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Exploration into biomarker 
potential of region‑specific brain 
gene co‑expression networks
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The human brain is a complex organ that consists of several regions each with a unique gene 
expression pattern. Our intent in this study was to construct a gene co-expression network (GCN) for 
the normal brain using RNA expression profiles from the Genotype-Tissue Expression (GTEx) project. 
The brain GCN contains gene correlation relationships that are broadly present in the brain or specific 
to thirteen brain regions, which we later combined into six overarching brain mini-GCNs based on the 
brain’s structure. Using the expression profiles of brain region-specific GCN edges, we determined 
how well the brain region samples could be discriminated from each other, visually with t-SNE plots 
or quantitatively with the Gene Oracle deep learning classifier. Next, we tested these gene sets on 
their relevance to human tumors of brain and non-brain origin. Interestingly, we found that genes in 
the six brain mini-GCNs showed markedly higher mutation rates in tumors relative to matched sets 
of random genes. Further, we found that cortex genes subdivided Head and Neck Squamous Cell 
Carcinoma (HNSC) tumors and Pheochromocytoma and Paraganglioma (PCPG) tumors into distinct 
groups. The brain GCN and mini-GCNs are useful resources for the classification of brain regions and 
identification of biomarker genes for brain related phenotypes.

The human brain is a complex system encompassing countless cells that coalesce into hundreds of different 
regions and patterns of functional connectivity1. The coherence between brain regions results in canonical func-
tions like vision, language, and memory2. The complexity of the brain is mainly due to the spatial and temporal 
alteration of large amounts of gene expression during developmental specification and maturation3. However, 
the region-specific description and control of gene expression patterns across the human brain has yet to be 
fully revealed.

Fortunately, recent high-resolution genome wide transcriptome profiling studies provide deeper insight into 
brain gene expression, especially in the context of disease-associated expression shifts in different brain regions. 
For example, Twine et al.4 studied transcriptome profiles from both healthy brains and brains from patients with 
Alzheimer’s disease (AD). They found significant differences in gene expression levels, splicing isoforms, and 
alternative transcription start sites between healthy and AD brains. Another group created a gene expression 
model based on transcriptome datasets of the healthy human brain from the Allen Brain Atlas. This model can 
be used to identify potentially new candidate genes implicated in neurological diseases using machine learning5,6. 
Other studies include identifying gene expression patterns related to developmental origin of brain regions, brain 
functions, and brain-specific diseases like autism7–9. A brain transcriptome resource we leveraged in this study 
is from the Genotype-Tissue Expression (GTEx) project10 that characterized 54 tissues from 948 human donors. 
Thirteen of those tissue were from specific regions of the human brain.

With the increasing number and diversity of high-resolution human brain gene expression datasets, it is 
becoming easier to detect polygenic biomarker systems relevant to a specific medical condition or brain region. 
For example, using pairwise gene expression correlation tests across genes in a gene expression matrix (GEM), 
a gene co-expression network (GCN) can be constructed and utilized to detect co-functional gene sets11–14. In 
a GCN, each node represents a gene or gene product, and two nodes are connected by an edge if they have a 
significant co-expression relationship. A group of highly-connected genes in a GCN have a higher likelihood of 
being functionally related relative to a group of poorly connected genes. We construct GCNs using software called 
Knowledge-Independent Network Construction (KINC), which employs Gaussian Mixture Models (GMMs) 
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to cluster samples before a pairwise correlation calculation12. KINC deconvolutes mixed-condition pairwise 
expression profiles into condition-specific edges that can be merged into a condition specific GCN.

Condition-specific GCNs encompass candidate biomarker systems relevant to that condition. The effective-
ness of the biomarkers to discriminate conditions can be formally tested using machine learning and other clas-
sification techniques. For example, Gene Oracle is a software package that implements a deep learning model to 
classify biological samples using gene expression features as input15. In the Gene Oracle algorithm, expression 
profiles of candidate gene sets are tested for significant non-random classification potential of sample types (i.e. 
classification labels). The gene sets are then decomposed into the most discriminatory candidate biomarker 
gene sets. In this approach, the relevance of a biomarker system is formally quantified and refined to the core 
biomarker features.

In this study, our goal was to identify condition-specific GCNs for normal human brain regions. Towards 
this goal, we constructed a brain GCN using a GEM derived from 13 brain RNA-seq datasets obtained from 
the GTEx project10. We deconvoluted the brain edges into brain region mini-GCNs and characterized highly 
interconnected genes. We then used Gene Oracle to classify the input brain samples with these mini-GCNs to 
test their biomarker potential on normal brain regions. Finally, we tested if the brain region-specific genes tumor 
expression profiles were able to discriminate the brain from non-brain human tumors.

Results
Brain region‑specific gene co‑expression network (GCN) construction.  We wanted to identify 
region-specific gene co-expression patterns in the brain using KINC13. To do this, we analyzed 1671 GTEx gene 
expression profiles from 56,202 genes across 13 different brain regions. Prior to GCN construction, the GTEx 
GEM was preprocessed by log2 transformation of the expression values, applying the Kolmogorov–Smirnov test 
to remove outlier distributions, and performing quantile normalization on the GEM. The full brain GCN con-
tains 1691 nodes and 7812 edges (Supplemental Table 1; Fig. 1A—right panel). The GCN was further dissected 
into 183 linked community modules (LCMs)16.

We then performed sample label enrichment for all modules and edges in the brain GCN (Supplemental 
Tables 2 and 3). In the sample label enrichment for modules, we considered to use the p-value threshold of 1E−3 
for significantly enriched modules. Because modules contain different numbers of genes, there are very few mod-
ules that are enriched significantly in only one brain region. Thus, we calculated the sample label enrichment for 
each edge. The edges with a p-value less than 1E−10 were considered to be significantly enriched because this 
p-value is close to maximizing the number of edges and nodes. The number of enriched edges for each specific 
region with the adjusted p-value less than 1E−3, 1E−5, 1E−15, and 1E−20 were also collected separately and the 
tSNE visualization was ran for each of those gene sets (Supplemental Table 4 and Supplemental Figure 1). One 
can see from the results that even though the threshold p-value of 1E−15 had more edges and nodes in total, 
most regions had a decrease in the number of specific edges. For example, the number of edges and nodes in 
the basal ganglia, cerebellum, and spinal cord regions was lower when the threshold was 1E−15 compared to 
a p-value threshold of 1E−10. Exceptions to this included the cortex specific edges, which increased slightly in 
number, and the hypothalamus where the number of specific edges increased strikingly. Furthermore, the tSNE 
plots showed that the region-specific genes cannot separate samples very well for p-value thresholds of 1E−3 
and 1E−5, while they can for thresholds of 1E−10, 1E−15, and 1E−20. Thus, we used a p-value of 1E−10 as the 
threshold of significance for the sample label enrichment for edges.

The identified region-specific sub-GCNs with adjusted p-value less than 1E−10 are shown in Fig. 1B—right 
panel for each region. Global attributes for both full brain GCN and region sub-GCNs are shown in Table 1. For 
example, the 160 brain caudate (basal ganglia) samples significantly contributed to 2076 edges (p < 1E−10) that 
contained 690 nodes and connected 131 modules. These brain caudate (basal ganglia) nodes had high connec-
tivity (k = 6.02), and among the 690 nodes, 33,554 eQTLs were found in the GTEx database. The average gene 
expression values for enriched nodes ( µ = 3.89 , σ = 2.49 ) was higher than all GTEx gene expression values 
( µ = 0.57 , σ = 3.34).

We counted the number of modules, edges, and eQTLs that were enriched for each brain region (Fig. 2). 
Most modules were enriched in multiple brain regions. However, there were three modules enriched in only one 
specific brain region, and one more module enriched in two brain regions. Similar to the modules, the majority 
of the edges were not enriched in one single region, with the exception of 434 that were present in only one brain 
region. Most eQTLs were found in only one brain region, and the number of eQTLs decreased when there were 
more shared regions, except for the number of eQTLs shared by all 13 brain regions. For each region’s enriched 
edges, we also counted how many of them were associated with other regions (Supplemental Figure 2). Most 
edges were enriched in more than one brain region.

For the 434 region-specific edges, we identified edges that were unique for one region as shown in Table 2. 
For example, 139 nodes and 200 edges were found that are only enriched in brain caudate (basal ganglia) sam-
ples. Only 22 genes out of the 139 unique caudate genes contained eQTLs and 917 eQTLs were found in total. 
On average, each unique node had 41.68 eQTLs. Of the 13 brain regions, ten contained region-specific edges. 
According to the anatomy of the brain, we combined some of the region-specific edges together to form six 
region-specific edge lists. For example, the basal ganglia consists of the caudate, the nucleus accumbens, and the 
putamen. Therefore, we combined those region-specific edges together. The cerebellar and cerebellar hemisphere 
samples were taken from the same site in the brain, so we combined those two lists together. The hippocampus 
only contained two region-specific edges, therefore it was not large enough to construct its own sub-GCN. In 
total, six overarching region-specific edge lists were generated from the brain GCN. We used these new sets to 
construct sub-GCNs and visualize their gene expression patterns.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17089  | https://doi.org/10.1038/s41598-020-73611-1

www.nature.com/scientificreports/

To see how region-specific gene subsets separate the brain regions, we performed t-SNE. t-SNE is a dimen-
sionality reduction algorithm for visualization of high dimensional data into two or three dimensions17. Using 
all the genes from the full brain GCN as input to t-SNE, the regions separated at different degrees (Fig. 1A—left 
panel). The main observation was the separation of the cerebellum and cerebellar hemisphere samples from other 
region samples. The expression pattern for other brain regions mixed together and could not be distinguished.

Using different sets of region-specific sub-GCN genes as input to t-SNE, the region distribution var-
ied (Fig. 1B—left panel). For example, the basal ganglia region, consisting of caudate basal ganglia, nucleus 

Figure 1.   Normal brain gene co-expression network. (A) The right panel represents the whole gene 
co-expression network (GCN) constructed from 1671 GTEx brain RNAseq samples from 13 different brain 
regions. The left panel is the corresponding t-SNE visualization for the 1691 brain GCN genes where RNA 
expression profiles sorted regions into multiple clusters. Each color represents a different region shown in 
the legend. (B) Six brain region mini-GCNs are shown on the right side of each panel. Corresponding t-SNE 
visualization pictures for those region-specific genes are shown on the left side of each panel. Non-black dots in 
each tSNE plot represent the corresponding region-specific samples and black dots represent samples from all 
other regions. For all basal ganglia specific gene sets, red, orange and yellow dots represent caudate basal ganglia, 
nucleus accumben basal ganglia, and putamen basal ganglia samples respectively. The red and orange dots from 
cerebellum and cerebellar hemisphere specific gene sets represent cerebellum and cerebellar hemisphere samples 
respectively. All red dots from other region-specific gene sets represent the particular region-specific samples.
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accumbens basal ganglia, and putamen basal ganglia samples, did not separate basal ganglia samples from other 
region samples based on the expression patterns of the 145 unique basal ganglia genes. This pattern was also 
observed in the cortex samples when using the 40 unique cortex genes as input. However, the expression pattern 
for 28 spinal cord unique nodes separated the spinal cord samples from any other brain region samples. Also, 
cerebellum specific genes were able to separate cerebellum and cerebellar hemisphere samples from all other 
samples. The t-SNE visualization for each region based on its enriched nodes is shown in Supplemental Figure 3.

We performed functional enrichment analysis on full brain GCN modules (Supplemental Table 5) as well as 
brain region-specific nodes (Supplemental Table 6). Table 3 lists the region-specific module information, and 
Table 4 lists their corresponding functional enrichment results.

To determine if the region-specific edges were coding or non-coding genes, we counted the gene classes for all 
GTEx input genes, brain GCN genes, as well as each region’s specific gene list (Supplemental Table 7). About one 

Table 1.   Normal brain GCN edge attributes. [1] For edge enrichment, we consider the significant edges 
for each sub-cluster as those with p-values less than 1E−10; [2] For module enrichment, we consider the 
significant modules for each sub-cluster will be those with p-values less than 1E−3.

Region Samples Nodes Edgesa Modulesa

All genes 
specific 
eQTLs

[RNA] All 
genes mean

[RNA] All 
genes stdev

[RNA] 
Enriched 
node mean

[RNA] 
Enriched 
node stdev k Unique edges

Unique 
edge 
percentage

Full network 
(all regions) 1671 1691 7812 183 38,549 0.57 3.34 3.65 2.71 9.24 434 0.06

Brain amyg-
dala 100 188 145 87 4,097 0.57 3.34 4.50 1.99 1.54 0 0.00

Brain anterior 
cingulate 
cortex BA24

121 419 468 41 11,833 0.57 3.34 4.62 1.90 2.23 0 0.00

Brain caudate 
(basal ganglia) 160 690 2076 131 33,554 0.57 3.34 3.89 2.49 6.02 200 0.10

Brain cerebel-
lar hemisphere 136 270 225 4 43,794 0.57 3.34 4.86 1.90 1.67 1 0.00

Brain cerebel-
lum 173 327 301 13 129,623 0.57 3.34 4.98 1.84 1.84 60 0.20

Brain cortex 158 646 928 74 42,199 0.57 3.34 4.87 1.87 2.87 24 0.03

Brain frontal 
cortex BA9 129 545 735 54 20,048 0.57 3.34 5.03 1.81 2.70 0 0.00

Brain hip-
pocampus 123 377 909 114 8147 0.57 3.34 3.99 2.70 4.82 2 0.00

Brain hypo-
thalamus 121 440 1502 103 7853 0.57 3.34 3.67 2.59 6.83 70 0.05

Brain nucleus 
accumbens 
(basal ganglia)

147 536 693 73 24,106 0.57 3.34 4.77 1.83 2.59 5 0.01

Brain puta-
men (basal 
ganglia)

124 427 466 75 14,446 0.57 3.34 4.70 1.84 2.18 2 0.00

Brain spinal 
cord cervi-
cal c1

91 145 95 37 14,663 0.57 3.34 3.80 2.26 1.31 26 0.27

Brain substan-
tia nigra 88 111 84 51 2782 0.57 3.34 3.75 2.30 1.51 44 0.52

Figure 2.   Brain region-specific GCN attributes. (A) Number of link community modules unique to 0–13 brain 
regions. (B) Number of edges unique in 0–13 brain regions. (C) Number of region-specific edge associated 
GTEx eQTLs unique in 1–13 brain regions.
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Table 2.   Unique region-specific edge attributes.

Region Edges Nodes eQTLs Nodes counted eQTLs/node

Full network (all regions) 434 344 2228 59 37.76

Brain amygdala 0 0 0 0 0

Brain anterior cingulate cortex BA24 0 0 0 0 0

Brain caudate (basal ganglia) 200 139 917 22 41.68

Brain cerebellar hemisphere 1 2 0 0 0

Brain cerebellum 60 76 874 17 51.41

Brain cortex 24 40 296 9 32.89

Brain frontal cortex BA9 0 0 0 0 0

Brain hippocampus 2 4 0 0 0

Brain hypothalamus 70 63 108 6 18

Brain nucleus accumbens (basal ganglia) 5 9 23 1 23

Brain putamen (basal ganglia) 2 4 0 0 0

Brain spinal cord cervical C1 26 28 0 0 0

Brain substantia nigra 44 43 10 4 2.5

Table 3.   Region-specific module information.

Module Edges Enriched region p-value

M005 5 Cerebellum 4.20E−11

M126 3 Cerebellar hemisphere; cerebellum 2.54E−78; 1.57E−102

Table 4.   Unique brain module functional enrichment analysis. [1] Bonferroni adjusted p-value< 0.01.

Module Region Adj. p1 Term ID Term definition

M0005 Cerebellum 1.22E−03 MIM:114850 CARBOXYPEPTIDASE A1

M0005 Cerebellum 1.22E−03 MIM:246600 PANCREATIC LIPASE

M0005 Cerebellum 1.22E−03 MIM:276000 PROTEASE, SERINE, 1

M0005 Cerebellum 1.94E−03 GO:0005615 Extracellular space

M0005 Cerebellum 3.42E−03 GO:0006508 Proteolysis

M0005 Cerebellum 1.57E−03 GO:0008233 Peptidase activity

M0005 Cerebellum 5.63E−03 GO:0008236 Serine-type peptidase activity

M0005 Cerebellum 2.25E−03 GO:0016787 Hydrolase activity

M0005 Cerebellum 7.70E−03 GO:0061365 Positive regulation of triglyceride lipase activity

M0005 Cerebellum 9.55E−03 IPR001314 Peptidase S1A, chymotrypsin family

M0005 Cerebellum 8.05E−03 IPR018114 Serine proteases, trypsin family, histidine active site

M0005 Cerebellum 6.96E−03 IPR033116 Serine proteases, trypsin family, serine active site

M0005 Cerebellum 1.18E−03 PF00089 Trypsin

M0005 Cerebellum 9.42E−03 R-HSA-196854 Metabolism of vitamins and cofactors

M0126 Cerebellar hemisphere; cerebellum 2.18E−03 MIM:603140 PHOSPHATIDYLINOSITOL 5-PHOSPHATE 4-KINASE, 
TYPE II, ALPHA

M0126 Cerebellar hemisphere; cerebellum 2.18E−03 MIM:609410 SYNAPTOJANIN 2

M0126 Cerebellar hemisphere; cerebellum 2.18E−03 MIM:610072 ERMIN

M0126 Cerebellar hemisphere; cerebellum 2.18E−03 MIM:616027 ACTIN-BINDING PROTEIN ANILLIN

M0126 Cerebellar hemisphere; cerebellum 8.74E−03 IPR031970 Anillin, N-terminal domain

M0126 Cerebellar hemisphere; cerebellum 8.74E−03 IPR034973 Synaptojanin-2, RNA recognition motif

M0126 Cerebellar hemisphere; cerebellum 8.74E−03 IPR034974 Synaptojanin-2

M0126 Cerebellar hemisphere; cerebellum 6.71E−03 PF08174 Cell division protein anillin

M0126 Cerebellar hemisphere; cerebellum 5.03E−03 PF08952 Domain of unknown function (DUF1866)

M0126 Cerebellar hemisphere; cerebellum 3.35E−03 PF16018 Anillin N-terminus

M0126 Cerebellar hemisphere; cerebellum 4.30E−03 R-HSA-1483255 PI Metabolism

M0126 Cerebellar hemisphere; cerebellum 1.73E−03 R-HSA-1660499 Synthesis of PIPs at the plasma membrane
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third of the GTEx input genes are protein coding genes, but of those from the brain GCN and the region-specific 
gene lists, almost all the genes are protein coding. Interestingly, among the 1,671 genes from brain GCN, there 
are 39 genes that are lncRNA (Supplemental Table 8). This could be our future topic of study.

Brain region biomarker validation.  The six brain region-specific gene sets identified by GCN analysis 
were evaluated using Gene Oracle software which determines classification accuracy of a set of target genes rela-
tive to an identical number of random genes. We ran Gene Oracle phase I over 1671 samples from 13 different 
brain regions. Genes of each region’s specific set were used as features to classify samples into 13 brain regions. 
The output accuracy of each region’s specific set is shown in Fig. 3A. The following five sets showed significant 
classification potential: substantia nigra, spinal cord, hypothalamus, cortex, and cerebellum. Surprisingly, the 
sixth set (basal ganglia) was not significant as random genes provided a similar accuracy. To show the precise 
classification and the contribution of a region-specific gene set to each class, we generated a confusion matrix for 
each set (Fig. 3B). Darker green correlates to a higher classification accuracy. We observed that in most cases the 
region-specific gene sets classified their respective regions more accurately than other sets.

The three smallest significant sets of these five sets were selected for full combinatorial analysis with phase 
II of Gene Oracle. These included the spinal cord, cortex, and substantia nigra gene sets. Gene Oracle identi-
fied the genes which contributed the most to overall classification accuracy (candidate genes) for each of these 
region-specific sets. Figure 4 contains heatmaps which show the normalized frequency of a gene in a subset at a 
given iteration of the combinatorial analysis for the spinal cord, cortex and substantia nigra sets. The first three 
rows of the heatmaps had constant frequency values because all possible combinations of genes were evaluated, 
hence all genes appeared equivalently in the first three iterations. For the rest of the iterations, the distribution 
of the frequencies became varied and the most frequent genes appeared. Using the heatmaps, we determined the 
candidate genes of the three sets to be those with an aggregate frequency of at least one-half the standard devia-
tion above the mean. The rest of the genes were considered “non-candidate” genes. Table 5 shows the candidate 
genes identified by Gene Oracle for each of these three regions.

Due to computational constraints imposed by the large number of genes, we used a Random Forest approach 
in lieu of Gene Oracle phase 2 for the hypothalamus and cerebellum sets. We used feature_importances_() built 
in function to output the most important features (i.e. genes), which were then considered candidates for these 
two regions. To compare to Gene Oracle, we also ran Random Forest to identify the candidate genes for spinal 
cord, cortex and substantia nigra. Candidate genes identified by Random Forest are shown in Table 6. The genes 
denoted in bold are common between the two methods.

To verify the classification potential for the candidate genes, we ran the Random Forest again for each can-
didate set shown in Tables 5 and 6. Figure 5 shows, for each region-specific set, the classification accuracy of 
(1) the original region-specific set, (2) the candidate set identified using Gene Oracle, (3) the non-candidate set 
identified using Gene Oracle, and to compare to Random Forest, (4) the candidate set identified using Random 
Forest, (5) the non-candidate set identified using Random Forest. Additionally, the accuracy of each category 
was compared with the averaged accuracy of 50 random sets of equal size of genes of each set. In all cases, the 
difference in accuracy from random is highest in the candidate set and the lowest in the non-candidate sets. 
Furthermore, the candidate set identified by Gene Oracle exhibits a higher difference than those identified by 
Random Forest as shown in Fig. 5A.

Brain region biomarker potential for human brain tumors.  We were interested to see how the brain 
region-specific genes could separate abnormal brain samples. For each region-specific gene set, we ran t-SNE 
on 1,431 tumor samples with four tumor types from The Cancer Genome Atlas (TCGA) as seen in Fig. 6. The 
tumor types were glioblastoma multiforme (GBM), lower grade glioma (LGG), head and neck squamous cell 
carcinoma (HNSC), and pheochromocytoma and paraganglioma (PCPG). Most of the region-specific genes 
could separate HNSC and PCPG tumors apart, while LGG and GBM samples could not be separated. The t-SNE 
visualization based on 40 cortex specific genes separated HNSC samples and PCPG samples into different sub-
groups. For each region-specific tSNE plot, the brain tumors (both LGG and GBM) were separated into 2–3 sub-
groups. The t-SNE visualizations of four TCGA subtypes based on enriched nodes for all 13 regions are shown 
in Supplemental Figure 4. We also ran t-SNE of the 40 cortex specific genes on TCGA tumor data for gender, 
race and stage. None of these factors could separate tumor clusters (Supplemental Figure 5). tSNE visualization 
on only brain tumors with IDH mutation annotation is shown in Supplemental Figure 6. For whole brain GCN 
genes, LGG and GBM were separated apart, but some LGG samples were more similar to GBM samples. The 
IDH mutant samples were more clearly separated from non-IDH mutant samples. LGG and GBM samples could 
not be separated using region-specific genes, while IDH mutated samples could be separated with non-IDH 
mutated samples. IDH mutated samples were also divided into several subgroups using each region’s specific 
gene list. For example, for tSNE based on substantia nigra specific genes, almost all of the upper samples contain 
an IDH mutation, while almost all of the bottom samples did not contain an IDH mutation.

In order to see if the brain region-specific genes were important in different tumor types, we aggregated the 
mutation rates of five TCGA tumor types [GBM, LGG, HNSC, PCPG, and kidney renal clear cell carcinoma 
(KIRC)] for the six region-specific gene sets and one kidney gene set which contains the 20 most mutated genes 
in KIRC and their corresponding randomized control genes. As shown in Table 7, the number of mutated genes 
for all seven gene sets in GBM, LGG and HNSC was significantly higher than that for their corresponding random 
sets (p-value < 0.01). However, the number of mutated sub-brain specific genes was not significantly higher than 
the random sets in PCPG tumor. In KIRC tumors, only cerebellum specific gene set were significantly higher in 
mutated genes than randomly mutated genes. None of the other five region-specific gene sets had significantly 
numbers of higher mutated genes relative to a similar number of random genes.
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Discussion
In this study, we constructed a normal brain GCN and identified edges that were specific to 13 brain regions. 

Figure 3.   Gene Oracle classification of brain regions with brain region-specific edges. (A) Classification 
accuracy (X-axis) of region-specific gene sets (Y-axis; green bars) versus matched number of random genes 
(red bars) over 1671 GTEx brain samples from 13 different brain regions. (B) Confusion plot showing precise 
classifications (diagonal boxes) and misclassified samples for each region-specific gene sets. The upper number 
in the diagonal boxes indicates the number of samples that are correctly classified, and the lower number 
indicates its percent for each class. Other boxes show a number of misclassified samples.
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After merging edges from similar regions, six brain region-specific GCNs were identified. Functional enrich-
ment for both region-specific modules and the six sub-GCNs provided evidence that these genes encode brain 
functions. For example, as shown in tissue specific genes functional enrichment analysis in Supplemental Table 6, 
several edges specific for the substantia nigra were associated with the production of dopamine and other 
neurotransmitters, as well as their response to amphetamine and nicotine. In addition, both the hypothalamus 
and basal ganglia specific gene sets are enriched for cilium related functions, such as cilium, cilium movement, 
motile cilium, and cilium assembly. Cilia play an important role in modulating neurogenesis, cell polarity, axonal 
guidance and possibly adult neuronal function, which is related to brain development18. As expected, the brain 
GCN encodes brain function.

A prime motivation of our study was to test our approach to identify brain biomarker systems that can dis-
tinguish brain regions based upon region-specific co-expression relationships. The idea was that co-expressed 
genes unique to a brain region would be better biomarkers for sorting samples into normal and aberrant states 
that involve that region of the brain. Using t-SNE, we visualized the brain region clustering potential of these 
gene sets. Some gene sets separated regions well (e.g. spinal cord genes, substantia nigra genes, and cerebellum 
and cerebellar hemisphere genes), while others could not separate samples from each brain region. These visual 
results suggested that the biomarker sets have varied discriminatory potential.

The six brain region-specific gene sets were also evaluated for quantitative classification potential using a 
deep learning approach implemented in Gene Oracle to both classify samples from 13 brain regions and iden-
tify core candidate gene subsets which play the most important role in brain region classification. Using phase 
I of Gene Oracle, we examined the classification potential of six gene sets. All sets, except the basal ganglia set, 
showed significant mean classification accuracy relative to the mean accuracy of the same size of random gene 
sets (Fig. 3A). The confusion matrix of the basal ganglia gene set, which showed the precise classification and 
the contribution of each set to each region classification in Fig. 3B, possibly explains why the basal ganglia spe-
cific gene set had low classification accuracy. Because the caudate, nucleus accumbens and putamen all belong 
to the basal ganglia, they are physically located very close to each other. The combined basal ganglia gene set 
consisted of genes that were only enriched for one of these three regions. However, when we ran Gene Oracle 

Figure 4.   Combinatorial analysis of spinal cord, cortex and substantia nigra gene sets. Heatmaps depicting 
the frequency of genes present in the classification subsets that were generated at each Gene Oracle Phase 2 
iteration. Each row is an iteration and each column is a gene from the cortex/spinal/substantia nigra sets. Darker 
colors correspond to higher frequencies.

Table 5.   Gene oracle candidate genes for brain GTEx dataset.

Region-specific set Candidate genes identified by Gene Oracle phase II

Substantia nigra DRD2, FAM189A1, KCNJ6, SYNGR3, SNCA, CCDC85A, PTPRU, KCND3, CADPS2, RFK, SLC8A1

Cortex SNAP25, DMTN, STX1B, CABLES2, L1CAM, PKP4, AAK1, KCNAB2, DAAM2, IL12A-AS1

Spinal cord PLPPR3, CAMK2N2, PTPN5, ADGRB1, TUNAR, MIR124-2HG, CACNG3

Table 6.   Random Forest candidate genes for brain GTEx dataset. Genes in bold emphasis are common 
between the two methods.

Region-specific set Candidate genes identified by Random Forest

Substantia nigra DRD2, TH, EN1, KLHL1, RET, KCNJ6, CHRNB3, SDC1, DDC, CADPS2, TBC1D9

Cortex SNAP25, CABLES2, L1CAM, DLGAP1, PKP4, KCNAB2, NKIRAS1, STXBP5L, IL12A-AS1, TMEM63C

Spinal cord PNMA6F, CAMK2N2, PTPN5, TUNAR, NXPH4, MIR124-2HG, EBF3
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classification, we did not combine the above three regions together. Thus, for example, it is possible that the 
basal ganglia specific gene sets misclassified caudate into nucleus accumbens or putamen. The same explanation 
can be applied to the case that most of the sets show a high percentage of misclassification between cerebellar 
hemisphere and cerebellum. From the confusion plots, we can tell that similar brain regions had the trend to be 
misclassified with each other, which decreased the classification accuracy. Interestingly, some region-specific 
gene sets showed the ability to more accurately classify their regions. For example, when the genes of the spinal 
cord set were used as features, the model was able to classify the spinal cord samples with a 99% accuracy, which 
is higher when compared to other regions. These results reflect the fact that the region-specific genes can hold 
a higher predictive power for that region.

We used condition-specific GCN analysis via KINC to identify biomarker candidates. We were able to go 
one step further using Gene Oracle phase II and Random Forest feature extraction algorithms to identify genes 
which contributed the most to the overall classification accuracy (candidate genes) for each of the smallest three 
region-specific sets (substantia nigra, cortex and spinal cord sets). Once compared to the important genes iden-
tified by Random Forest, Gene Oracle showed a higher accuracy and a larger increase in accuracy when these 
genes were used as features (Fig. 5A). For example, the blue box represents the accuracy increase once candidate 
genes of substantia nigra, cortex, and spinal cord candidate gene sets were used as feature inputs to Gene Oracle. 
This represents a much higher accuracy compared to the random set (red) and the set identified through the use 
of Random Forest as a classifier model (orange). More interestingly, Gene Oracle provided deeper resolution 
than t-SNE. The left panels of Fig. 1B illustrate the large overlap between brain regions whereas Gene Oracle 
was able to easily discriminate the regions with high accuracy compared to random gene sets. The confusion 
matrices support this point as well, see Fig. 3B. These results demonstrate the power in utilizing deep learning 
technology for biomarker gene discovery.

After characterization of the biomarker potential of the brain genes on normal GTEx brain regions, we wanted 
to test the biomarker systems for classification potential of aberrant brain tissue. For this test, we chose LGG and 
GBM brain tumors as well as tumors that originated from other organs. t-SNE visualization was performed using 
TCGA tumor RNAseq expression profiles for the brain genes on samples from four different tumor types. Most 

Figure 5.   Classification potential for decomposed gene sets. (A) Classification accuracies for the full region-
specific gene sets (green) were compared to accuracies of the candidate genes identified by Gene Oracle (blue), 
non-candidate genes identified by Gene Oracle (gray), candidate genes identified by Random Forest (orange), 
and non-candidate genes identified by Random forest (purple). (B) Same as (A) but only for decomposed genes 
identified by Random Forest.
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of the region-specific genes could separate HNSC and PCPG tumors while LGG and GBM samples could not be 
separated. Interestingly, even though LGG and GBM samples could not be separated apart, those tumor samples 
can still be separated into several subgroups. This is partially due to the status of the IDH1/2 mutation which is 
very common in LGG19 (Supplemental Figure 6). The IDH mutant gliomas can be further divided into smaller 
sub-groups as well. Moreover, the t-SNE plots showed that the 40 cortex specific genes separated HNSC samples 
and PCPG samples into different sub-groups. As with the normal brain samples, there was mixed potential of 
the genes to sort human tumors.

Interestingly, we found that many of the brain region-specific GCN edges were mutated in tumors. As shown 
in Table 7, the number of mutated genes in all six brain region-specific gene sets was significantly higher than 
the number of mutated genes in the list of size-controlled random genes for GBM, LGG, and HNSC (p-value 
less than 0.01), but not for PCPG and KIRC. GBM and LGG represent tumors that originate in the brain. HNSC 
is not a brain cancer, but it originates in the squamous cells that line the moist, mucosal surfaces inside the 
head and neck, such as mouth, nose, throat, larynx, sinuses, or salivary glands20. PCPG originates mainly on 
the adrenal gland and only a few cases of paraganglioma localize in the neck and head21. KIRC originates from 
the kidney. The brain region-specific gene sets had a higher mutation rate in the brain tumors (LGG and GBM) 
than other tumors when compared to random genes. Interestingly, all brain region-specific gene sets had signifi-
cantly higher mutation rate than random genes in HNSC, which indicates that these six brain specific gene sets 
could be important in HNSC tumor formation. Furthermore, cerebellum specific gene sets showed significantly 
higher mutation rate for KIRC, which means these 78 cerebellum specific genes may also play an important 
role in KIRC formation and development. The kidney specific gene set had higher mutation rates in almost all 
five listed tumor types. This might be because we chose the top 20 most mutated genes in KIRC as identified in 
the TCGA data portal. The 20 chosen genes are not necessarily specific to kidney tumors, and therefore could 
also be highly mutated in other tumors. Thus, these genes that are mutated in KIRC also have significantly high 
mutation rates in HNSC, LGG and PCPG.

In conclusion, this study describes how condition-specific candidate biomarker systems can be discovered 
using GCN analysis and we describe how machine learning approaches can be used to measure the quality of 
the biomarker sets. Further, we believe that the significant condition-specific relationships are worthy of deeper 
analysis into why they are present in specific brain regions. In the future we intend to further investigate the 
biological significance of these edges, including an examination of normal region eQTL regulation of these gene 
datasets to find important transcription factors and binding sites that may become altered during tumorigenesis.

Methods
Input data and gene expression matrix (GEM) preparation.  All available gene-level TPM (transcripts 
per million) files for 13 normal brain region samples were downloaded from the Genotype-Tissue Expression 
(GTEx) project version 710. 1671 samples were downloaded–each containing measurements of 56,202 genes—
and merged into a GEM. The matrix underwent preprocessing steps, including log base 2 transformation, quality 
control, and quantile normalization, using the preprocessCore R library22. The Kolmogorov–Smirnov test (KS 

Figure 6.   t-SNE visualization of region-specific genes on TCGA tumor data. t-SNE was performed using 
TCGA RNAseq data from brain region sub-GCN genes. 1431 tumor samples from four tumor subtypes are 
shown. Tumor RNA expression profiles sorted regions into multiple clusters. Each color represents different 
regions. Red represents GBM; green represents HNSC; blue represents LGG; yellow represents PCPG.
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Dval> 0.15)23 was performed to test for outlier samples. No samples qualified as an outlier, so we continued with 
a quantile normalization of the matrix to reduce any technical noise. All FPKM (fragments per kilobase of gene 
per million read pairs) files for GBM, LGG, HNSC, and PCPG patients were downloaded from TCGA using the 
GDC Data Transfer Tool24. 1431 samples with 60,483 genes were aggregated into a GEM. The GEM underwent 
the same preprocessing steps as the GTEx GEM.

Gene co‑expression network construction.  KINC (https​://githu​b.com/Syste​msGen​etics​/KINC) was 
used to identify gene correlation relationships within the normalized GTEx brain GEM. The algorithm calcu-
lates correlation for each gene pair after clustering samples using GMMs. Only clusters with equal to or more 
than 30 samples underwent Spearman correlation. We submitted 50,000 KINC similarity jobs on the Open Sci-
ence Grid25 by using the OSG-KINC similarity workflow26. The workflow was accomplished using the Pegasus 
Workflow manager27. Normalized TPM expression values less than 0 were ignored. KINC similarity output was 
transferred to Clemson University’s Palmetto Cluster via Globus. The KINC significance threshold of 0.8961 was 
found by using a random matrix thresholding (RMT) algorithm within the KINC thresholding script. The GTEx 
brain GCN was then constructed by extracting all edges with correlations> 0.8961 using the KINC extract script. 
183 linked community modules (LCMs) were identified by the linkcomm R packages with a minimum cluster 
size of 3 edges16. The full GCN is shown in Supplemental Table 1.

Table 7.   Mutation rates for brain region-specific gene sets in five TCGA tumors.

Region

TS Polymorphism Tumor Mutated Mutated TS genes Random genes TS genes Random genes

Genes
Detection 
method Type TS genes Randomized P-value Mutated Mutated P-value Total Total P-value

Control gene 
mean Tumors Tumors mean Mutations

Mutations 
mean

Basal ganglia 145 Muse GBM 122 77.1 < 0.01 139 114.77 0.12 446 308.3 0.04

Basal ganglia 145 Muse HNSC 124 84.2 < 0.01 286 248.61 0.05 610 496.47 0.09

Basal ganglia 145 Muse LGG 96 63.6 < 0.01 106 79.55 0.08 389 316.2 0.1

Basal ganglia 145 Muse PCPG 10 8.7 0.23 11 9.53 0.23 12 9.89 0.21

Basal ganglia 145 Muse KIRC 67 55.5 0.03 118 91.4 0.04 150 115.49 0.05

Cerebellum 78 Muse GBM 68 44.9 < 0.01 154 86.21 0.01 402 207.68 0

Cerebellum 78 Muse HNSC 69 48.4 < 0.01 293 196.33 0 703 344.58 0

Cerebellum 78 Muse LGG 60 37.8 < 0.01 100 53.93 0.02 428 202.14 0

Cerebellum 78 Muse PCPG 9 5.48 0.05 10 6.13 0.06 10 6.36 0.07

Cerebellum 78 Muse KIRC 53 33.39 < 0.01 102 62.69 0 137 73.17 0

Cortex 40 Muse GBM 34 23.5 < 0.01 49 45.57 0.32 118 103.52 0.26

Cortex 40 Muse HNSC 36 25.4 < 0.01 126 122.54 0.35 194 176.84 0.26

Cortex 40 Muse LGG 27 19.4 < 0.01 36 27.44 0.17 129 103.29 0.18

Cortex 40 Muse PCPG 4 2.45 0.1 4 2.91 0.19 4 2.99 0.2

Cortex 40 Muse KIRC 19 16.95 0.18 35 34.35 0.36 39 37.99 0.38

Hypothalamus 63 Muse GBM 60 33 < 0.01 92 54.57 0.04 196 125.23 0.04

Hypothalamus 63 Muse HNSC 54 36.5 < 0.01 175 135.66 0.04 298 202.4 0.03

Hypothalamus 63 Muse LGG 44 27.4 < 0.01 56 37.39 0.04 188 134.15 0.06

Hypothalamus 63 Muse PCPG 2 3.6 0.75 2 3.95 0.78 2 4.14 0.78

Hypothalamus 63 Muse KIRC 28 22.54 0.01 48 41.54 0.17 55 46.45 0.16

Spinal cord 28 Muse GBM 20 12.3 < 0.01 33 20.4 0.05 74 41.44 0.02

Spinal cord 28 Muse HNSC 22 13.5 < 0.01 86 57.66 0.05 113 70.03 0.04

Spinal cord 28 Muse LGG 21 9.9 < 0.01 22 12.48 0.04 77 42.4 0.02

Spinal cord 28 Muse PCPG 1 1.1 0.3 1 1.2 0.34 1 1.2 0.34

Spinal cord 28 Muse KIRC 11 8.21 0.12 19 15.2 0.23 21 16.01 0.17

Substantia nigra 43 Muse GBM 33 23.4 < 0.01 61 45.25 0.11 123 98.89 0.15

Substantia nigra 43 Muse HNSC 36 25.4 < 0.01 143 114.3 0.1 198 162.79 0.14

Substantia nigra 43 Muse LGG 27 19.9 < 0.01 41 28.45 0.05 139 101.72 0.08

Substantia nigra 43 Muse PCPG 2 2.74 0.5 7 3.2 0.05 8 3.28 0.03

Substantia nigra 43 Muse KIRC 20 16.76 0.13 30 33.29 0.59 30 36.66 0.7

Kidney 20 Muse GBM 19 13.44 0.01 18 32.43 0 34 67.57 0

Kidney 20 Muse HNSC 20 14.07 < 0.01 56 90.82 0 62 121.02 0

Kidney 20 Muse LGG 19 11.43 < 0.01 8 18.48 0 44 65.24 0

Kidney 20 Muse PCPG 12 1.8 < 0.01 1 1.96 0 1 1.98 0

Kidney 20 Muse KIRC 19 10.55 < 0.01 256 25.96 0 507 30.32 0

https://github.com/SystemsGenetics/KINC
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Edge and module sample enrichment analysis.  All identified modules and edges in the GTEx brain 
GCN were tested for sample label enrichment using the KINC.R package (https​://githu​b.com/Syste​msGen​etics​/
KINC.R). A Fisher’s exact test with a Hochberg p-value correction was used as the default arguments to the ana-
lyzeNetCat function. The sample label enrichment lists for modules as well as edges are shown in Supplemental 
Table 2 and 3. In the sample label enrichment for modules, we considered to use the p-value threshold of 1E−3 
for significantly enriched modules. The edges with p-value less than 1E−10 were considered as significantly 
enriched edges because this p-value is close to maximizing the number of edges and nodes. The number of 
enriched edges for each specific region with the adjusted p-value less than 1E−3, 1E−5, 1E−15, and 1E−20 were 
also collected separately and the tSNE visualization was run for each of those gene sets (Supplemental Table 4 
and Supplemental Figure 1). Furthermore, we calculated the number of regions that each edge, module, and 
eQTL belonged to. eQTL datasets for 13 brain regions samples were also downloaded from the GTEx project 
V710. region-specific edges and modules were selected to construct GTEx sub-brain GCNs. LCM modules were 
also tested for functional term enrichment using the FUNC-E package (https​://githu​b.com/Syste​msGen​etics​/
FUNC-E), which uses a Fisher’s exact test similar to the David28 method of functional enrichment. For cross-
module comparisons, enriched terms were considered significant if the Bonferroni-corrected p-value was less 
than 0.001. Functional annotations performed include Gene Ontology29, Reactome30, Pfam31, Interpro32, and 
Mendelian Inheritance in Man (MIM)33. The full module functional enrichment list is shown in Supplemental 
Table 5. region-specific edges for each region also underwent functional term enrichment analysis, which is 
shown in Supplemental Table 6. Moreover, gene type for all currently identified genes was downloaded from 
Ensembl Biomart (https​://useas​t.ensem​bl.org/info/data/bioma​rt/). All genes from GTEx dataset, genes from 
brain GCN as well as each region-specific genes were counted for calculating the protein coding and non-coding 
gene percentages. This result is shown in Supplemental Table 7 and Supplemental Table 8.

t‑SNE analysis.  A dimensionality reduction and visualization pipeline was performed using either a full 
or partial GTEx brain GEM as the input. This allowed us to compare how varying subsets of genes were able 
to separate the selected brain regions. It was performed using the principal component analysis (PCA) and 
t-distributed stochastic neighbor embedding (t-SNE) Python sklearn packages17. Each t-SNE run created a two-
dimensional randomly initialized embedding, in which samples were clustered into different sub-groups. The 
perplexity used for each run was 30. This pipeline was performed on the GTEx brain GCN GEM containing 1691 
genes for 1671 samples, as well as the six GTEx sub-brain GCN GEMs containing region-specific genes for 1671 
samples. We also performed PCA and t-SNE on the TCGA cancer GEM, which contained region-specific genes 
for 1431 tumor samples, in order to segregate the four TCGA tumor types. TCGA datasets were downloaded 
from TCGA data portal34.

Brian region classification.  We used a two phase, bottom-up classification approach of a feedforward 
neural network, known as Gene Oracle15 (https​://githu​b.com/Syste​msGen​etics​/gene-oracl​e), to classify brain 
regions, and thus, identify the region-specific gene biomarkers. Gene Oracle uses a multilayer perceptron (MLP) 
feedforward neural network35 to identify biomarker gene sets with a significant classification accuracy when 
comparing to sets with equal number of random genes. Gene Oracle can also sort genes within a gene set accord-
ing to their classification rates. This is done by breaking the gene set down into its most discriminatory features, 
followed by iteratively appending genes to explore new combinations. The architecture of the network consists 
of a total of five layers: an input layer with a size equivalent to the size of the gene set, three hidden layers (512, 
256, and 128 units, respectively), and a final layer for classification. The three hidden layers utilize rectified linear 
unit (ReLU) activation function36. In Gene Oracle phase I, six merged brain region gene sets were screened for 
a significant classification potential that would allow for classification of the samples into 13 brain regions. For 
each brain gene set, 50 random size-controlled gene sets were selected from all genes in the input GTEx GEM 
and evaluated using the same classifier. Size-control means that each corresponding gene in the random list was 
within 10% of the size of the original gene from the region-specific list. The mean classification accuracy was 
calculated for the 50 random gene sets and compared with the corresponding brain gene set accuracy. For exam-
ple, the cortex set that contained 40 genes was compared to 50 different sets of 40 random size-controlled genes 
for classification accuracy. A 10-fold cross validation procedure was applied to train and test the model. A gene 
set was chosen to undergo further analysis if the classification accuracy was higher than that of the average of 
the corresponding random sets with a statistical significance of p < 0.001 (using Student’s t test). In Gene Oracle 
phase II, the gene set that exhibited a significant classification potential underwent a combinatorial decomposi-
tion in order to discover the most discriminatory genes in the set. Three brain gene sets with a smallest number 
of genes, including the cortex gene set, the spinal cord gene set, and the substantia nigra gene set, underwent 
Gene Oracle phase II to detect candidate genes for better classification.

To compare the results of Gene Oracle phase II, we utilized Random Forest37 to run the classification for 
the five brain sets that were significant in Phase I of Gene Oracle. Random Forest was also used to highlight the 
important features (i.e. genes) using its built in functions of scikit-learn library in Python. Once Random Forest 
identified the important features, they were compared to the ones identified by Gene Oracle. The Random Forest 
model consisted of 100 trees, where the value of the threshold for early stopping in tree growth is 1E−7. The built-
in scikit-learn function “RandomForestClassifier” was used to construct the Random Forest model in Python.

Tumor gene mutation rates.  Somatic mutations for GBM, LGG, HNSC, PCPG, and KIRC tumor sub-
types were downloaded from TCGA​34. TCGA reported mutations from four different polymorphism detection 
methods including Muse38, Mutect39, Sniper40 and Varscan41. We downloaded the Muse method dataset and 
counted the number of tumors with at least one mutation, the number of genes mutated in a tumor, and the 

https://github.com/SystemsGenetics/KINC.R
https://github.com/SystemsGenetics/KINC.R
https://github.com/SystemsGenetics/FUNC-E
https://github.com/SystemsGenetics/FUNC-E
https://useast.ensembl.org/info/data/biomart/
https://github.com/SystemsGenetics/gene-oracle


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17089  | https://doi.org/10.1038/s41598-020-73611-1

www.nature.com/scientificreports/

number of total mutations present in a tumor. We summed these values for candidate gene sets and the size-
controlled random gene sets of equal number. The randomized control genes were counted a hundred times and 
then an empirical p-value (p < 0.01) was determined for each candidate gene set. The absence or presence of an 
IDH mutation (IDH1/IDH2/IDH3) in LGG and GBM samples was also collected and used for tSNE visualiza-
tion.
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