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The comprehensive discovery of structure variations (SVs) is fundamental to many
genomics studies and high-throughput sequencing has become a common approach
to this task. However, due the limited length, it is still non-trivial to state-of-the-art
tools to accurately align short reads and produce high-quality SV callsets. Pan-genome
provides a novel and promising framework to short read-based SV calling since it
enables to comprehensively integrate known variants to reduce the incompleteness and
bias of single reference to breakthrough the bottlenecks of short read alignments and
provide new evidences to the detection of SVs. However, it is still an open problem
to develop effective computational approaches to fully take the advantage of pan-
genomes. Herein, we propose Pan-genome augmented Structure Variation calling tool
with read Re-alignment (PanSVR), a novel pan-genome-based SV calling approach.
PanSVR uses several tailored methods to implement precise re-alignment for SV-
spanning reads against well-organized pan-genome reference with plenty of known SVs.
PanSVR enables to greatly improve the quality of short read alignments and produce
clear and homogenous SV signatures which facilitate SV calling. Benchmark results on
real sequencing data suggest that PanSVR is able to largely improve the sensitivity of
SV calling than that of state-of-the-art SV callers, especially for the SVs from repeat-rich
regions and/or novel insertions which are difficult to existing tools.

Keywords: structure variation calling, pan-genome, read re-alignment, high-throughput sequencing data, repeat-
rich region variation

INTRODUCTION

Structural variants (SVs) are the genomic variations usually defined as genome rearrangement
longer than 50 base pairs (bps), which alter a large number of bases in human genomes, although
they are fewer than that of single nucleotide variants (SNVs) and short indels. Previous studies have
demonstrated that there are many associations between SVs and human phenotypes and diseases
(Weischenfeldt et al., 2013; Sudmant et al., 2015; Chiang et al., 2017), thus the comprehensive
discovery of SVs in human genomes is fundamental to many genomics studies.

High throughput sequencing (HTS) technologies are rapidly developing and ubiquitously used
in human genome re-sequencing projects. Especially, the short reads produced by mainstream
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platforms like Illumina sequencers play important roles to the
detection of various types of genomic variations including SNVs,
indels and SVs (Collins et al., 2019). Due to the high sequencing
quality, short reads are feasible to call SNVs and indels and
they have demonstrated their ability in many large-scale genomic
studies to build the variation maps of various populations
(Durbin et al., 2010; The 1000 Genomes Project Consortium,
2012; The UK 10K Consortium, 2015; Cong et al., 2021).
However, due to the limited read length, short read had lower
ability in SV calling theoretically and practically, comparing to
that of the data produced by long reads sequencing platforms
such as PacBio or ONT sequencers (Ebert et al., 2020; Beyter
et al., 2021). For example, a previous study (Ebert et al., 2021)
indicated that, on average 9,320 SVs per sample were called with
short reads by three SV calling pipelines, however, this is still less
than half of the number of SVs called by long reads. Many of SV
calling tools designed for TGS long reads [for example sniffles (De
Coster et al., 2019), cuteSV (Jiang et al., 2020), and svim (Heller
and Vingron, 2019, 2020)], have the ability to call over 20,000
SVs per individual.” Therefore, it is important to develop novel
approaches to improve the ability of SV calling with short reads
since the sequencing cost of short reads is still much lower.

Many efforts have been made to develop short read-based
SV calling approaches. Most of state-of-the-art SV callers [for
example delly (Rausch et al., 2012), lumpy (Layer et al., 2014),
manta (Chen et al., 2016), and CNVnator (Abyzov et al.,
2011)] extract one or multiple kinds of signatures from read
alignments, such as discordant read pair, split read, read depth,
and local assembly, as evidences to detect SVs. However, all
these kinds of signatures could be less effective in practice due
to the shortcomings of read aligners which it is still non-trivial
to produce the accurate and confident alignments around the
breakpoints of SVs (Zook et al., 2020). Most of state-of-the-
art read aligners, such as BWA-MEM (Li, 2013), NovoAlign,
Bowtie2 (Langmead and Salzberg, 2012), and deBGA (Liu et al.,
2016), use seed-and-extension approach. They usually neglect the
highly repetitive seeds occurring many times in the reference,
however, this could map the reads from repeat-rich regions
incorrectly and further affect SV calling. Meanwhile, reads from
long novel insertions cannot be correctly aligned in theory, since
the abundance of the inserted sequences in reference. Thus, it
could extract very few evidences for those insertion events from
the alignment results.

With the increasing numbers of sequences samples and known
genomic variations (Chaisson et al., 2019), pan-genome-based
methods are promising to break through the bottlenecks to the
alignment of short reads and provide new opportunities to solve
the problems in SV calling. Pan-genome is the ensemble of all
the genomes from a species (Sherman and Salzberg, 2020), and
in practice it is usually composed by the genomes of multiple
samples of the same species or a reference genome plus a set
of genomic variations of a population. It has advantages to use
a pan-genomes as reference instead of a single genome in read
alignment since pan-genome enables to integrate much more
reference information to help the alignment of SV-spanning
reads. For example, with the integration of known SVs, pan-
genome has less bias during the seeding process, so that aligners

can locate reads to SV regions with more confidence. Moreover,
the sequences of integrated SVs also help the aligners to
implement full-length read alignments with high scores instead of
the chimeric alignments with plenty of clippings, split alignments
and discordant pairs under the circumstance of a single reference.
Further, the alignments between reads and integrated SVs can
also be used as the evidences of SVs in donor genomes.

However, it is still an open problem to well-organize pan-
genome and take its advantage to implement effective and
efficient read alignment and SV calling. Efforts have been made
to the construction and organization of pan-genome (Sirén
et al., 2011, 2020a; Paten et al., 2018; Rakocevic et al., 2019).
Moreover, several read alignment and genotyping approaches
have been proposed. VG (Garrison et al., 2018; Hickey et al.,
2020), giraffe (Sirén et al., 2020b), minigraph (Li et al., 2020) are
designed for aligning short reads and GraphAligner (Rautiainen
and Marschall, 2020) is designed for aligning long reads. They
show higher ability to read alignment and genotyping comparing
to the traditional pipelines using single reference. However,
most of them are not tailored to SV calling. Especially, these
approaches still do not fully consider the divergences between
known SVs and the SVs in donor genome, so that they could still
have lowered ability to handle newly sequenced samples. Thus,
novel computational approaches are still on demand. Moreover,
the extraction and analysis of SV signatures is largely different
between traditional and pan-genome-based approaches, and they
could also be complementary to each other. However, it is also
another open problem to integrate various approaches to achieve
highest yields in SV calling tasks.

Herein, we propose a novel approach, i.e., Pan-genome
augmented Structure Variation calling tool with read Re-
alignment (PanSVR). PanSVR focuses to well-handle the
potential SV-spanning reads under pan-genome framework to
implement more sensitive SV calling. Mainly, it collects known
SV information to build pan-genome SV reference and use it
as anchors to precisely re-align chimeric reads and find the
evidences of SVs with the improved alignments of the reads
against pan-genome. Benchmark results on real sequencing data
suggest that PanSVR enable to largely improve the sensitivity of
SV calling than that of state-of-the-art SV callers, especially for
the SVs from repeat-rich regions and/or novel insertions which
are difficult to existing tools.

MATERIALS AND METHODS

Overview of PanSVR Approach
The motivation of PanSVR is to take the advantages of known
SVs as anchors to improve the sensitivity and accuracy of the
alignment of SV-spanning reads to breakthrough the bottleneck
of commonly used short read aligners. Moreover, with the
improved read alignments, more homogeneous SV signatures
can be captured and higher numbers of supporting reads can be
found to facilitate the detection of SVs.

Pan-genome augmented structure variation calling tool with
read re-alignment uses several tailored methods to implement
this approach. Mainly, it is composed by two parts. Firstly,
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PanSVR integrates known SVs into commonly used reference
genome to build an augmented pan-genome SV reference.
The SV reference consists of the sequences around SV sites
including the sequences of novel insertions which do not exist
in the original reference. This reference is used as anchors to
provide additional information for read aligners to improve the
reads having clippings, split alignments or discordantly placed
which are potentially SV-spanning reads. Secondly, PanSVR
collects potential SV-spanning reads and employs short read
aligner to re-align those reads against the SV reference. The
newly supplied alignments have fewer large divergences such
as clippings and split-alignments but more homogenous and
confident alignments with the anchors, i.e., the sequences around
SV sites. Thus, more homogeneous SV evidences can be collected
by PanSVR to further use them to infer accurate SV events.
Mainly, PanSVR approach have three main steps as following
(Figure 1).

(1) Given a set of known SV events (in VCF format), PanSVR
converts each of them as an anchor sequence. The generated
anchor sequences are then concatenated to build the SV
reference and further being indexed by a de Bruijn graph-
based genome indexing (RdBG-index) approach (Liu et al.,
2016).

(2) Given a set of aligned sequencing reads (in BAM/CRAM
format), PanSVR extract the reads having SV signatures
(such as clippings and split alignments) and re-align them
against the SV reference with the help of RdBG-index and a
tailored realignment method. The results are filtered based
on the new and original alignments of the same reads and
PanSVR clusters them based on their mapping coordinates.

(3) PanSVR separately assemble the reads for all the clusters
to generate consensus sequences. Each of the generated
sequence is precisely aligned to local region around SV sites
in the original reference. The alignment results are used as
evidences to infer SVs.

The Construction of SV Reference
Initially, an SV related pan-genome reference (“SV reference”)
is built from known SVs. Using a reference and a set of SVs
records in VCF format as inputs, PanSVR extracts the sequences
around the breakpoints of known SVs and stores them in a
FASTA format file. It is also worth noting that the current version
of PanSVR accepts only one VCF file to build SV reference.
However, SV merging tools like SURVIVOR (Jeffares et al., 2017)
are feasible to merge multiple SV sets before the construction of
SV reference. By default, the sequences of 250 bp flanking SV
breakpoints are extracted to construct SV reference as they are
long enough to align the short reads produced by mainstream
platforms. In details, PanSVR constructs SV reference by the
following methods:

(1) For each of the deletions, genomic sequences upstream the
first breakpoint and downstream the second breakpoint
are directly concatenated together to make the SV anchor
sequence;

(2) For each of the insertions and duplications, the inserted
(or duplicated) sequences recorded in the ALT field of VCF

file are extracted, and the SV anchor sequence is produced
by concatenating the local reference sequence upstream the
breakpoint, the inserted sequences and the local reference
sequence downstream the breakpoint.

Structure variation reference is generated by concatenating all
the generated SV anchor sequences. Further, PanSVR employs a
de Bruijn graph-based indexing approach to index SV reference
(the default value of k-mer is 22 bp) for the realignment of
potential SV-spanning reads.

The Realignment and Clustering of
Potential SV-Spanning Reads
Pan-genome augmented structure variation calling tool
with read re-alignment recognizes the reads potentially
spanning SV sites according to their alignments against
original reference, and realigns them against the SV reference.
Especially, the reads are handled by two steps, i.e., single
end read mapping and mate pairing. Further, the realigned
reads are clustered by their coordinates and SV signals
for SV inference. The method is implemented in four
sub-steps as following.

Chimeric Reads Extraction
Reads with chimeric alignments are initially extracted from
original SAM/BAM/CRAM files and stored as FASTQ format.
Pair-end reads are re-paired by their names if the input
file is sorted BAM/CRAM file. In details, PanSVR rejects
the read-pairs being perfectly aligned to the reference, i.e.,
no more than one mismatch for any end in a read-pair
and other reads are extracted. This is a restrict condition
since SNPs and indel are also useful for SV detection if
the reads are mapped to highly repetitive regions, such as
VNTRs or STRs. The alignment information related to SV
calling is extracted, including alignment position, alignment
score, CIGAR, MAPQ, and ISIZE if available. The information
is further recorded in the comment field of the converted
FASTQ file.

Single-End Read Realignment
The extracted reads are re-aligned to SV reference using
a seeding-chaining-and-extension approach (Figure 2). To
reduce computational cost, PanSVR selects unique k-mers in
a read as seeds (default value of k: 20), unlike traditional
seeding methods. This design is to handle repetitive k-mers
within STR or VNTR regions which could appear hundreds
and thousands of times in reference and consume plenty
of time during the seeding and chaining process. Other
than unique seeds, the seeds from repetitive regions are
also employed, if they are placed at either end of the
reads (Figure 2A).

A two-phase chaining method is used for chaining the seeds.
In the first phase, seeds are chained within the unitigs of RdBG-
index of SV reference to generate longer match blocks from the
shorter seeds. The match blocks are then mapped back to original
reference as long seeds. If a match block is highly repetitive, i.e., it
can be mapped to over 1000 genomic positions, 1000 positions
are randomly selected for further processing. In the second
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FIGURE 1 | Overview of PanSVR SV calling process. Three main steps of PanSVR SV calling process. (A) In the first step, SV reference is built from known SVs; (B)
In the second step, read signals are extracted from original BAM files and mapped to the SV reference; (C) Finally, read signals clustered around SV breakpoints are
assembled and SV results generated from consensus strings.
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FIGURE 2 | The seeding-chaining-and-extension in the alignment step. (A) The seeds generated in “unique region” of reads are located in reference using deBGA
index. (B) Seeds within UNITIG of deBGA index will be greedy chained to longer blocks, then those blocks will be mapped to reference and chained again using
SDP. (C) Sequence between chained blocks will be aligned using NW algorithm.

phase, the long seeds are chained by using a sparse dynamic
programming (SDP)-based method with following functions:
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where LSp and LSq are the p-th and q-th long seeds (sorted by
coordinates in reference); L

(
LSp

)
is the length of long seed p

and L
(
LSpq

)
is the length of LSp (only consider the part that not

overlap with LSq). LSrp is the position of LSp on the reference,
and LSrp is the position of LSp on the read; f

(
LSp

)
is the scoring

function for the LSp, and θ
(
p, q

)
is the penalty score for the two

chained long seeds LSp and LSq .
In extension step, a traditional Smith-Waterman alignment is

implemented for the top 12 seed chains with highest scores using
ksw2 library (Li, 2018; Suzuki and Kasahara, 2018). The results
are recorded in a list as single end alignment.
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Mate Read Pairing
For a read pair, PanSVR uses the single end alignments for
the both two ends of a read pair and their original alignments
to compose a concordant pair-end alignment and compute the
score of the refined alignment. Since the coordinates in the SV
reference are not always same to the coordinates in original
reference, the two coordinates of the original alignments could
be divided to two different values that one of them is not changed
and the other is adjusted by the length of the corresponding SV.
Both two the values can be used as its coordinates. The score of a
read pair is defined as the sum of alignment scores for both ends.
When the two ends in a pairing condition have right directions
and the ISIZE is within 1.5 times standard deviations of mean
ISIZE, an additional score is added. The final score of a read pair
is calculated using the following functions:

S (RPi) = max
Ni > p ≥ 1
Mi > q ≥ 1

{
s
(
R1p

)
+ s

(
R2q

)
+ θ

(
p, q

)}
(3)

θ
(
p, q

)
=

{
K if R1p paied with R2q properly
0 otherwise

(4)

where S (RPi) is the final score of the i-th read pair; Ni is the
number of single end alignment results for the first read in
read pair and Mi is the number for results for the second read;
s
(
R1p

)
is the score of the p-th single end alignment result for

first read in a read pair, and s
(
R2q

)
is the score of the q-th

single end alignment result for the second read in that read pair;
θ
(
p, q

)
is the additional score be added when the two results

pairing properly.
All pairing conditions are sorted by the scores and the one

with the highest score is output as paired alignment result. It is
also worth noting that the alignment result is discarded and the
corresponding read-pair is recorded as unmapped if its alignment
result (or one of the multiple results with equal scores) is not
made by PanSVR but the original aligner. All the remaining
alignment results are stored in SAM format. An additional tag
that records the ID of SV anchor sequence is added in the SAM
optional field, and it will be used to cluster the read in the
following steps.

Read Clustering
All the SAM records of the improved alignments are sort by
their positions in the SV reference. Since there could be multiple
known SVs in highly repetitive regions and some of various
known SVs could overlap with each other, the chimeric reads
could be mistakenly assigned during read clustering. To address
this issue, PanSVR clusters nearby known SVs as a group and
only keeps the top two SVs with highest number of supporting
reads and the reads assigned to other nearby SVs are re-assigned
to them. Herein, the SVs are clustered in a greedy manner,
i.e., an SV is added to a cluster if its upstream breakpoint is
within 50 bp of the downstream border of the cluster, and
the cluster expends until no nearby SV can be added into it.
For a cluster, PanSVR separately counts the numbers of the
reads being aligned to the SVs and uses these numbers as the
scores of the SVs. For the reads not in the top two clusters,

each of them is re-assigned to one of the two SVs by a simple
k-mer counting method. That is, PanSVR counts the numbers
of identical k-mers between a read and the anchor sequences of
the two SVs and re-assign the read to the SV with more identical
k-mers. If the two SVs have equally high numbers, the read is
randomly assigned.

The Assembly of Clustered Read and the
Inference of SVs
Pan-genome augmented structure variation calling tool with read
re-alignment implement an assembly for each of the clusters
to produce the consensus sequence of the reads. The generated
sequences are then aligned to the SV reference and PanSVR
collects SV evidences from the alignment results. The method is
implemented in four sub-steps as following.

Read Preprocessing
Pan-genome augmented structure variation calling tool with
read re-alignment does a filtration on the reads before assembly
with two rules to reduce false positives. Firstly, a proportion
of reads with low scores are filtered out from the SV reference
regions having extremely high read coverages. More precisely,
PanSVR partitions a given reference region into 64 bp blocks and
calculates the read coverages of the blocks. If a block has 1.5 times
or higher read depth than average read depth, the reads having
low scores in the block are discarded. Secondly, the reads are
filtered by mapping quality. That is, for a given cluster, if over
80% of the reads have MAPQ = 0 for their original alignments and
the scores of their improved alignments produced by PanSVR are
also close to that, the read cluster is considered as an uncertain
cluster and being discarded.

Assembly of Clustered Reads
Pan-genome augmented structure variation calling tool with read
re-alignment uses a modified version of the assembly module of
MANTA (Chen et al., 2016) to implement read assembly for all
the clusters. Moreover, if a cluster belongs to a long SV region, i.e.,
the length of the corresponding SV is over 500 bp, the SV region
is partitioned into 500 bp blocks and the assembly is separately
implemented for the blocks. When the employed assembler picks
up a read to extend the contig, it records at which position the
read joins in the assembling contig. This information guides
the realignment of the reads to the contig after assembly. Only
mismatches are allowed in the realignment of reads to contig.
Read coverage information on consensus sequence is calculated
based on the realignment results.

Alignment of Consensus Sequence
For a consensus sequence, PanSVR detects some candidate
positions in SV reference to implement local alignment at first.
These candidate positions are from the mapping positions of
the supporting reads in SV reference with some additional
filtrations. Firstly, if all the candidate positions are out of range,
the consensus sequence is discarded. Secondly, at least one read
used in the generation of the consensus sequence should have a
realignment score higher than that or its original alignment. After
the filtration, a Needleman-Wunsch alignment is implemented
for each of the candidate positions. The mismatches and indels
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between the consensus sequence and local sequence in SV
reference is recorded at each position of SV reference. Moreover,
read depths along the consensus sequences are also stored by all
the corresponding coordinates in SV reference.

SV Calling and Genotyping
Pan-genome augmented structure variation calling tool with
read re-alignment infers SVs from the alignment of consensus
sequences. A candidate SV other than novel insertions implied
by a consensus sequence is inferred if it has high enough depth at
both the two breakpoints. Meanwhile, for novel insertions, the
inserted sequence should also have high depth. Moreover, the
positions of breakpoints and the inserted sequences are adjusted
by the variations to make a more accurate inference. After the
adjustment, SVs longer than 50 bp are kept and further genotyped
with the coverage information.

RESULTS

Implementation of Benchmark
To assess the ability of PanSVR, we composed an SV reference
with a set of high-quality SVs at first. Mainly, the SVs are derived
from PacBio CCS datasets of 16 different samples. Thirteen of
them are from Human Genome Structural Variation Consortium
(HGSVC) database where the datasets are phased assembly of
CCS reads. There are two haplotypes of for each of the samples,
and we aligned those genomes against human reference genome
(version: hs37d5) by minimap2 and input the alignments into
SVIM-asm (Heller and Vingron, 2019, 2020) to produce SV
callsets. Moreover, we also downloaded three SV callsets of
Genome in a Bottle (GIAB) Trio samples HG002, HG003, and
HG004. These callsets are produced by GIAB consortium from
PacBio CCS datasets using PBSV pipeline. SVs from different
samples were merged by the following rule: two SVs were
merged if they were of the same type and their breakpoints were
within 50 bps. The merge operation was implemented by using
SURVIVOR (Jeffares et al., 2017).

We benchmarked PanSVR on three real sequencing datasets
produced by Illumina platforms from various samples (i.e.,
HG00512 and HG002) with various read lengths (i.e., 126, 148,
and 250 bp). Refer to Supplementary Table 2 for more detailed
information. Two state-of-the-art short read-based SV callers,
i.e., Manta and Delly, were also implemented on the same datasets
for comparison. During the benchmark, leave-one-out strategy
was applied for PanSVR, i.e., the SVs of the corresponding sample
was removed from the known SV sets beforehand so that the
constructed SV reference is blind to the benchmarked dataset.
The reads were aligned against human reference hs37d5 by BWA-
MEM with default settings. Manta and Delly directly detected SVs
from the read alignments.

Results on Real Sequencing Datasets
The sensitivity, accuracy and F1-score of the benchmarked SV
callers were assessed by using the “merge” and “genComp”
commands of SURVIVOR. All the benchmarks were carried out
on an Ubuntu Linux server with one AMD 3950X CPU (32 cores)

and 256 GB RAM. All the SV callers were run in using 8 CPU
threads. Mainly, three issues were observed from the results.

PanSVR Has Good SV Calling Yields
For all the datasets, PanSVR obviously outperformed Manta
and Delly for F1-scores on both insertions and deletions
(Figure 3). We investigated the intermediate results of PanSVR
and found that the SV reference greatly helped to improve
the alignment of SV-spanning reads. Although the known
SV sets cannot cover all the SVs of the testing samples, the
anchor sequences of the SV reference enable to rescue many
reads which cannot be correctly and/or confidently aligned
with the original reference. This feature largely improves the
sensitivity of SV calling, especially for large insertions. For all
the datasets, the numbers of insertions detected by PanSVR are
nearly two times to that of Manta. Moreover, Delly showed a
relatively poor ability to detect insertions, i.e., it only called
a few hundreds of insertions for each sample and only a few
of them were true positive. It is also worth noting that all
the callers have relatively good results on deletions since short
reads spanning deletions are much easier to be aligned and the
SV signatures of short reads around deletion events, such as
discordant read pairs and split alignments, are less complicated
and more homogeneous.

As for the influence of read length on the SV calling ability,
most of time, longer reads do help to achieve better SV calling
results. For Delly, the F1 scores increased with the increase of
read length and reach best value on the 250 bp dataset, while
PanSVR and manta achieved best F1 scores on 148 bp dataset.
We investigated the details of the results and found that the large
numbers of low-quality bases at the tails of the 250 bp reads
affected the local assembly operation of PanSVR.

PanSVR Has Good Ability to Call Long Insertions
It is a still non-trivial task for state-of-the-art short read-based
callers to detect long insertions due to two issues. First, when
an insertion is longer than the read length, one or two ends of
a read pair around the insertion could be unmapped. Second, the
length of insertion cannot be easily estimated and assembling all
reads around and within an insertion is usually hard. Based on
pre-built SV reference, PanSVR enable to detect long insertions
with the help of SV anchor sequences that the reads can be
effectively realigned to imply plenty of SV signatures. Moreover,
PanSVR also has the ability to detect the SNVs and indels
within the inserted strings of the sequenced sample from the
realignments of the reads, so that the inserted sequences of donor
samples can be correctly recovered even if they are divergent to
the anchor sequences of SV reference. As showed in Figure 4,
there are only 48 > 500 bp true positive insertions in the
callset of Manta, and the corresponding number for PanSVR
is 917. However, we also observed that PanSVR has lowered
ability to handle ALU insertions (as show in Figure 4A which
the length distribution of the SVs detected by PanSVR has
no significant peak around 300 bp). This is mainly due to
that ALUs are extremely repetitive in human reference genome
and the average mapping quality of the reads being aligned to
ALU regions are usually close to 0. PanSVR filters out such
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FIGURE 3 | The sensitivity, precision and F1 score of PanSVR, manta and delly on three NGS datasets. (A,D,G) F1 score, sensitivity and accuracy of SV calling
results of PanSVR, manta and delly applied on Illumina 126 × 2 dataset; (B,E,H) The SV calling results of those tools on Illumina 148 × 2 dataset; (C,F,I) The SV
calling results of those tools on Illumina 250 × 2 dataset.

regions according to the low MAPQ so that ALU insertions
could be missed.

The Ability of PanSVR Could Be Complementary to
State-of-the-Art SV Callers
Most of existing SV callers use chimeric alignments such as split
reads, discordant read pair and large clippings as SV signatures.
PanSVR does not rely on those kinds of signatures but use a
different approach, so that it could produce higher-quality SV
callsets by merging the results of PanSVR and other tools. We
merged the results of PanSVR and Manta using SURVIVOR by
various parameters. Firstly, we generated the union SV calling set
of PanSVR and Manta. The SVs are treated as one when their
breakpoints are distanced less than 50 bp. For all the samples
and SV types, the merged SV callset achieved higher sensitivities

and F1-scores than the callsets separately produced by PanSVR
and Manta (Supplementary Table 3), although the precisions
could decrease. For example, the merged callset of the 148 bp
HG002 dataset called 12272 true positive SVs with 77.4% true
positive rate, while PanSVR and Manta called 11540 and 6980
true positive SVs, respectively. We also tried to generate an
intersection SV set from the results of the two tools. It reached
more than 96% true positive rate in all three datasets, however,
the F1-score slightly decreased comparing to that of Manta only
(Supplementary Table 4).

We also assessed the speed and memory footprint of PanSVR.
It takes less than 2.7 h to process all steps using 8 threads for a
60x coverage dataset. This is slower than Manta and Delly, but
still affordable. This is mainly due to the realignment procedure
of the approach which is more computation-intensive than that
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FIGURE 4 | SV length distribution of insertions from HG00512 126 × 2 sample. (A) Insertion length distribution of PanSVR true positive set (917 insertions longer
than 500 bp); (B) Insertion length distribution of manta true positive set (48 insertions longer than 500 bp); (C) Insertion length distribution of CCS SV set (2,660
insertions longer than 500 bp).

of directly analyzing the read alignment results like most of short
read-based SV callers do. Moreover, the time cost of the assembly
of clustered reads is also non-neglectable. However, PanSVR still
has good scalability since all the steps can be run in a parallel
way. The memory footprint of the PanSVR is about 3.5 GB in the
benchmark where the memory is mainly used by the RdBG-index
of SV reference in the read realignment step.

DISCUSSION

Previous studies (Hickey et al., 2020; Sirén et al., 2020b) have
demonstrated that ability of pan-genomes to help the alignment
of short reads and SNP/INDEL calling. In this study, we
introduce a pan-genome augmented read realignment and SV
calling tool, PanSVR. Results on real NGS datasets demonstrate
that it is feasible to use pan-genome based realignment approach
to realign short reads to break through the bottleneck of short
read alignment and further improve SV calling.

Mainly, we found that two main categories of SVs can be better
handled with the pan-genome-based method. Firstly, the SVs in
tandem repeat regions can be recused by PanSVR. This is due
to that SNPs and INDELs within VNTR or STR can be used to
correct short read alignments around those regions. A case is
shown in Supplementary Figure 1 that a 70 bp insertion around
chr1:1913259 were successfully called by PanSVR, however, no
other tool is able to detect them in the benchmark. We checked
alignment results around those regions manually and found that
the spanning reads can be fully mapped to that region by BWA-
MEM, but with a number of mismatches and indels. The lower
quality alignments affect the callers and the SVs are recognized as
multiple SNP/indels. However, these reads can be re-aligned with

exact matches to the SV reference by PanSVR and evidences can
be collected to call the SVs confidently.

Secondly, the results indicated that pan-genome-based
method greatly help to improve recall of long insertions which
is surprising since additional reference information is added. It
is shown that PanSVR has a nearly 20 times higher number of
long insertion (>500 bp) calls than that of Manta. This is very
complementary to the state-of-the-art SV calling approaches.
A case is shown in Supplementary Figure 2 that a 955 bp
insertion at chr2:235423389, which cannot be called by other
callers but PanSVR. The read alignments show that there are
few split-read and discordant read pair signals around the
SV breakpoints, so that the SVs are hard to detect, however,
the realignment against the SV reference recused most of SV-
spanning reads and provided homogeneous SV signatures.

The results also suggest that it is also helpful to merge the
SV callsets by multiple callers to further increase sensitivity.
For example, the sensitivity increased by 3.4% for the 148 bp
dataset comparing to that of the original callset of PanSVR.
This is consistent with previous studies (Chaisson et al., 2019)
as multiple tools could be complementary to each other by
various kinds of signatures and models. However, it is also worth
noting that the simple union of the callsets of various tools could
introduce more false positives, so that more advanced approaches
for the filtration and prioritization of SV calls are still needed.

There is still a huge gap for the sensitivity of SV calling
between short and long sequencing reads, although pan-genome
is used. There could be caused by two issues.

Firstly, some of the SVs in donor genomes are individually
specific and their breakpoints are far away from known SVs or
even not related to them at all. In this situation, the pan-genome-
based method cannot provide much help and the detection
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of SV only depends on the alignments of the reads against
original reference. A case is shown in Supplementary Figure 3
that an 87 bp insertion in chr1:2213294 is unique for
HG002 sample. It was not in the SV reference during the
leave-one-out benchmark and PanSVR failed. However, with
the many on-going population-scale genomics studies, it is
promising to build more comprehensive SV databases. For
example, a recent study (Beyter et al., 2021) has built an SV
database of Iceland population with 133,886 reliably genotyped
SVs and such SV databases could be available for various
populations with the ubiquitous application of high-throughput
sequencing technologies.

Secondly, the limited length of short reads is still a bottleneck
even if under the circumstance of pan-genome. Especially, this
could cause lower coverage to correct anchors in SV reference
for PanSVR. A case is shown in Supplementary Figure 4 that
there is nearly no read being aligned to a 103 bp insertion in
chr1:1855662. The inserted sequence is highly repetitive, i.e.,
ACCACCCCCCAGCTCACAGCCCACCCCCCCATCTCACCG
CCCAGCCCCCCCATCTCACCAGCTGCCCCCTCCCGGGCA
CACCGCCCACCCCCCCATCTCACCA. Such repeats can still
not be spanned by short reads and the reads are usually mapped
to other copies of the sequences with nearly perfect alignments,
i.e., exactly matched without mismatch or indel. In this situation,
the SV is non-trivial to be solved. Moreover, the results also
indicated that PanSVR could make false positives in some cases.
We checked the SVs mistakenly called by PanSVR and found that
they were mainly in repeat regions. Some consensus sequences
were not long enough to across the repeat region, either. Wrong
alignment of them might cause wrong SV calling.

Pan-genome-based SV calling approach is promising to the
comprehensive discovery of individual genomes, especially for
short read datasets. With the supplement of additional SV
information, it enables to produce higher-quality alignments and
help to provide more evidences to make SV calls with confidence.

However, there are still open problems to the use of known SVs,
moreover, some of SVs can still not solved with the available
SV databases. These are also important future works to us to
further improve PanSVR approach. With the higher sensitivity
and yield, we believe that PanSVR has the potential to many
genomics studies.
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