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The reticulons: a family of proteins with diverse functions
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Summary

The reticulon family is a large and diverse group of membrane-associated proteins found
throughout the eukaryotic kingdom. All of its members contain a carboxy-terminal reticulon
homology domain that consists of two hydrophobic regions flanking a hydrophilic loop of 60-70
amino acids, but reticulon amino-terminal domains display little or no similarity to each other.
Reticulons principally localize to the endoplasmic reticulum, and there is evidence that they
influence endoplasmic reticulum-Golgi trafficking, vesicle formation and membrane
morphogenesis. However, mammalian reticulons have also been found on the cell surface and
mammalian reticulon 4 expressed on the surface of oligodendrocytes is an inhibitor of axon
growth both in culture and in vivo. There is also growing evidence that reticulons may be
important in neurodegenerative diseases such as Alzheimer’s disease and amyotrophic lateral
sclerosis. The diversity of structure, topology, localization and expression patterns of reticulons
is reflected in their multiple, diverse functions in the cell.

Published: 28 December 2007

Genome Biology 2007, 8:234 (doi:10.1186/gb-2007-8-12-234)

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2007/8/12/234

© 2007 BioMed Central Ltd 

Gene organization and evolutionary history
Proteins of the reticulon family are present in all eukaryotic

organisms examined and range in size from 200 to 1,200

amino acids. The vertebrate proteins of this family are called

reticulons (RTNs) and those found in other eukaryotes are

called reticulon-like proteins (RTNLs). All family members

contain the reticulon homology domain (RHD), a conserved

region at the carboxy-terminal end of the molecule consis-

ting of two hydrophobic regions flanking a hydrophilic loop.

Reticulons have been identified in the genomes of Homo

sapiens, Mus musculus, Danio rerio, Xenopus laevis, Droso-

phila melanogaster, Caenorhabditis elegans, Arabidopsis

thaliana, Saccharomyces cerevisiae and many other

eukaryotes, but not in archaea or bacteria [1-6]. The ubiquity

of reticulons in the eukaryotic kingdom is consistent with a

highly conserved function and/or a diversity of functions.

Nearly all reticulon genes contain multiple introns and

exons, and most are alternatively spliced into multiple iso-

forms [1]. Intron losses and gains over the course of

evolution have given rise to the large, diverse reticulon

family. The presence of reticulons in eukaryotic but not pro-

karyotic organisms and their close association with the

endoplasmic reticulum (ER) suggest that reticulons evolved

along with the eukaryotic endomembrane system.

Across phyla, the second hydrophobic region of the RHD is

the most highly conserved, followed by the first hydrophobic

region, with the carboxyl terminus the least conserved [7]. In

mammals, there are four reticulon genes encoding reticulon

proteins RTN1-4. The RHDs of RTN1, 3 and 4 share the

highest sequence identity at the amino-acid level (average

73%), whereas RTN2 has only 52% identity with human

RTN4 (Figure 1). The amino-acid sequence identity between

RHDs of C. elegans and S. cerevisiae drops to 15-50%.

In contrast to the highly conserved carboxy-terminal RHD,

the amino-terminal regions of reticulons display no sequence

similarity at all, even among paralogs within the same species

[8]. Furthermore, the expression patterns of different



reticulons and their splice isoforms can be variable, even

within the same organism [9-11]. This divergence in

sequence and expression is consistent with evolution of

species- and cell-type-specific roles for reticulons [12]. This

is particularly clear in the mammalian RTN family, in which

the longest isoform of RTN4, RTN4A, also known as Nogo-A,

has been shown to inhibit neurite outgrowth and axon

regeneration in models of injury [8,13-18]. Interestingly,

RTN4A was found to be absent in fishes, organisms in which

there is extensive regeneration of the CNS after injury [4].

Divergent results for genetic knockouts of different regions

and isoforms of RTN4 suggest that the amino-terminal

domain might contribute to the inhibition of nerve regenera-

tion after injury [12]. Thus, the divergent reticulon amino-

terminal domains appear to carry out species- and cell-

specific roles, whereas the RHD may carry out more basic

cellular functions.

Characteristic structural features
The RHD consists of two hydrophobic regions, each 28-36

amino acids long, which are thought to be membrane-

embedded regions, separated by a hydrophilic loop of 60-70

amino acids, and followed by a carboxy-terminal tail about 50

amino acids long (Figure 2a). Although much amino-acid

identity has been lost over the course of evolution, the overall

structure of the RHD has been preserved from plants to yeasts

to humans. This suggests that three-dimensional protein

structure is of greater importance than individual residues for

RHD function. The RHD hydrophobic regions are unusually

long for transmembrane domains: each spans approximately

30-35 amino acids, whereas most transmembrane domains

are about 20 amino acids in length. This raises the interesting

question of whether this longer length has significance for

reticulon function. The topology of these hydrophobic regions

within membranes is so far only partially defined.

Reticulon topology
The RHD loop region has been detected both on the surface

of cells and intracellularly, and it has been suggested that

the RHD hydrophobic regions might either span the ER

membrane or plasma membrane completely or might

double back on themselves to form a hairpin (Figure 2b).

Antibodies against the amino-terminal domain of RTN4
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Figure 1
Phylogenetic analysis of the reticulon homology domains (RHDs) of selected RTNs and RTNLPs. Alignments were created using the ClustalW2 program
[99] and the tree was generated with Phylo_win software [100]. Bootstrap numbers are shown; the number of repetitions was 1,000. The tree was
generated using the maximum likelihood method. GenBank accession numbers are as follows: H. sapiens RTN1A, NP_066959; H. sapiens RTN2A,
NP_005610; H. sapiens RTN3A, NP_006045; H. sapiens RTN4A, NP_065393; M. musculus RTN1A, NP_703187; M. musculus RTN2B, NP_038676;
M. musculus RTN3A, NP_001003934; M. musculus RTN4A, NP_918943; G. gallus RTN4, NP_989697; X. laevis RTN2A, NP_001089014; X. laevis RTN4,
NP_001083238; D. rerio RTN4, NP_001018620; D. melanogaster Rtnl1A, NP_787987; C. elegans RET-1, NP_506656; S. cerevisiae RTNLA, NP_010077;
A. thaliana RTNLB3, NP_176592.

M. musculus RTN4A

H. sapiens RTN4A

A. thaliana RTNLB3

H. sapiens RTN1A

M. musculus RTN1A

X. laevis RTN4

G. gallus RTN4

S. cerevisiae RTNLA

D. rerio RTN4

H. sapiens RTN3A

M. musculus RTN3A

H. sapiens RTN2A

M. musculus RTN2B

X. laevis RTN2A

D. melanogaster RTNL1

C. elegans RET-1

89

100

19

29

74

100

44

65

83

42

88

100

47



bind to the surface of chick oligodendrocytes in live spinal

cord explants [8] and cultured oligodendrocytes interact

specifically with both amino-terminal domain-specific

antibodies and antibodies directed against the RTN4 66-

amino-acid loop (66-loop) [16]. These findings suggest that

the amino terminus and the 66-loop project into

extracellular space, and therefore that the first RHD

hydrophobic region must double back on itself in the

membrane. However, other data suggest that the amino-

terminal domain is intracellular. Antibodies against the 66-

loop region of RTN4 detect small amounts of this epitope

on the surface of live COS-7 cells, but antibodies against c-

Myc tags fused to either the amino or the carboxy terminus

do not bind to live cells [8].

More recent data from non-neuronal cells in which RTN4 is

overexpressed strongly support a third model, in which most

of both the amino-terminal domain and the 66-loop are

cytoplasmic. In COS cells treated with maleimide polyethylene

glycol, cysteines in the amino-terminal domain and the loop

regions of ER-associated RTN4 were found to be modified

by the reagent after detergent disruption of the plasma

membrane but not the ER membrane [6]. Cysteines in the

carboxy-terminal region were only partially modified. All

these results suggest that mammalian reticulons might have

different topologies in the ER and plasma membranes; such

multiple conformations may enable them to carry out

multiple roles in the cell. Another protein with multiple

membrane topologies is the mammalian prion protein (PrP);
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Figure 2
The structure and membrane topology of reticulons. (a) Structure of reticulon proteins. Numbers refer to the exons that encode the protein regions.
Black ovals represent hydrophobic regions. GenBank accession numbers are as in Figure 1. (b) Possible topologies of reticulon proteins in membranes.
Although eight or more conformations are possible, only those for which evidence exists are depicted. Different topologies in different cell types and
different membranes may enable reticulons to carry out diverse roles in the cell.

1

3

 1-4

1-4

1

1

31 2

31 2

1

1 2

1 2 3

(a)

(b)

Extracellular space
ER lumen

Cytoplasm

2 3

5

RTN1A Human

Human

Human

Human

Human

Human

Human

Human

Human

Human

Human

Fruitfly

Nematode

Yeast

RTN1B

RTN1C

RTN2A

RTN2B

RTN3C

RTN3A

RTN3B

RTN4A

RTN4B

RTN4C

RTN1B

RET-1

RTNL

Gene Species Exons Amino acids

Human 9

7

7

11

10

7

9

7

9

7

7

7

10

1

776

356

208

545

472

205

1032

236

1192

373

199

234

2607

295

CC

N

N

C

N



overexpression of a certain transmembrane form of the prion

protein, CtmPrP, causes neurodegenerative disease distinct

from that caused by the natural pathogenic prion form PrPSc

[19,20]. Another possibility is that reticulons assume different

topologies in different cell types: the reticulon amino-terminal

region has been detected only in the cytoplasm in COS-7 cells,

but has been found on both the surface and in the cytoplasm

of oligodendrocytes. Again, this may reflect the diverse roles

of reticulon proteins in different cell types.

Reticulon tertiary structure
The solution structure of the RHD loop of RTN4, known as

Nogo66, has recently been probed by circular dichroism

(CD) and nuclear magnetic resonance (NMR). Nogo66 is

soluble in pure water and consists of three alpha helices, two

short flanking one long, spanning residues 6-15, 21-40 and

45-53, followed by the unstructured residues 55-60 [21,22].

The Nogo66 loop is involved in several RTN4-specific

signaling cascades, including interaction with the Nogo

receptor (NogoR) to inhibit neurite outgrowth [23], and with

the cell adhesion molecule contactin-associated protein

(Caspr) [24] to mediate the localization of potassium

channels at axonal paranodes. The human RTN1 and RTN3

66-loops share 71% and 63% identity with the RTN4 loop;

mouse RTN1 and RTN3 identity with human RTN4 is 67%

and 59%. Despite this high degree of identity, the RTN1

66-loop does not bind to NogoR, and the function of the

66-loops in RTN1 and RTN3 is unknown in both mammals

and lower organisms.

As mentioned above, the amino-terminal regions of different

reticulons are highly divergent in sequence. The amino-

terminal domains of the human RTN4 isoforms appear to be

highly unstructured, even under physiological conditions. In

silico analysis and measurements by CD and NMR of the

human isoforms RTN4A and RTN4B reveal a high degree of

disorganization, with only short alpha helices and beta

sheets that exist transiently [25]. Recent studies have shown

that intrinsically unstructured proteins (IUPs) are more

likely to form multiprotein complexes than are proteins with

stable tertiary structure [26], are better able to ‘moonlight’ -

carry out alternative functions [25] - and may fold upon

binding to their partners [27]. It has been shown that up to

33% of eukaryotic proteins contain long disordered regions,

compared with 2% of archeal proteins [25]. The characteri-

zation of RTN4 as an intrinsically unstructured/disordered

protein may explain its involvement in many physiological

processes, as explained below.

Localization and function
The first known reticulon protein, RTN1, was identified from

a cDNA in neural tissue [28] and subsequently characterized

as an antigen specific to neuroendocrine cells [29]. This so-

called neuroendocrine-specific protein (NSP) was later

renamed reticulon when it was discovered by both immuno-

histochemical and biochemical methods to be associated with

the ER in COS-1 cells [30]. Reticulons do not contain an ER

localization sequence per se, but a single RHD hydrophobic

region is sufficient to target an enhanced green fluorescent

protein-RTN fusion protein to the ER, whereas deletion of

the RHD abolishes association with the ER [13,31].

Reticulons have been shown to localize to the ER in yeast,

Arabidopsis, C. elegans, Xenopus, Drosophila and mammals

[2,3,5,6,32-34]. Most reticulon research has focused on

RTN4 in the CNS and its effects on neurite outgrowth and

axonal regeneration after spinal cord injury. However, the

presence of reticulons in all eukaryotic organisms and their

ubiquitous ER-associated expression indicate a more general

role. We shall focus on three areas of reticulon localization

and function: ER-associated roles, oligodendrocyte-

associated roles in inhibition of neurite outgrowth, and the

role of reticulons in neurodegenerative diseases.

ER-associated reticulons and their function
There is growing evidence that reticulons are involved in

bending and shaping the ER membrane, in trafficking of

material from the ER to the Golgi apparatus, and in

apoptosis (Figure 3). Antibody-mediated inhibition of

RTN4A in mammalian cells prevents GTP-induced

formation of elongated membrane tubules in vitro [6], and

knocking out both the C. elegans RTNL RET-1 and its

associated protein YOP-1 interferes with ER formation

during mitosis in the worm [33]. RTN4A also localizes to

subdomains of the Xenopus nuclear envelope, and its

inhibition by anti-RTN4A antibodies limits nuclear envelope

assembly [35]. C. elegans RET-1 also interacts with the

protein RME-1, a regulator of endocytic recycling [36-38]. In

a yeast two-hybrid screen, the mammalian RTN1 isoforms

RTN1A and RTN1B were found to interact with a component

of the mammalian endocytosis adaptor complex AP-2.

RTN1C, in contrast, may be involved in exocytosis. It

associates with calreticulin-negative regions of the ER and

co-immunoprecipitates with the SNARE proteins syntaxin 1,

syntaxin 7, syntaxin 13 and VAMP2 [39]. Overexpression of

a fragment of RTN1C increases the rate of exocytosis in PC12

cells. RTN1, RTN2, and RTN4 were all identified in a yeast

two-hybrid screen using the vesicle fusion protein chaperone

β-SNAP as bait, although these results were not confirmed

by co-immunoprecipitation [40]. In summary, reticulons

interact with proteins involved in vesicular formation and

fusion such as SNAREs and SNAPs. Reticulons also appear

to play a role in ER morphogenesis; nevertheless, cells

lacking reticulon expression do not have major defects in

ER, endosomal or microsomal structure.

Reticulons are also involved in intracellular trafficking - a

close cousin of vesicle formation and recycling. Over-

expression of RTN3 in HeLa cells prevents retrograde

transport of proteins from the Golgi complex to the ER

[41]. In yeast, RTNL1B forms complexes with Yip3p, the

yeast ortholog of the mammalian Rab-GDI displacement
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factor (GDF). Small GTPases of the Rab family facilitate

vesicle trafficking between organelles, and are regulated by

GDFs [42]. In C. elegans, inhibition of RET-1 and YOP-1

disrupted nuclear envelope assembly, and of 29 Rabs

screened, depletion of Rab5 mimicked this phenotype

closely [33]. In a screen in human cells for GTPase-

activating proteins (GAPs), which inhibit Rab function, the

protein TBC1D20 was found to be a GAP for Rab1 and

Rab2, and in the same study, interaction between RTN1C

and TBC1D20 was identified in a yeast two-hybrid screen, a

further argument for a role for reticulons as regulators of

Rab-regulated intracellular trafficking [43].

In mammalian cells, reticulons may also play a role in

apoptosis. Both RTN1C and what is now known to be RTN4A

were identified in a screen for interactors with Bcl-XL, a

powerful inhibitor of apoptosis [44]. RTN1C was found to

inhibit Bcl-XL, and RTN4A was found to inhibit both Bcl-XL

and another apoptosis inhibitor, Bcl-2, demonstrating a pro-

apoptotic role for reticulons. More recently, RTN1C was

shown to modulate apoptosis by upregulating the sensitivity

of the ER to stressors in neuroblastoma cells [45]. Several

labs have shown that RTN3 also enhances apoptosis via

interaction with Bcl-2 [46-48]. Although these and other

data indicate that reticulons may have a role in tumor

suppression via upregulation of apoptosis, this topic is not

without controversy [49].

Oligodendrocyte reticulon and its role in neurite
outgrowth inhibition
The longest isoform of RTN4, RTN4A, has been extensively

characterized in the mammalian CNS (recently reviewed by
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Liu et al. [50]). It had long been known that in contrast to

the myelin of the peripheral nervous system, myelin from

the CNS appeared to prevent neuronal regeneration after

injury [51]. In 1988, by size fractionation of rat CNS myelin,

Caroni and Schwab discovered a 250 kDa inhibitor of

neurite outgrowth [52]. This protein was later identified as a

novel reticulon (RTN4A) and also named Nogo-A after its

inhibitory effect on neuronal regeneration [8,13,14]. As the

protein is generally called by this name in neuronal

regeneration studies, we shall use that name in the following

discussion. GrandPré et al. [8] showed that the extra-

cellular/ER luminal portion of Nogo-A, the 66-loop termed

Nogo66, is a potent inhibitor of neurite outgrowth. The

receptor for Nogo66 was subsequently identified and termed

NogoR [23]. Inhibition of NogoR using the antagonist

peptide NEP1-40 releases myelin-mediated inhibition of

neurite outgrowth in culture, and both the acute intrathecal

delivery and delayed systemic delivery of NEP1-40 promotes

axonal regeneration of corticospinal tract fibers after dorsal

hemisection in rats [18,53-55]. Work on the amino-terminal

domain of Nogo-A demonstrated its capacity to induce

growth-cone collapse independent of NogoR via a region

now called ∆20 [16,23], whereas another amino-terminal

region, termed Nogo-A-24, is known to enhance the binding

affinity of Nogo66 for NogoR when fused to Nogo66 [15].

Interestingly, the RHD region common to all isoforms of

Nogo (RTN4) is alone sufficient to delay nerve regeneration

after sciatic nerve crush [56].

Numerous in vivo studies in animals have found that either

genetic ablation or pharmacological inhibition of the Nogo-

A-NogoR interaction promotes axon growth and behavioral

recovery after spinal cord injury [17,18,53,54,57-62], and

significant improvement of recovery after similar prevention

of Nogo-A action is also seen after stroke injury [63-65]. The

field is not free from controversy, however [66,67]. The

genetic background can alter the effects of Nogo inhibition

[68], and studies of spinal cord injury in Nogo-knockout

animals generated in different laboratories have yielded

variable results [69-71]. The weight of evidence for a role for

Nogo-A as an inhibitor of neurite outgrowth and a limitor of

axon growth in spinal cord injury, however, make it a prime

target for therapeutic intervention. Indeed, clinical trials of

anti-Nogo antibodies are already under way.

Although the mechanism of action of reticulon in the ER

remains to be elucidated, the mechanism by which Nogo-A

inhibits neurite outgrowth and axon regeneration in the CNS

is well characterized (Figure 4, Table 1). The receptor -

NogoR - for the Nogo66 region was identified in 2001 [21],

but this receptor lacks a transmembrane and signaling

domain and so must interact with a co-receptor or other

signal transducer. Several candidates for this role have been

discovered: the neurotrophin receptor p75, the transmem-

brane protein LINGO-1 and the orphan tumor necrosis

factor family member TAJ/TROY have all been shown to

bind NogoR and participate in the inhibition of neurite

outgrowth in vitro [72-78] (see Figure 4, Table 1). The

epidermal growth factor receptor (EGFR) may indirectly be

a signal transducer for NogoR - the kinase activity of EGFR

has been shown to be required for the inhibitory action of

Nogo66 in culture - but EGFR does not directly bind NogoR

[78]. A crystal structure of the ligand-binding domain of the

NogoR receptor has been determined [79,80].

NogoR and all its putative co-receptors rely on the small

GTPase RhoA for their downstream effects. Upon RhoA

activation as a result of NogoR signaling, Rho-activated kinase

(ROCK) stimulates actinomyosin activity, causing growth-

cone collapse [50,81]. Blocking Rho activity either pharma-

cologically or with dominant-negative RhoA releases Nogo66-

mediated neurite outgrowth inhibition in vitro [82-85].

Frontiers
Many aspects of our knowledge of the reticulon protein

family remain incomplete. There is no consensus on the

mechanism(s) underlying the ER-associated function of

reticulons, and debate continues over the role of mammalian

Nogo-A in the inhibition of neurite outgrowth. The most

exciting frontier of reticulon research, however, is in the

field of neurodegenerative disease. There is growing

evidence that reticulons may have a role in amyotrophic

lateral sclerosis (ALS), Alzheimer’s disease, multiple sclerosis

and perhaps hereditary spastic paraplegia.

In 2004 it was found that all four human reticulon proteins

interact with the enzyme that produces the pathologic agent

in Alzheimer’s disease. He et al. [86] showed that BACE1,

the δ-secretase that cleaves amyloid precursor protein (APP)

into β-amyloid peptide (Aβ), co-immunoprecipitates with

RTN1, RTN2, RTN3 and RTN4 [86]. In vitro, over-

expression of a single RTN reduced the levels of Aβ
produced by HEK-293 cells expressing the Swedish mutant

of APP, and conversely, knockdown of RTN3 by RNA

interference increased Aβ levels [54]. More recently,

Murayama and colleagues screened for proteins that interact

with BACE1 and identified RTN3 and RTN4 [87]. These

authors also demonstrated decreased Aβ production in cells

expressing the Swedish mutant [87]. Notably, in a

subtractive hybridization screen, Yokota and colleagues [88]

found that human RTN3 was downregulated in the temporal

lobes of Alzheimer’s patients. Although these data are

intriguing, the exact role of reticulons in Alzheimer’s disease

remains unknown, and further investigation is needed to

confirm whether these proteins may be potential therapeutic

targets in Alzheimer’s disease.

Reticulons have also been found to be involved in ALS. In

an ALS mouse model expressing human superoxide

dismutase (SOD) containing a disease-causing dominant

mutation, Dupuis et al. [89] found differential up- and
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downregulation of RTN4A and RTN4C mRNA compared

with wild-type mice. Jokic et al. [90] demonstrated that

levels of RTN4 in muscle biopsies of ALS patients

correlated with disease severity. Pradat et al. [91] found

that expression of RTN4A in lower motor neuron

syndromes was prognostic of ALS, but Wojcik and

colleagues [92] have found recently that RTN4A

expression is not unique to ALS. Genetic analysis of RTN4

in the SOD mouse model of ALS shows that it has a

significant impact on survival [93]. Importantly, this effect

on survival does not seem to be due to a direct effect on

mutant SOD levels (YSY and SMS, unpublished data), and

may instead be related to the roles of RTN4A in vesicle

formation and trafficking. It is of note that RTN4A levels in

muscle increase in surgically denervated wild-type mice

[94], and as mentioned above, other groups have found

that changes in RTN4A expression are not necessarily

specific to ALS [92]. Considering the impact of RTN4 in

the mouse model of ALS, however, this protein remains a

possible candidate drug target for the disease.

Lastly, RTN4 may have a role in multiple sclerosis and

hereditary spastic paraplegia. Autoantibodies against the

isoform A-specific region of RTN4 have been found in serum

and cerebrospinal fluid of patients with multiple sclerosis

[95]. Interestingly, administration of exogenous anti-RTN4A

antibodies protects against demyelination in the experi-

mental autoimmune encephalitis mouse model of multiple

sclerosis [96]. Spastin, the most commonly mutated protein

in hereditary spastic paraplegia, was found to interact with

RTN1 and RTN3 via yeast two-hybrid screening; the inter-

action between spastin and RTN1 was further confirmed by

co-immunoprecipitation and co-localization of the two

proteins in transfected HeLa cells [97,98].

Questions remain regarding all aspects of the reticulon

family, from its most basic characteristics such as membrane

topology to its partners in intracellular trafficking, to the

downstream signaling molecules that effect the reticulons’

influence on human disease. Despite the lack of consensus

about the mechanism of action of reticulons in normal

cellular function and in neurodegenerative disease, their

involvement in several disease processes makes them

important targets for therapeutic development.
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Figure 4
Interaction of Nogo-A with Nogo receptor. The interaction of Nogo-A
(RTN4A) on oligodendrocytes and the Nogo receptor (NogoR) on
neurons results in inhibition of axon regeneration after injury via Rho
signaling [17,23,55,59,61-63,79]. The different regions of Nogo-A are
colored as follows: red, 66-loop (Nogo66); green, Nogo-A-24; blue, ∆20.
NogoR is in orange. The 66-loop interacts with NogoR to mediate
growth-cone collapse and neurite outgrowth in vitro and to inhibit axon
regeneration after injury [21,23,25,53,56,58,60,62]. The amino-terminal
region Nogo-A-24 increases the binding affinity of Nogo-A to NogoR and
also binds NogoR directly [15]. The amino-terminal region ∆20 can
mediate fibroblast and growth-cone collapse independently of NogoR
[16]. Some known co-receptors and signal transducers are listed beside
the yellow symbol and are described in more detail in Table 1.
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Table 1

Co-receptors and signal transducers in the Nogo-A-NogoR
interaction

Molecular 
region/
interactor Function/interaction Reference(s)

NogoA-24 Increases binding affinity of Nogo-A to [15]
Nogo receptor (NogoR); binds NogoR 
directly

∆20 Mediates fibroblast and growth cone [16]
collapse independently of NogoR 

p75NTR Neurotrophin receptor; binds NogoR [72,73]
and mediates inhibition of neurite 
outgrowth via myelin-associated inhibitors

LINGO-1 Binds NogoR; activates Rho in complex [74,75]
with p75 and NogoR; mediates 
Nogo66-induced neurite outgrowth 
inhibition

TAJ/TROY Binds NogoR, activates Rho in complex [76,77]
with LINGO-1 and NogoR; absence 
attenuates myelin inhibition of neurite 
outgrowth

EGFR Kinase activity required for neurite [78]
outgrowth but EGFR does not bind NogoR
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