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Genes are not randomly distributed on eukaryotic chromosomes. Some neighboring 
genes show order conservation among species, while some neighboring genes 
separate during evolution even though their neighborhoods are conserved in some 
species. Here, I investigated whether after-separation gene repositioning is under natural 
selection for evolutionary conserved gene neighborhoods compared with nonconserved 
neighborhoods. After separation, genes with conserved neighborhoods show low-
expression divergence between the after-separation species and the before-separation 
species. After genes separate from their conserved gene neighbors, their after-separation 
gene neighbors tend to show coexpression and coprotein complex with their before-
separation gene neighbors. These results indicate evolutionary constraints on the selection 
of neighboring genes after evolutionary conserved gene neighborhoods separate.
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INTRODUCTION

Gene order in genomes is not random (Hurst et al., 2004). Genes that tend to remain proximal along 
DNA (synteny property) show strong transcriptional coexpression in bacterial genomes (Junier and 
Rivoire, 2016). Neighboring gene pairs tend to show higher coexpression than random gene pairs in 
yeast Saccharomyces cerevisiae (Kruglyak and Tang, 2000; Fukuoka et al., 2004; Lercher and Hurst, 
2006), nematode Caenorhabditis elegans (Lercher et al., 2003), fruit fly Drosophila melanogaster 
(Boutanaev et al., 2002; Spellman and Rubin, 2002; Bailey et al., 2004; Kalmykova et al., 2005), and 
mammal human (Singer et al., 2005; Li et al., 2006; Semon and Duret, 2006; Ghanbarian and Hurst, 
2015). This coexpression spans up to tens of neighboring genes in S. cerevisiae and D. melanogaster 
(Lercher and Hurst, 2006; Weber and Hurst, 2011). Essential genes tend to be genomic neighborhoods 
in C. elegans, S. cerevisiae and mouse (Kamath et al., 2003; Pal and Hurst, 2003; Hentges et al., 
2007). Genes in specific functional gene groups tend to be neighbors within chromosomes of the 
human genome (Teichmann and Veitia, 2004; Thevenin et al., 2014). Genes encoding subunits of 
the same complex tend to aggregate on chromosomes in S. cerevisiae (Teichmann and Veitia, 2004). 
Genes from the same metabolic pathway also show clustering in eukaryotic genomes (Lee and 
Sonnhammer, 2003).

A range of mechanisms have been proposed to be responsible for the nonrandom gene order 
in genomes. While proximal genes tend to be coexpressed in bacteria by facilitated coexpression 
mechanisms independently of the action of transcription factor (TF) (Junier and Rivoire, 2016), TF 
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regulation constrains gene order on yeast chromosomes (Janga 
et al., 2008), as neighboring genes tend to be coregulated by 
the same TF (Hershberg et al., 2005; Michalak, 2008). Adjacent 
genes also show similarity in nucleosome occupancy, chromatin 
remodeling program, and histone modification pattern (Batada 
et al., 2007; Chen et al., 2010; Deng et al., 2010). These chromatin 
structures might influence gene expression and, hence, the 
conservation of gene order.

Coexpression of neighboring genes still persists after their 
separation (Wang et al., 2011). Moreover, neighboring genes 
show interchromosomal colocalization after their separation, and 
these gene pairs tend to be bound by the same TF (Veron et al., 
2011; Dai et al., 2014). These results suggest that gene pairs that 
were genomic neighbors in the evolutionary past, but currently 
separated, might be still under similar regulatory programs.

A considerable number of genes show gene neighborhood 
conservation over long evolutionary periods (Hurst et al., 2002; 
Arnone et al., 2012), suggesting that these gene neighborhoods 
are selectively favorable. If the conservation has functional 
consequence, conserved gene neighborhoods should maintain 
links after their separation. Regarding three-dimensional 
nuclear links, we have previously found that genes showing 
neighborhood conservation in more species show more 
interchromosomal colocalization after their separation (Dai et 
al., 2014). Regarding one-dimensional links, after evolutionary-
conserved neighboring genes separate, I asked whether their 
new positions are under selective constraints (Figure 1A). In 
this study, I focused on yeast species including S. cerevisiae to 
test this possibility since S. cerevisiae has been the main model in 
the studies of gene order, as tremendous amounts of molecular 
knowledge and data are available.

MATERIALS AND METHODS

Data Preparation
The genome sequences, gene and chromosome annotations of 
the yeast species, and high-quality predicted gene orthology map 
across yeast species were obtained from a previous compilation 
(Wapinski et al., 2007). Gene expression data of yeast species were 
taken from Thompson et al. (2013). In this study, I used 11 yeast 
species whose gene annotation data and gene expression data 
are both available (Figure 1B). These include S. cerevisiae and its 
close relatives (sensu stricto clade), two other species who have 
diverged after the whole-genome duplication (Saccharomyces 
castellii, and the human pathogen Candida glabrata), two 
members of the Kluveroymyces clade (Kluyveromyces waltii and 
Kluyveromyces lactis), two members of the Candida clade (the 
human pathogen C. albicans and the halophile Debaryomyces 
hansenii), and Yarrowia lipolytica.

Gene expression divergence data in yeast species (including 
S. cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae, 
and Saccharomyces kudriavzevii) were taken from Tirosh et al. 
(2006). The measure of gene expression divergence was based 
on the interspecies correlations in the gene expression patterns. 
For each gene, the expression divergence between each two 
species was corrected by subtracting its value with the average 

intraspecies divergence of the two corresponding species. The 
corrected expression divergence for each pairwise species 
comparison was normalized by subtracting its mean and dividing 
by its standard deviation, and the normalized values were then 
averaged over the all pairwise species comparisons; thus, a single 
value of expression divergence was given for each gene (Tirosh 
et al., 2006). Genome-wide binding data corresponding to 203 
TFs were taken from Harbison et al. (2004). A P value cutoff of 
0.005 was used to define the set of genes bound by one particular 
TF. Protein–protein interaction (PPI) data were taken from Stark 
et al. (2006). Genetic interaction data were taken from Costanzo 
et al. (2016). The member genes of cellular component gene sets 
from S. cerevisiae were downloaded from the Gene Ontology 
repository (Harris et al., 2004). P values for Gene Ontology 
process terms were derived using “GOTermFinder” (https://
go.princeton.edu/cgi-bin/GOTermFinder). The list of essential 
genes was taken from Giaever et al. (2002).

Identification of Two Gene Groups
For each gene in S. cerevisiae, I identified its orthologous counterparts 
in the other 10 yeast species according to a yeast orthology map 
(Wapinski et al., 2007). I focused on S. cerevisiae genes having 
orthologous counterparts in at least 60% (i.e., 6–10 species) of the 
other 10 species, resulting in 4,093 genes. I identified S. cerevisiae 
gene pairs whose orthologous counterparts show neighborhoods 
in more than half (≥ 50%) of their appeared yeast species, meaning 
that for gene pairs respectively having orthologous counterparts in 
6, 7, 8, 9, and 10 species, their orthologous counterparts are gene 
neighbors in at least 3, 4, 4, 5, and 5 species. The resulting gene pairs 
were referred to as evolutionary-conserved neighboring gene pairs. 
I searched for S. cerevisiae gene pairs that met two criteria: 1) They 
are evolutionary-conserved neighboring gene pairs, and 2) they are 
either on different chromosomes or flanked by at least 15 genes if on 
the same chromosome in S. cerevisiae, that is, they are separated in S. 
cerevisiae. These criteria resulted in 902 gene pairs, which included 
1,367 genes. These gene pairs were referred to as yeast evolutionary-
conserved neighboring but S. cerevisiae separated gene pairs (Table 
S1). Genes in most (853) of the 902 gene pairs are on different 
chromosomes in S. cerevisiae. Orthologous counterparts of the 
resulting gene pairs tend to remain neighbors in seven yeast species 
(Figure S1). The numbers in the seven species were similar.

Note that the resulting genes might show evolutionary-
neighboring conservation with either S. cerevisiae neighboring 
genes, that is, they might not separate from their other evolutionary-
conserved neighbors in S. cerevisiae, which might cause confusion. 
Among the 1,367 genes involved in the identified yeast evolutionary-
conserved neighboring but S. cerevisiae separated gene pairs, I 
excluded genes in evolutionary-conserved neighboring gene pairs 
identified above, resulting in 990 genes, and referred to them as 
genes with evolutionary-conserved neighbors separated in S. 
cerevisiae (ECNS) (Table S2).

To control for the evolutionary-conserved neighborhood, I 
searched for S. cerevisiae gene pairs that met two criteria: (1) Their 
orthologous counterpart are gene neighbors in only 1 of the 10 
yeast species, and (2) they are either on different chromosomes 
or flanked by at least 15 genes if on the same chromosome 
in S. cerevisiae, that is, they are separated in S. cerevisiae. I 
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FIGURE 1 | Evolutionary-conserved neighboring genes show low-expression divergence after separation. (A) A brief illustration of this study. (B) Phylogeny of 
yeast species included in this study. Median values that correspond to the number of negative genetic interaction partners (C), the number of positive genetic 
interaction partners (D), the number of physical protein–protein interaction (PPI) partners (E), and expression divergence between S. cerevisiae and other yeast 
species (F) were shown for evolutionary-conserved neighbors separated in S. cerevisiae (ECNS) and nonevolutionary-conserved neighbors separated in S. 
cerevisiae (NECNS) genes. The statistical significant values calculated from Mann–Whitney U test were indicated. Error bars were calculated by bootstrapping.
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referred to the resulting gene pairs as yeast nonevolutionary-
conserved neighboring but S. cerevisiae separated gene pairs. 
To avoid confusion, I excluded genes in evolutionary-conserved 
neighboring gene pairs from the resulting genes. The refining 
genes were referred to as genes with nonevolutionary-conserved 
neighbors separated in S. cerevisiae (NECNS).

Randomized Experiments
I used randomized experiments to test the statistical significance of 
frequencies of cobound TF, pairwise genetic interactions, pairwise 
PPI, and cocellular component for gene pairs between before- and 
after-separation neighboring genes of ECNS genes. For each gene 
in all gene pairs, I randomly permutated it with one gene that met 
two criteria: 1) It was on the same chromosomes as the actual gene 
because some properties like TF binding show preference for some 
specific chromosomes, and 2) it was not the same gene as the actual 
gene. In this way, I generated random genes of which the number 
was the same as that of genes in actual gene pairs. I replaced the 
actual genes with their corresponding random genes. In this way, 
I generated random gene pairs of which the number was the same 
as that of actual gene pairs. I calculated frequencies of cobound 
TF, pairwise genetic interactions, pairwise PPI, and cocellular 
component for these random pairs. If the cobound TF, genetic 
interactions, PPI, and cocellular component were not features of 
actual gene pairs, the random gene pairs should show a similar 
degree of frequencies as actual gene pairs. I repeated the randomized 
experiment 100,000 times to calculate the frequency of experiments 
having higher degrees than actual gene pairs and referred to this 
value as P value.

RESULTS

Evolutionary-Conserved Neighboring 
Genes Show Low-Expression Divergence 
After Separation
I studied 11 yeast species whose gene annotation data and 
gene expression data are both available. I identified 902 S. 
cerevisiae gene pairs, orthologous counterparts of which were 
gene neighbors in most of their appeared yeast species, but 
separated in S. cerevisiae (see details in Materials and methods 
section, Table S1). However, some genes in my identified gene 
pairs show evolutionary-neighboring conservation with their 
S. cerevisiae neighboring genes. I excluded these genes to avoid 
confusion, resulting in 990 genes, and referred to them as ECNS 
genes (see details in Materials and methods section, Table S2). I 
also identified S. cerevisiae gene pairs, orthologous counterparts 
of which were gene neighbors in only one yeast species, but 
separated in S. cerevisiae. I referred to the resulting genes as 
NECNS genes. Both ECNS and NECNS genes separated from 
neighbors of their orthologous counterparts in S. cerevisiae; these 
two gene groups differ in whether their orthologous counterparts 
show evolutionary conservation in neighborhoods.

I examined the enrichment of ECNS genes for genetic interaction 
in S. cerevisiae. ECNS genes have more genetic interaction partners 
than NECNS and the other genes (negative interaction:P < 10–6 for 
NECNS genes, P < 10–14 for the other genes; positive interaction: 

P < 10–5  for NECNS genes, P < 10–16  for the other genes; Mann–
Whitney U test, Figure 1C, D). Moreover, ECNS genes have more 
PPI partners than NECNS and the other genes (P < 10–21  for 
NECNS genes, P < 10–28 for the other genes, Mann–Whitney U test, 
Figure 1E). ECNS genes tend to be essential genes compared with 
NECNS genes (~22 vs. ~7%) (Giaever et al., 2002). However, ~16% 
of all S. cerevisiae genes are essential genes, indicating that NECNS 
are relatively depleted in essential genes. ECNS genes tend to be 
involved in housekeeping processes, including cellular process, 
metabolic process, and biogenesis as indicated by Gene Ontology, 
whereas NECNS genes tend to be involved in transport process 
(Table S3).

I examined whether ECNS and NECNS genes show similar 
expression divergence between S. cerevisiae and other yeast 
species (Tirosh et al., 2006). Interestingly, I found that ECNS genes 
show lower expression divergence than NECNS genes (P  < 10–8, 
Mann–Whitney U test, Figure 1F). Moreover, before-separation 
neighboring genes of ECNS genes also show lower expression 
divergence than those of NECNS genes (P < 10–13, Mann–Whitney U 
test, Figure S2). These results are consistent with a previous human 
finding that grouping human genes together along the genome is 
associated with reduced expression noise (Kustatscher et al., 2017).

After-Separation Neighboring Genes 
of ECNS Genes Show Low-Expression 
Divergence
I examined whether after-separation neighboring genes of ECNS 
genes in S. cerevisiae are under selective constraints to maintain low-
expression divergence of ECNS genes. I found that after-separation 
neighboring genes of ECNS genes show lower expression divergence 
than those of NECNS genes (P  < 10–4, Mann–Whitney U test, 
Figure 2A). I asked whether ECNS genes show high coexpression 
with their after-separation neighboring genes to maintain their 
low-expression divergence. ECNS genes and their after-separation 
neighboring genes show higher coexpression than all possible gene 
pairs in S. cerevisiae (Thompson et al., 2013) (average coexpression 
level: 0.07 vs. 0.004, P < 10–6, Mann–Whitney U test, Figure 2B) 
but show similar coexpression levels compared with those between 
NECNS genes and their after-separation neighboring genes (average 
coexpression level: 0.07 vs. 0.04, P = 0.59, Mann–Whitney U test).

Considering the low-expression divergence of ECNS genes, 
if their evolutionary-conserved neighboring genes strongly 
influence their gene expression, after-separation gene neighbors 
that show high coexpression with their before-separation 
neighbors should be selectively favorable. Indeed, before- and 
after-separation neighboring genes of ECNS genes show higher 
coexpression than all possible gene pairs (average coexpression 
level: 0.04 vs. 0.004, P < 10–11, Mann–Whitney U test, Figure 2B). 
Before- and after-separation neighboring genes of ECNS genes 
also show higher coexpression than before- and after-separation 
neighboring genes of NECNS genes (average coexpression level: 
0.04 vs. −0.14, P < 10–20, Mann–Whitney U test, Figure 2B). 
However, before- and after-separation neighboring genes of ECNS 
genes show lower coexpression than ECNS genes and their after-
separation neighboring genes (P = 0.01, Mann–Whitney U test, 
Figure 2B). These results together implied that there is selective 
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pressure for genes to insert in genomic neighborhoods that 
have similar expression noise (i.e., low-expression divergence), 
independent of whether genes are coexpressed. On the other 
hand, ECNS genes and their before-separation neighboring genes 
show comparable coexpression levels in S. cerevisiae with all 
possible gene pairs (average coexpression level: 0.01 vs. 0.004, P = 
0.07, Mann–Whitney U test).

Before- and After-Separation Neighboring 
Genes of ECNS Genes Tend to be in the 
Same Cellular Component
I tested whether before- and after-separation neighboring genes 
of ECNS genes are regulated by similar transcriptional programs. 
To address this, I used genome-wide 203 TF binding data in 
S. cerevisiae (Harbison et al., 2004). I generated random gene 
pairs to test the statistical significance (see details in Materials 
and methods section). I repeated the randomized experiment 
100,000 times to calculate P value. I found that before- and after-
separation neighboring genes of ECNS genes tend to be bound by 
the same TF: the frequencies of gene pairs bound by the same TF 
for all these randomized experiments were lower than that of the 
actual gene pairs (P < 10–5, Figure 3A).

Genetic interaction network plays an important role in the 
evolution of gene order (Yang et al., 2017). Using genome-wide 
genetic interaction network data in S. cerevisiae (Costanzo et al., 
2016) and 100,000 times of randomized experiments, I found 
that gene pairs between before- and after-separation neighboring 
genes of ECNS genes tend to have pairwise genetic interactions 
(P < 10–5 for negative genetic interaction, Figure 3B, P = 0.02 
for positive genetic interaction). Gene pairs between before- 
and after-separation neighboring genes of NECNS genes do not 

show these properties (P = 0.37 for negative genetic interaction, 
P = 0.64 for positive genetic interaction). As genes showing 
negative genetic interactions tend to encode proteins in the 
same protein complex (Costanzo et al., 2016), I tested whether 
it holds true for gene pairs between before- and after-separation 
neighboring genes of ECNS genes. Using genome-wide physical 
PPI data in S. cerevisiae (Stark et al., 2006) and 100,000 times of 
randomized experiments, I found that encoding proteins of gene 
pairs between before- and after-separation neighboring genes of 
ECNS genes tend to show pairwise PPI (P < 10–5, Figure 3C). 
Using Gene Ontology data in S. cerevisiae (Harris et al., 2004) 
and 100,000 times of randomized experiments, I found that gene 
pairs between before- and after-separation neighboring genes of 
ECNS genes tend to belong to the same cellular component (P < 
10–5, Figure 3D).

DISCUSSION

Neighboring genes are frequently coexpressed. Whether this 
coexpression has consequent function or is just transcriptional 
noise remains debated (Xu et al., 2012; Kustatscher et al., 2017). 
If it is just the by-product of transcriptional noise, after genes 
separated from their evolutionary conserved neighboring 
genes, their after-separation gene neighbors should not be 
under selective constraints to show coexpression with their 
before-separation gene neighbors. Our results show that 
before- and after-separation neighboring genes of ECNS genes 
show statistical significantly higher coexpression than before- 
and after-separation neighboring genes of NECNS genes, 
although the mean coexpression level between before- and 

FIGURE 2 | Before- and after-separation neighboring genes of ECNS genes show high coexpression. (A) Median values that correspond to expression divergence 
between S. cerevisiae and other yeast species were shown for after-separation neighboring genes of either ECNS genes or NECNS genes. Error bars were 
calculated by bootstrapping. (B) For each gene pair between before- and after-separation neighboring genes of EECN or NECN genes, I calculated the pairwise 
Spearman expression correlation coefficient, respectively. For each gene pair between EECN or NECN genes and their after-separation neighboring genes, I 
calculated the pairwise Spearman expression correlation coefficient, respectively. For each possible gene pair in S. cerevisiae, I also calculated the pairwise 
Spearman expression correlation coefficient. Distributions of resulting correlation coefficient values were presented for the five gene groups. To avoid confusion, I 
excluded gene pairs that were neighbors in any one species. The statistical significant values in (A) and (B) calculated from Mann–Whitney U test were indicated.
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after-separation neighboring genes of ECNS genes is relatively 
low (0.04).

Using randomized experiments, I found that a statistically 
significant number of gene pairs between before- and after-
separation neighboring genes of ECNS genes are bound by the 
same TF, to be in the same cellular component, show pairwise 
genetic interactions and PPI. These cofeatures are generally 
associated with gene coregulation. These results indicate that 
genes showing some similar specific properties with before-
separation neighboring genes of ECNS genes tend to be selected 
as after-separation neighboring genes of ECNS genes. On 
the other hand, the numbers of gene pairs showing cofeatures 
differ among these properties. Significantly, ~46% of gene pairs 
between before- and after-separation neighboring genes of 
ECNS genes are in the same cellular component (Figure 3D). It 
is likely that genes showing cocomponent with before-separation 
neighboring genes of ECNS genes are most favorable as after-
separation neighboring genes of ECNS genes.

One interesting finding in this study is that ECNS genes 
and their after-separation neighbor genes show comparable 

coexpression levels with those between NECNS genes and their 
after-separation neighbor genes. I also identified nonseparation 
gene neighbors conserved from at least four yeast species to S. 
cerevisiae. These nonseparation gene neighbors show similar 
coexpression levels with those between ECNS genes and 
their after-separation neighbor genes (data not shown). The 
coexpression of neighboring genes is a phenomenon caused by 
many factors. The contribution of these factors varies with genes. 
Insights into mechanisms of regulation and gene order evolution 
from only neighboring coexpression information might be 
masked by some factors. Integrating neighboring coexpression 
information with gene neighborhood conservation information 
and before-separation neighboring information could provide 
deep insights into mechanisms of gene order evolution.
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