offered protection against MCAO-
induced disorder of the cerebral blood flow (CBF), expression of
reactive oxygen species (ROS) in the blood and brain, production
of oxidative stress-related and inflammatory proteins, dyskinesia
and cognitive dysfunction, and contraction of the bladder in
mouse with diabetes (99). In the study, they observed that Ex-
4 treatment activated the Phospho- Akt/Phospho- endothelial
nitric oxide synthase (p-Akt/p-eNOS) signaling pathway after
MCAO, suggesting the recruitment of signal pathways which
can protect against oxidative stress. It has been shown that
synthetic biodegradable polyesters such as poly (D,L-lactide-
co-glycolide) (PLGA) can be applied to increase the biological
activity of administered drugs (141). In order to overcome the
limited efficacy and short half-life of Ex-4, Chien et al. made
use of a solvent-compatible microfluidic chip based on phenol
formaldehyde resin to fabricate Ex-4- loaded PLGA (PEx-4)
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microspheres. Compared with Ex-4, PEx-4 showed sustained
release of Ex-4 into the CSF and plasma over 2 weeks (96).
Bilateral common carotid arteries occlusion (BCCAO) model
is used to simulate the clinically transient global cerebral
ischemia which is caused by cardiac arrest or severe hypotension
(142). In comparison to Ex-4, PEx-4 was more efficient in
improving BACCO-induced cognitive impairment and cortical
edema in diabetic rats (96). Furthermore, the neuroprotective
outcomes of PEx-4 were related to the suppression of GFAP-
induced neurodegeneration, gp91/CHOP-regulated endoplasmic
reticulum stress (ERS), NF-κB/ICAM-1-mediated inflammation,
and Bcl-2/Bax/caspase-3/PARP-involved apoptosis. These effects
are inspiring for the possibly therapeutic application of
GLP-1 RAs in neurological and cardiovascular complications
of diabetes.

As a major source of inflammatory cytokines in lesions after
AIS, astrocytes play an important role in recruiting peripheral
immune cells, activating microglia, aggravating brain injury, and
destroying the BBB. Ex-4 relieved the leakage of the BBB while
reduced levels of astrocyte-derivedMCP-1, CXCL-1MMP-9, and
VEGF-A in ischemic areas after MCAO in rats (101). PI3K/Akt is
the commonest downstream signal pathway activated by GLP-1
receptor and has been shown to be activated by Ex-4 in animal
models of stroke. In addition, they found that Ex-4 influenced
astrocytes subjected to OGD/R by down-regulating the protein
of phosphor- Janus Kinase 2 (pJAK2)/signal transducer and
activator of transcription 3 (STAT3), which is a novel and
previously undiscovered GLP-1 signaling pathway (101). Based
upon these results, disruption of the BBB and ischemia-induced
inflammation could be ameliorated by Ex-4 in an astrocyte-
dependent way.

Powerful internal mechanisms of protective efficacy among
organs are activated via remote ischemic conditioning (RIC)
which could be activated by cycles of ischaemia/reperfusion (I/R)
exerted to a tissue or an organ which is far from the tissue/organ
being sheltered (143). A large number of experiments indicated
the protection of the RIC in brain and heart against I/R- induced
damage. A different study (104) suggested that GLP-1R-mediated
neuroprotective effects against ischemic stroke in rats might
be established by the RIC, which were antagonized by highly
selective GLP-1 receptor antagonist Ex 9-39. Moreover, GLP-
1 receptors are expressed in the cells lining cortical arterioles,
and Ex-4 efficiently reversed the constriction of the arterioles
induced by OGD or lactate in vitro and increased the CBF in
vivo. Consequently, GLP-1R-induced neuroprotection may be
mediated by its effects on cortical arterioles as well as ameliorated
perfusion of the peri-infarct areas in the brain.

Cardioembolic strokes, most frequently caused by atrial
fibrillation (AF), are associated with worse outcomes, and a
higher risk of hemorrhagic transformation (HT) compared
with ischemic strokes from other causes (144–146). But so
far, there seems to be no effective therapy to prevent HT in
routine clinical practice. Chen et al. (71) observed that Ex-
4 can restrain neuroinflammation and stabilize the BBB via
PI3K/Akt-mediated suppression of glycogen synthase kinase-3β
(GSK-3β) in the brain after warfarin-associated HT post-cerebral
ischemia of mice. These findings might be of significant value

clinically and would be particularly beneficial for patients who
receive anticoagulant therapy. Considerable attention should
be paid to the safety and efficacy of this therapy in future
clinical trials.

Liraglutide
Liraglutide (Victoza R©, Novo Nordisk) is modified from human
GLP-1 (hGLP-1 7–37) with approximately 97% homology to
GLP-1, containing a C16 palmitoyl fatty-acid side-chain at Lys26
and a ser34Arg amino-acid substitution. Liraglutide is a stable
GLP-1R agonist used clinically to treat T2DM with adverse
effects similar to Ex-4 (147). A randomized, multinational
study showed that liraglutide was superior to Ex-4 on glycemic
control with good compliance (148). A single administration
of liraglutide post- stroke decreased MCAO-induced infarction
with behavioral improvement, and the neuroprotective effects of
liraglutide in normoglycemic rats may be due to suppression of
oxidative stress and upregulation of VEGF in the cerebral cortex,
but not striatum (105). This study might have uncovered the
neuroprotective potency of liraglutide against cerebral ischemia
for the first time.

It has been determined that nuclear factor erythroid-
2 (Nrf2)/heme oxygenase (HO-1) signal pathway plays a
strong part in antioxidant stress and the overexpression of
Nrf2 can dramatically reduce ischemic brain damage (149).
Liraglutide activated the Nrf2/HO-1 pathway and protected
cerebral neurons against stroke in diabetic rats (109). In another
study (115), liraglutide significantly inhibited oxidative stress
and inflammatory activation compared with insulin in diabetic
rats after pMCAO, which is connected with the activation
of mitoKATP channels. These outcomes are in agreement
with previous experiments, suggesting that diabetes-aggravated
ischemic damage was resulting from multifactorial interactions
and normalization of hyperglycemia alone is not the major
mechanism of neuroprotective effects. Further, it is confirmed
that liraglutide is a neuroprotective drug that can directly protect
against ischemic injury in animals with diabetes mellitus.

It has been shown that the GLP-1 RAs can reduce the
mortality of cerebrovascular accidents in diabetics in clinical
trials (150), but GLP-1 RAs are often used in combination with
other agents, thus drug interactions cannot be ruled out. A
different study (112) found that liraglutide markedly lessened
cerebral infarction without causing hypoglycaemia in non-
diabetic rats. Though bothmetformin and liraglutide contributed
to euglycemia in experimental T2DM of rats, only liraglutide
alleviated cerebral injury caused by stroke when compared with
metformin. Liraglutide furthermore improved symptoms after
stroke compared to insulin in rats with diabetes induced by
streptozotocin (106). However, this diabetic model simulates type
1 diabetes mellitus (T1DM) and levels of blood glucose were not
monitored in the course of treatment.

Neurons are the most oxygen-sensitive cells in the human
body. It was shown that liraglutide clarify protection against
hypoxia by activating the MAPK and PI3K/AKT pathways
in vivo and in vitro against ischemic damage (107). What’s
more, liraglutide ameliorated motor and sensory disorders via
inhibition of neuronal apoptosis in vivo (107). Focal cerebral
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infarction after distal MCAO not only causes the primary
cortical infarction, but also leads to secondary injury in the
regions that have synaptic connections with the primary ischemic
lesion (151). The most common secondary damage is ipsilateral
thalamic degeneration after cerebral infarction, including axonal
degeneration, neuronal loss, gliosis, β-amyloid (Aβ) deposits,
and hyperphosphorylation of Tau protein (152, 153). Such
thalamic damage results in delayed neuronal recovery (154). A
separate study (111) found liraglutide alleviated sensory deficit
after focal cerebral ischemic stroke, which may be related to
the improvement of Aβ3-16 deposition as well as secondary
damage in the ipsilateral thalamus. This may provide a basis for
finding new therapeutic targets for ischemic stroke. Nevertheless,
whether liraglutide could reduce other types of Aβ requires
more detailed elucidation. Studies have revealed that acute
neuroprotection is provided by the administration of GLP-1
RAS prior to or immediately after inducing experimental stroke.
However, drugs that provide long-term effects of treatment
and/or target later phase after stroke might be more crucial,
because a prolonged time-window of treatment applies tomost of
new victims, as well as dysfunction is persistent in patients with
stroke (7, 155). Dong et al. (108) found delayed treatment with
liraglutide from the first day to the fourth week after stroke could
promote neurovascular remodeling and increase expression of
GLP-1R, which helped to increase metabolism of glucose and
improve neurological deficit in rats when initiated 24 h after
tMCAO. By means of PET- imaging and other techniques, the
study demonstrated a dose-dependent recovery of metabolism
and function occurred after treatment with liraglutide. This
may be the first study to show that delayed administration of
liraglutide can treat cerebral ischemia. Cerebral repair after stroke
calls for different processes, which contains synaptogenesis,
neurogenesis, and angiogenesis (156). Neovascularization after
ischemic injury in the brain improves microperfusion of tissue
in the peri-infarct area (157). A separate study (110) confirmed
that delayed therapy with liraglutide (24 h post-stroke and once
daily for 2 weeks) can promote angiogenesis and long-term
rehabilitation of cerebral ischemia in mice by up-regulating
the expression of vascular endothelial growth factor (VEGF)
in normoglycemic animals. It is acknowledged that axonal
sprouting is a key factor for functional recovery of mice following
a stroke (158). Liraglutide promoted axonal sprouting in primary
cortical neurons exposed to H2O2 and in a pMCAO model in
mice (159). In addition, the effect might be mediated by Sirt1-
dependent mitochondrial improvement. These findings might
be of clinically significance because chronic administration of
liraglutide prior to and after stroke can improve stroke outcomes
in diabetics while playing an antidiabetic role.

A recent proteomic study (116) explored the physiological
protection of GLP-1 RAS during the progression of cerebral
ischemia/reperfusion (CI/R) injury in mice. These proteomic
data showed that liraglutide exerted a variety of effects on the
phosphorylation and expression of proteins in MCAO mice.
Specifically, liraglutide downregulated expression of Haptoglobin
(Hp), upregulated levels of PRKC apoptosis WT1 regulator
(PAWR), and synapse-related proteins including Syn1, Pde2a,
Dpysl2, Nf1, Bsn, and Map1b, and increased the densities of

neurons and synapses. The results of this study may help identify
novel therapeutic targets for ischemia-reperfusion.

Lixisenatide
Lixisenatide (Lyxumia R©, Sanofi), an analog of Exenatide,
is formed by omitting the proline at position 38 as well
as adding six sequential lysine residues to the C-terminus
(160). It is a GLP-1R agonist used to treat T2DM with
neuroprotective properties. Furthermore, lixisenatide
can cross the BBB at very low doses with obvious
physiological activity, and promote neurogenesis in the
CNS (58).

Along with T2DM-induced hyperglycemia, cerebral
blood flow (CBF) is obviously decreased on account
of regulation of vasculature and vasoactive mediators,
especially endothelium-derived nitric oxide (NO) (161). It
is important to note that a sustained reduction in NO in
the CBF leads to poor prognosis in patients with ischemic
stroke (162).

It was revealed that pretreatment with lixisenatide
significantly suppressed elevation of inducible nitric oxide
synthase (iNOS) and reversed the expression of endothelial
nitric oxide synthase (eNOS) at the protein level and reduced
mRNA of (NADPH oxidases 2) NOX2 in carotid arteries,
which finally alleviated the endothelial dysfunction caused
by ischemic/reperfusion (CI/R) in rats with diabetes more
apparently than glimepiride (118). Glimepiride, a once-daily
sulfonylurea antidiabetic drug, was selected as therapeutic
comparator in this study, which acts through enhancing insulin
secretion from β cells via different mechanisms (163). The
data indicate that both glimepiride and lixisenatide dampened
the parameters of vascular oxidative stress such as NOX2
and iNOS partly due to glycemic control. Nevertheless, the
effects of lixisenatide on vascular improvements are better
than that of glimepiride, which might be in connection with
activation of GLP-1R. In another study (117), two doses of
lixisenatide (1, 10 nmol/kg) were administered, respectively,
to rats post- stroke. In both groups, lixisenatide markedly
ameliorated neurological deficit, reduced infarct volume, along
with inhibited the expression of oxidative stress parameters
(GSH, MDA, NO and catalase enzyme), apoptotic marker
(caspase-3), and inflammatory factor (TNF-α) in ischemic
brains of rats (117). It’s worth noting that these protective
effects are independent of GLP-1R activity because they
weren’t blocked by Ex 9-39. However, the expression of VEGF
protein increased by lixisenatide was inhibited by adding Ex
9-39. Moreover, the effects of the low dose by lixisenatide
on stroke was superior to that of high dose. One probable
interpretation is that transport of molecules across the BBB
is highly controlled and the ingestion of the abnormally
high doses of drug may affect this. Another explanation
is that large doses of lixisenatide induce desensitization of
GLP-1 signals in the brain. Nevertheless, further trials are
needed to confirm the hypothesis. Moreover, one recent
study (119) showed that lixisenatide exerted neuroprotection
potentially by downregulating levels of NF-κB, TLR2/4, MPO,
and pP38 as well as upregulating expression of pERK1/2.
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Thus, this study suggests that neuroprotective effects of
lixisenatide may be related to the TLR/MAPK pathway
following CI/R.

Semaglutide
Semaglutide (Ozempic R©, Novo Nordisk), a modification of
liraglutide, has a 94% homology with human GLP-1. It becomes
protease-resistant by changing the amino acid at position 8 and
an extended spacer for the attached fatty acid which prolongs
the half-time in the blood (164), and is a once-weekly GLP-1R
agonist for T2DM. Oral GLP-1 RA is a modified version from
its subcutaneously administered semaglutide (165). Semaglutide
has shown good neuroprotective effects in animal models of
PD, and a phase II clinical trial is currently ongoing (166, 167).
The neuroprotective effects of limiting infarct and improving
neurological function by semaglutide are dose-dependent against
tMCAO in non-diabetic rats and are at least as strong as
liraglutide (114). Further, the GLP-1R antagonist Ex 9-39
eliminated the neuroprotective effects of semaglutide in this
study, implying that GLP-1Rs play a key role in these effects.
These results are in accord with the prior work by Darsalia et al.,
where Ex-4 exerted neuroprotective efficacy in wild type rather
than GLP-1R−/− mice. Recently, we found that semaglutide
therapy post-stroke can prevent ischemia-induced neurotoxicity
and normalize neurogenesis and proliferation of stem cells in
the brain via inhibition of p38 MAPK/MKK/c-Jun activity,
regulation of Bcl-2/Bax pathways, and C-raf/ERK/caspase-3,
restoration of insulin signaling sensitivity, and normalization
of the ERK1 and IRS1 pathways (120). What’s more, we
continuously measured blood glucose in rats which were
administrated semaglutide from 2 h to day 14 following pMCAO,
further proved the neuroprotective effects without causing a
hypoglycemic episode.

DMB (GLP-1Ragonist/Modulator)
The GLP-1R agonist quinoxaline 6,7-dichloro-2-methylsulfonyl-
3-N-tert-butylaminoquinoxaline (DMB; also known as
Compound 2) is a unique small-molecule agonist based on
quinoxaline and allosteric modulator of GLP-1Rs with the
potential to add the affinity for its receptor, first discovered by
Knudsen et al. (168).

Zhang et al. (121) found that pretreatment with DMB
significantly reduced the neurological deficits and cerebral
infarction caused by MCAO in mice. The neuroprotective effects
of DMB were regulated by activating GLP-1 receptors and then
stimulating the cAMP/PKA/CREB signaling pathway. However,
it is reported that DMB interacts with the GLP-1 receptor at
an allosteric site, which is thought to be a cavity located near
the transmembrane 5 and 6 region (169). However, Ex 9–39
blocks action of GLP-1 by totally binding to the extracellular
domain of GLP-1 receptor (170, 171). In this study, similar
results were obtained where the neuroprotection of DMB was
inhibited by the knockdown of GLP-1 receptor with shRNA but
not by a GLP-1 receptor antagonist, and the cAMP induced by
DMB was not suppressed by Ex 9-39 (121). In conclusion, these
findings manifest that DMB has great potential in the treatment
of cerebral ischemic stroke.

Dual GLP-1/Glucose-Dependent
Insulinotropic Peptide (GIP) Receptor
Agonists (Dual GLP-1/GIPR Agonists, DA)
Currently, novel dual GLP-1/GIP receptor agonists have been
developed (55), which are derived from an intermixed sequence
of GLP-1 and GIP and have proved properties enhancing efficacy
of insulinotropic and antihyperglycemic compared with selective
GLP-1 receptor agonists such as liraglutide. The pharmacokinetic
enhancement attenuated the peak of drug exposure combining
with less dependence on GLP-1–mediated pharmacology, and
avoided the gastrointestinal adverse reactions of selective GLP-
1 receptor agonist. In other studies, it has been shown that
dual GLP-1/GIPR agonists exert neuroprotective effects in animal
models of AD and PD (83, 172).

One study (125) compared a novel dual GLP-1/GIP analog
(DA-JC1) with Val(8)GLP-1 (glu-PAL) in rats experienced
MCAO. Val(8)GLP-1 (glu-PAL), a modified version of
liraglutide, has an enhanced biological half-life and has shown
neuroprotective effects (173, 174). DA-JC1 was more effective
against neuronal degeneration than Val(8)-GLP-1, with higher
scores of neurological function and level of Bcl-2, but lower
cerebral infarction, expression of iNOS and Bax, and percent of
TUNEL-positive neurons in the group treated with DA. In brief,
dual GLP-1/GIP receptor agonist might be more protective in
crucial biomarkers of neurodegeneration in brain than a GLP-1–
based agonist.

In another recent publication (126), it was shown that
pretreatment with the dual-GLP-1/GIP receptor agonist DA3-
CH or liraglutide could decrease the levels of ERS damage
proteins (CHOP, GRP78,) and pro-apoptotic factors (Bax,
Caspase12) as well as increase anti-apoptotic factor (Bcl-2), and
reduce neuronal death and neurological damage after stroke in
diabetic rats. What’s more, the neuroprotective efficacy of DA3-
CH is higher than that of liraglutide, a single GLP-1R agonist.

Oxyntomodulin (Co-activates GLP-1R and
Glucagon Receptor)
Oxyntomodulin (OXM), an endogenous proglucagon-derived
intestinal peptide that co-activates the GLP-1 receptor and
the glucagon receptor (GCGR), was isolated from porcine
jejunoileum extract in 1981 (175). It was produced primarily
in enteroendocrine L-cells and released together with GLP-1 in
response to food intake. What’s more, OXM can pass through
the BBB via a mechanism similar to GLP-1 (176). Natural
OXM peptide has both neuroprotective and neurotrophic
effects against oxidative stress and glutamate toxicity in
cultured primary cortical neurons of rat and SH-SY5Y cells,
two cellular models that are broad applied to evaluating
neuroprotective and neurotrophic effects of experimental
therapeutics in the development of neuroprotective agents (127).
Intracerebroventricular administration of OXM apparently
decreased cerebral infarction and enhanced spontaneous
activities after MCAO in rats. It seems that the effects primarily
mediated by GLP-1R and subsequently via the PKA/MAPK
signaling pathway.
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P7C3 (Aminopropyl Carbazole Compound)
A novel small molecule P7C3 with neuroprotective properties
was discovered by means of a target-agnostic screening in
living mice. It is an aminopropyl carbazole compound and
orally bioavailable, can cross the BBB, and is atoxic when
the dose is several times higher than the effective dose (177).
Modified forms, including P7C3-A20 and P7C3-S243, have
shown neuroprotection in rodent models of ALS, PD, traumatic
brain injury (TBI), and age-related cognitive disorder (177).
Lately, GSK-3 has been identified as an alternative target
for drug-mediated neuroprotective effects against excitotoxicity
of ischemic stroke in animal models because GSK-3 is a
multifaceted protein with a variety of neurophysiological and
cellular effects. GSK-3 inhibition has aroused widespread interest
in the fields of neurogenesis, neurotrophy, neuroprotection,
mood stabilization, and anti-inflammation (178). It’s worth
noting that the effects of P7C3 decreased the severity of
brain damage (inflammation and apoptosis) and were closely
associated with GSK-3 inhibition (128). P7C3 has also been
proven to be an effective agent in promoting neurogenesis
(179); nevertheless, the mechanism by which it works has yet to
be elucidated.

Further, wang et al. (128) assessed the neurogenesis-
associated effect of P7C3 post-stroke and clarified the molecular
signaling mechanisms by using an experimental CI/R model
in mice. To be specific, P7C3 increased the expression of
neurogenesis- promoting and neuroprotective proteins, such
as Bcl-2, doublecortin (DCX), adamts20, Ki67, adam11, and
beta tubulin III (β-tub3), in the injured cortex and peri-infarct
area. These protective effects of P7C3 may result from GSK-
3 inhibition and enhanced expression of β-catenin, possibly
through stimulation of the PI3K/Akt and cAMP/PKA pathways
which are mediate by activation of GLP-1 receptor. The
protective effects of P7C3 were blocked by Ex 9-39, but the use of
Ex-4 improved the survival rate in comparison to that of P7C3.
This might be the first report to illuminate that P7C3 promote
neurogenesis mediated by allosteric activation of GLP-1 receptor
and subsequently regulate levels of GSK-3/β-catenin after CI/R
injury in mice.

DISCUSSION

During the past few years, there’s increasing evidence
from animal experiments that GLP-1 and GLP-1RAs are
neuroprotective in stroke. These findings are quite reliable
because they have already been replicated in a few laboratories
and by using some animal models of stroke, with or without
diabetes or hyperglycemia. We report a review focusing on
preclinical trials to support GLP-1 RAs -targeted neuroprotective
properties for ischemic-reperfusion damage in animal models
of AIS.

It could be observed that ischemia in stroke models
causes damage to multiple cells in the brain and blood
vessels including neurons, glial cells (astrocytes and microglial
cells), and vascular endothelial cells. In addition, increased
permeability of both capillaries and the BBB is observed in

the ischemic core, the penumbra, and other areas, resulting
in perivascular and perineuronal edema. Activation of the
GLP-1 receptor in microglia, GABAergic interneurons and
astrocytes stimulates several intracellular pathways including
the PI3K/Akt, cAMP/PKA/CREB, and P-Akt/p-eNOS and
subsequently confers neuroprotective effects through inhibition
of gp91/CHOP, Nrf2/HO-1, Bax/Bcl-2/caspase3/PARP, NF-
κB/ICAM-1, and JAK2/STAT3. Schematic representation of the
cell signaling pathways that are activated by GLP-1R stimulation
and that exert the neuroprotection against insults that modeled
stroke (see Figure 1). Once bound to GLP-1 receptor (a 7-
transmembrane protein that belongs to the class B1 G-protein-
coupled receptor family) (180), GLP-1 RAs (as GLP-1) initiate a
signaling cascade that activates adenylyl cyclase (AC), increasing
cAMP levels (in a dose-dependent manner) which, in turn,
interacts with several downstream molecules, such as mitogen-
activated protein kinase (MAPK), protein kinase A (PKA)
and PI3K (181, 182). As an important downstream target
of GLP-1 receptor activation, the cAMP/PKA pathway plays
a key role in facilitating gene transcription, synapse growth
and repair, cell growth, and regeneration. The Gβγ dimer
stimulates the PI3K, which then activates PKB/AKT pathway
to inhibit apoptosis. In addition, GLP-1 and GLP-1 RAs play
a role through reduction of blood-brain barrier leakage and
regulating neurotransmitter transmission (i.e., glutamate and
BDNF) among synapses as well (183, 184). The neuroprotective
effects are shown as reduced Infarct volume, improved motor
and sensory impairments and cognitive function through
inhibition of apoptosis, inflammation, and oxidative stress,
reduced neuronal death and edema, stabilization of the BBB
and promotion of the normalization of neurogenesis. Darsalia
et al. hypothesized that neuroprotective effects of Ex-4 may occur
through either GLP-1R-dependent or -independent pathways, in
a dose-dependent manner (93). In addition, it has been revealed
that pretreatment with lixisenatide suppressed expression of
oxidative stress parameters (NO, GSH, MDA and catalase
enzyme), apoptoticmarker (caspase-3) and inflammatorymarker
(TNF-α) in ischemic rat brains independent on GLP-1R
mediation. This means that GLP-1 RAs may exert effects in
other ways as yet unknown. It should be noted that the timing
(before, during or after stroke induction), mode (i.v., i.c.v.,
i.p.), and dose (low and high doses) of drug administration
to different animals (gerbil, mice, rat) might exert different
effects against stroke as we have described it above. Moreover,
two main models including BACCO and MCAO (unilateral,
bilateral) were used to mimic the ischemic state, which might
also affect the results. The efficacy of receptor agonists is
also different in animals with and without diabetes as levels
of insulin and blood glucose can affect the pathophysiology
and outcomes of stroke (185, 186). As GLP-1 RAs show
neuroprotective effect such as reduce infarct volume and
neurological deficits in normoglycemic model against stroke
without affecting blood glucose levels, they may be potential
candidates for the treatment of stroke alone. Indeed, reducing
blood glucose level and insulin treatment did not improve
neurological dysfunction. Moreover, the modified GLP-1 RAs,
which are designed to activate the GLP-1 receptor more
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FIGURE 1 | Proposed mechanisms of neuroprotective efficacy exerted by GLP-1 and GLP-1RAs against stroke in animals. Effects of GLP-1 and GLP-1RAs are

mediated by binding to a specific, seven-transmembrane GLP-1R which is positively coupled to the adenylyl cyclase (AC) system. GLP-1 and GLP-1RAs acts directly

by the cAMP/PKA signal pathway to facilitate gene transcription, synapse growth and repair, cell growth, and regeneration. The Gβγ dimer stimulates the PI3K, which

then activates PKB/AKT pathway to inhibit apoptosis. In addition, GLP-1 and GLP-1 RAs play a role through reduction of blood-brain barrier leakage and

neurotransmitter transmission among synapses as well.

effectively, have stronger neuroprotective efficacy than GLP-1
RAs used in clinical practice.

There are some limitations in this review, as we did not
include clinical trials or pay close attention to potentially
protective mechanisms of agents in the pathophysiology of
animal stroke. In line with the details reviewed by Marlet
(187) and Erbil (188), we also found that there were very
limited studies reporting negative results for neuroprotective
effects of GLP-1 and GLP-1 RAs and publication bias
favoring positive outcomes. Neuroprotection in the laboratory
is studied primarily in rodent models of transient brain
ischaemia but not in primate models. The review also
included studies of bilateral stroke models that do not

simulate naturally occurring strokes. Furthermore, we have
incorporated one study of induced cerebral haemorrhagic
transformation as well, as this event is also common in
clinical practice.

Though many mechanisms have been presented, the definite
mechanisms by which GLP-1 and GLP-1 RAs play a protective
role have not been fully elucidated. The crucial question,
of course, is whether these inspiring outcomes in preclinical
trials can also translate into therapeutic effects in humans
clinically. On the basis of the promising outcomes received
in animal experiments, the potential translation of these
agents for the therapy of stroke in clinical practice is highly
possible. GLP-1 and GLP-1 receptor agonists may represent
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novel drugs of therapeutic intervention with potential value,
providing an alternative to the existing therapy for stroke.
It is, however, necessary to continue further investigations
to test the neuroprotective mechanisms of GLP-1 and GLP-1
RAs. In the future, large-scale clinical trials are the necessary
procedure to verify the results revealed in animal experiments
and to guarantee their clinical application to patients suffering
stroke. The indications, safety, efficacy, and mechanisms of
action of GLP-1R agonists in AIS patients will be the focus of
clinical trials.
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