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ABSTRACT

This review aimed to highlight the pivotal role of Mendelian randomization (MR) in 
advancing atherosclerotic cardiovascular disease (ASCVD) research—a field often hindered 
by the complexities and limitations of traditional studies. MR, which uses genetic variants 
as instrumental variables, provides a robust mechanism for inferring causality, offering 
insights untainted by the confounding factors and biases often prevalent in observational 
and randomized controlled trials. We explored the significant contributions of MR for 
elucidating the causal relationship between low-density lipoprotein cholesterol and 
ASCVD, and analyzed its assumptions and methodological nuances. We discussed issues 
surrounding instrumental variable selection, pleiotropy, and ethical considerations, in an 
effort to offer a balanced and insightful analysis. We highlighted the promising integration 
of MR with emerging technologies and global data sharing, as well as its potential to drive 
personalized medicine. This review provided a concise yet comprehensive journey into 
MR’s transformative impact on ASCVD research, offering a blend of current insights and 
challenges, in addition to future prospects. We aimed to serve a valuable resource for those 
seeking to navigate the intricate pathways of causality and intervention in ASCVD, to aid the 
development of enhanced understanding and targeted treatment strategies in the future.
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INTRODUCTION

Atherosclerotic cardiovascular disease (ASCVD), characterized by the buildup of plaque 
in the arteries, is the leading cause of death worldwide.1,2 It includes conditions such as 
coronary artery disease, stroke, and peripheral arterial disease. The morbidity, mortality, 
and economic burden associated with ASCVD make it a critical area for medical research. 
The development and progression of atherosclerosis involves several factors, including 
lipid metabolism, inflammation, and endothelial function.3-5 Understanding this intricate 
interplay may lead to improved preventive and therapeutic strategies.
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1. Challenges in ASCVD research
ASCVD results from a combination of genetic, environmental, and lifestyle factors.6 
However, disentangling these various contributors in observational studies can be 
challenging. Atherosclerosis develops over decades, and studying its progression 
requires long-term follow-up, which makes it both time-consuming and expensive.7 
Traditional observational studies are susceptible to confounding factors that can distort 
true associations.8 Moreover, biases such as selection and information biases can further 
complicate interpretations. In many observational studies, determining whether a risk 
factor leads to ASCVD or whether the presence of early ASCVD influences the risk factor is 
challenging, creating the dilemma of reverse causality. Conducting randomized controlled 
trials (RCTs) for ASCVD also presents several unique challenges.9,10 First, given the chronic 
nature of atherosclerosis and its long latency period, RCTs would require extended durations 
to observe meaningful clinical outcomes, which is resource-intensive.11 Second, ethical 
considerations can present challenges, particularly when withholding potentially beneficial 
treatments from control groups in the face of life-threatening conditions such as ASCVD.12 
Furthermore, ensuring adherence to interventions—particularly lifestyle modifications—
over extended periods is challenging, and can affect the validity of results.13 Finally, the 
multifactorial etiology of ASCVD means that isolating the effects of a single intervention can 
be complex, and a large sample sizes may be required to achieve statistical significance.14

2. The need for Mendelian randomization (MR) analyses for ASCVD research
MR leverages genetic variants as instrumental variables to infer causality, helping researchers 
determine whether a risk factor genuinely contributes to ASCVD or is merely associated 
with it.15 Since genetic variants are randomly allocated at conception, they are generally 
not influenced by lifestyle or environmental confounders.16 This makes MR a more reliable 
approach for studying ASCVD risk factors. The genetic foundation of MR ensures that genetic 
variants precede disease onset, which may clarify the direction of causality and bypass the 
challenge of reverse causality.17 With the popularization of genome-wide association studies 
(GWASs), a wealth of genetic data has become available. MR can harness these data to draw 
robust conclusions regarding the risk factors and their impact on ASCVD. By providing a clear 
picture of the causative factors behind ASCVD, MR can guide the development of targeted 
therapeutic and preventive strategies, potentially leading to more effective interventions.18

Although the significance of ASCVD research is undeniable, given the global impact of the 
disease, the challenges inherent in studying this complex disease necessitate innovative 
approaches. MR has emerged as a powerful tool in this context, promising to reshape our 
understanding of ASCVD and guide future therapeutic endeavors. In this review, we provided 
a thorough overview of MR, exploring its principles, applications in ASCVD research, 
inherent challenges, and promising future prospects. Through this review, we aimed to 
highlight the pivotal role of MR in shaping the future of cardiovascular research, offering new 
possibilities for targeted and more effective future interventions.

PRINCIPLES OF MR

MR is a groundbreaking approach in epidemiological research that is fundamentally rooted 
in the principles of Mendelian inheritance. This concept hinges on the random assortment of 
genetic variants (or alleles) during gamete formation, ensuring their general independence 
from confounding factors that often compromise conventional observational studies. By 
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capitalizing on this inherent randomness, MR establishes a quasi-randomized experiment.19 
In this framework, genetic variants act as instrumental variables, offering a unique lens 
through which to discern the causal effects of risk factors or interventions on health 
outcomes. There are three pivotal assumptions at the heart of MR.20,21

1. Association with exposure
The genetic variant chosen as an instrumental variable must be robustly associated with the 
exposure of interest (Fig. 1A). This ensures that the variant can effectively serve as a proxy 
for the exposure, allowing researchers to draw inferences regarding the causal effect of the 
exposure on the outcome.

2. Independence from confounders
A pivotal assumption in MR is that the genetic variant is not associated with any confounders 
of the exposure-outcome relationship (Fig. 1B). Given that genetic variants are randomly 
allocated at conception, they are typically free from the biases that plague observational 
studies, such as confounding.

3. Exclusivity of pathway
The genetic variant should influence the outcome solely through its effect on the exposure 
(Fig. 1C). Therefore, no alternative pathways (often termed “pleiotropic” pathways) through 
which the variant affects the outcome should be present, bypassing the exposure.

KEY STUDIES USING MR IN ASCVD RESEARCH

Recently, a number of MR studies have firmly established causal relationships between 
ASCVD and risk factors such as blood lipids and inflammatory markers.

1. Low-density lipoprotein cholesterol (LDL-C)
The relationship between LDL-C and ASCVD has been a focus of cardiovascular research. 
LDL-C is not only a biomarker, but also a causal agent in the development of atherosclerosis. 
Elevated levels of LDL-C are directly associated with an increased risk of coronary artery 
disease.22 This association has been confirmed by a wealth of evidence from genetic, 
observational, and clinical intervention studies. A comprehensive analysis of over 200 
prospective cohort studies, MR studies, and randomized trials has provided compelling 
evidence of the link between LDL-C and ASCVD.23 The studies surveyed included more than 
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Fig. 1. Graphical representation of the MR assumptions. (A) association with exposure, (B) independence from 
confounders, and (C) exclusivity of pathway. 
MR, Mendelian randomization; LDL, low-density lipoprotein; CHD, coronary heart disease.



two million participants, with over 20 million person-years of follow-up, and documented 
over 150,000 cardiovascular events. These findings highlight a consistent, dose-dependent, 
log-linear association between the extent of vascular exposure to LDL-C and the risk of 
developing ASCVD. Notably, this risk increases with prolonged exposure to LDL-C.

The convergence of insights from MR studies, preclinical models, and observational 
epidemiology has been instrumental in drug development, particularly for lowering LDL-C 
and apolipoprotein B levels. An essential example of this is the recent MR analysis that 
focused on the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene. The study 
revealed a dose-dependent log-linear association between PCSK9-mediated reduction 
in LDL-C levels and decreased risk of myocardial infarction or death due to coronary 
artery disease (CAD).24 This pivotal study catalyzed the development of PCSK9 inhibitors, 
which have proven to be highly effective at mitigating the risk of ASCVD among high-
risk individuals. Clinical trials involving monoclonal PCSK9 antibodies have confirmed 
the effectiveness of this intervention in significantly reducing cardiovascular events.25,26 
Furthermore, the role of ezetimibe, an inhibitor of cholesterol absorption in the small 
intestine, has been highlighted in the context of LDL-C reduction.27 This drug works by 
inhibiting the activity of the Niemann-Pick C1-like 1 (NPC1L1) protein. Multiple MR analyses 
have consistently shown significant associations between variations in NPC1L1 levels with 
serum LDL-C levels and CAD risk, emphasizing the causal link between the two and opening 
new avenues for targeted therapeutic interventions.28

2. High-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs)
The potential protective effects of elevated HDL-C and reduced TGs in coronary heart disease 
(CHD) have been of considerable interest. However, the outcomes of randomized trials 
targeting these lipid fractions have yet to provide conclusive evidence.29,30 One pivotal MR 
study constructed LDL-C genetic risk scores from specific single nucleotide polymorphisms 
(SNPs) associated with HDL-C, LDL-C, and TGs.31 The analysis confirmed a causal link 
between LDL-C levels and carotid intima-media thickness (CIMT), a subclinical marker of 
atherosclerosis. However, it did not establish a similar causal relationship between CIMT 
and HDL-C or TG levels. A number of MR meta-analyses that analyzed a total of 17 studies 
involving 62,199 participants and 12,099 CHD events, were instrumental in delineating these 
associations.32 Both unrestricted and restricted allele scores for LDL-C were associated with 
CHD. The unrestricted allele score for HDL-C indicated an association with CHD; however, 
this association was not observed when the score was restricted or adjusted for TGs, LDL-C, 
or statin use. In the context of TGs, both unrestricted and restricted allele scores were 
associated with CHD. However, this association was attenuated when the unrestricted score 
was adjusted for HDL-C, LDL-C, and statin use—highlighting the intricate interplay between 
these lipid fractions and their collective impact on CHD risk. While interventions aimed 
at elevating HDL-C or reducing TG levels are theoretically promising, empirical evidence 
from MR analyses and randomized trials remains inconclusive. The causal pathways linking 
these lipid fractions to CHD are complex and warrant further investigation. Unraveling these 
pathways is essential, as they have the potential to inform targeted therapeutic interventions 
and enhance the precision and efficacy of CHD management.

3. Lipoprotein (a) (Lp[a]) and remnant cholesterol
Lp(a) has emerged as a significant focal point in cardiovascular disease (CVD) research. It 
is formed by the covalent attachment of apolipoprotein A to apolipoprotein B via disulfide 
bonds.33 Notably, the concentration of Lp(a) is inversely related to that of apolipoprotein A, 
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and is mainly determined genetically, as the genetic factor accounts for approximately 90% 
of its levels.34 The importance of Lp(a) levels as a recognized risk factor for CVD has been 
highlighted in various studies. Notably, when LDL-C levels were 104 mg/dL, Lp(a) exhibited a 
stronger association with CVD that positioned it as a residual risk factor.35 A two-sample MR 
study, primarily based on the inverse variance weighted (IVW) method, unveiled a causal link 
between elevated Lp(a) levels and aortic aneurysms (AA), CHD, and ischemic stroke.36

In parallel with insights into Lp(a), the role of remnant cholesterol (RC) in ASCVD has also 
recently been elucidated. RC, which encompasses cholesterol content in chylomicrons, 
chylomicron remnants, very low density lipoproteins, and intermediate density lipoproteins, 
has been identified as a significant independent contributor to ASCVD risk, particularly 
following reductions in LDL-C levels.37 This notion emphasizes the concept of residual risk 
and highlights the persistence of clinical events despite intensive lipid-lowering therapies.38 
In a recent large-scale MR study, the causal effects of RC on the risks of CAD, myocardial 
infarction (MI), and stroke were established, independent of LDL-C.39

4. Causality between inflammation and ASCVD
The intricate relationship between inflammation and ASCVD has been the focus of a number 
of studies, with C-reactive protein (CRP) often highlighted. CRP, an acute-phase protein 
produced in the liver, has been studied extensively as a systemic marker of inflammation.40 
Observational epidemiological studies have demonstrated a log-linear relationship between 
CRP concentration and the subsequent risk of CHD; however, this association is significantly 
influenced by conventional risk factors as well.41 CRP not only binds to low-density 
lipoproteins, but is also found in atherosclerotic plaques, which has sparked interest regarding 
its potential causal relevance to CHD.42 However, the causal role of CRP with regard to CHD 
remains unclear. Despite the observational correlations that have been described, human 
genetic data suggest that CRP concentration is unlikely to be a significant causal factor for 
CHD. Randomized trials specifically targeting CRP in relation to vascular disease outcomes 
are yet to be conducted. In one MR study, the risk ratio for CHD was neutral per every 1 
standard deviation (SD) increase in genetically-elevated natural log concentrations of CRP.43

Interleukin 6 (IL-6), another inflammatory marker, has also been associated with an increased 
risk of CHD events in prospective observational studies, in a similar manner to CRP and 
fibrinogen.44,45 Using a novel approach, genetic proxies for the IL-6 receptor (IL-6R)-mediated 
downregulation of IL-6 signaling were identified and associated with decreased CRP levels. 
CRP, a downstream molecule of IL-6 signaling, serves as a clinically useful biomarker for 
assessing residual inflammatory cardiovascular risk.46 In conclusion, while inflammatory 
markers such as CRP and IL-6 are associated with ASCVD, their causal roles are yet to be 
established definitively. The complex relationship between inflammation and ASCVD merits 
further investigation, particularly through randomized trials and advanced genetic studies, to 
unravel the underlying mechanisms and inform targeted therapeutic interventions.

LIMITATIONS AND CHALLENGES

MR has undeniably created a niche in cardiovascular research, offering insights that are less 
susceptible to confounding and the biases inherent to observational studies. However, like 
any scientific method, MR is not without its limitations and challenges, which are crucial to 
acknowledge for a balanced perspective and informed application.
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1. Instrumental variable selection
The selection of appropriate instrumental variables is a primary challenge in MR studies. 
Genetic variants should be robustly associated with the exposure of interest, but not with 
confounders—a condition that can be difficult to satisfy.47 The risk of weak instrument bias, 
wherein genetic variants explain only a small proportion of the variance in the exposure, 
can lead to imprecise and biased estimates of causal effects.48 For example, a study on the 
genetics of smoking and its relationship with ASCVD highlights the issue of potential bias 
due to the use of weak genetic instruments. This study identified genetic liability to smoking 
as a risk factor for hypertension and increased body mass index but faced challenges due to 
conflicting results from previous studies and potential bias towards observational estimates. 
These findings underscore the importance of selecting strong and appropriate genetic 
instruments in MR studies to avoid biased conclusions.49

2. Measurement error in MR studies
An additional crucial aspect often overlooked is the impact of measurement error in both 
exposure and outcome variables. Inaccuracies in measuring these variables can lead to biased 
estimates, influencing the reliability of causal inference in MR studies. These errors may stem 
from various sources, including genetic variant measurement, phenotypic variability, and 
data collection inaccuracies. For instance, errors in dietary factor measurements or physical 
activity assessments can significantly skew MR results. To mitigate this, improved data 
collection methods and advanced statistical techniques that account for measurement error 
are essential. The consequence of ignoring measurement error is the potential attenuation 
or exaggeration of the estimated causal effect, as evidenced in several MR studies where 
measurement inaccuracies significantly impacted the findings.50

3. Binary exposures
Complications can arise when dealing with binary exposures, which are dichotomizations 
of continuous risk factors (e.g., hypertension as a dichotomization of blood pressure). Such 
dichotomizations can lead to violations of the exclusion restriction assumption, where the 
genetic variant might influence the outcome through a continuous risk factor, even if the 
binary exposure remains unchanged.51

4. Pleiotropy
Pleiotropy, in which a single genetic variant influences multiple traits, presents a significant 
challenge that can lead to biased estimates if not adequately addressed. Different forms of 
pleiotropy, including balanced and unbalanced, can affect the results of MR studies in several 
ways. Methods such as MR-Egger regression have been developed to detect and correct 
pleiotropy; however, they have their own sets of assumptions and limitations.52

5. Population stratification
MR studies are susceptible to population stratification, a situation in which allele frequencies 
vary between subpopulations due to systematic differences in ancestry. This can lead to 
confounding and biased causal estimates if not properly controlled. Techniques such as 
genomic control and principal component analysis are often applied to mitigate this issue; 
however, they are not foolproof.53

6. Data accessibility and quality
The accessibility and quality of data are crucial for the success of MR studies. Large sample 
sizes are often required to detect modest causal effects with precision. Although large 
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biobanks and consortia have facilitated access to extensive datasets, issues related to data 
harmonization, quality control, and ethical considerations for data sharing persist.54

7. Statistical methods and assumptions
The statistical methods used in MR and their underlying assumptions are subjects of ongoing 
debates. The violation of MR assumptions can lead to biased results. Various statistical 
approaches in different studies often lead to biases, including pleiotropy, population 
stratification, and weak instrument bias, all of which may skew causal estimations. Sensitivity 
analyses and complementary methods are often used to assess the robustness of findings; 
however, consensus on best practices is still evolving.55 Furthermore, the critical role of 
replication studies is undeniable. They are essential for affirming the validity of MR findings, 
ensuring both their robustness and the reliability of derived conclusions.

8. Integration with other data types
The integration of MR with other types of data, including functional genomic and epigenetic 
data, is an emerging frontier. Although this integration promises enriched insights, it 
also introduces challenges related to data complexity, computational requirements, and 
methodological development.56

9. Ethical and interpretational challenges
Ethical considerations are of paramount importance, particularly those concerning data 
privacy and consent. The interpretation of MR findings should be done with caution. 
Establishing causality does not imply clinical actionability, and translating MR findings 
into preventive and therapeutic interventions necessitates careful consideration of broader 
clinical, ethical, and societal contexts.57

FUTURE DIRECTIONS

As MR continues to evolve, it is expected to play an increasingly important role in ASCVD 
research. The future of MR is rich in opportunities; however, these are also contingent on 
addressing existing challenges and adapting to emerging trends in genomics, data science, 
and clinical research.

1. Advancements in MR techniques
The refinement of MR techniques is a cornerstone for future advancements. Two-sample and 
multivariate MR are examples of methodologies that have expanded the scope and applicability 
of MR studies.58 In particular, two-sample MR allows the use of summary data from different 
sources, enhancing the feasibility of MR analyses without the need for individual-level data.59 
The ongoing development of more sophisticated statistical methods is expected to mitigate 
biases, enhance precision, and facilitate the exploration of complex causal pathways.

2. Integration with emerging technologies
Integrating MR with cutting-edge technologies such as machine learning and network 
analysis is another promising direction. Machine learning algorithms can enhance 
the identification and validation of instrumental variables, improve the handling of 
pleiotropy, and facilitate the analysis of high-dimensional data.60 Network analysis can aid 
in deciphering the intricate web of causal relationships between multiple exposures and 
outcomes, offering a holistic view of the etiological landscape of CVDs.61
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3. Expanding the genetic instrument repository
The expansion of the repository of genetic instruments is crucial. With the advent of large-
scale GWASs, an unprecedented opportunity to identify novel genetic variants associated 
with multiple exposures has developed. Efforts to curate, harmonize, and make these data 
accessible to the research community will be pivotal in propelling MR studies to new heights.62

4. Translational applications
Translational applications of MR findings are of paramount importance. Causality is a 
precursor to the development of targeted preventive and therapeutic interventions. An 
enhanced focus on translating MR findings into clinical trials and, eventually, evidence-based 
clinical guidelines are possible outcomes in the future. The role of MR in drug repurposing, 
where existing drugs are tested for new therapeutic applications, is also an area that is ripe 
for future exploration.63

5. Ethical and regulatory considerations
As MR continues to develop, ethical and regulatory considerations have come to the 
forefront. Issues related to data privacy, consent, and the equitable inclusion of diverse 
populations in MR studies require careful attention. Developing frameworks that balance 
scientific advancement with ethical considerations will be crucial to the future of this field.64

6. Global collaboration and data sharing
The future of MR is inherently linked to global collaboration and data sharing. Consortia that 
facilitate data pooling and collaborative analyses will enhance the power and generalizability 
of MR studies. Overcoming barriers related to data-sharing protocols, standardization, and 
interoperability will be key to realizing the full potential of collaborative MR research.65

7. Personalized medicine
The role of MR in personalized medicine is a promising frontier. By elucidating the 
causal pathways underlying CVDs, MR can contribute to the development of personalized 
risk prediction models and tailored interventions. Integrating MR findings with other 
-omics data, including transcriptomic, proteomic, and metabolomic data, can offer 
comprehensive insights into individual disease risks and treatment responses.66 While these 
advancements hold significant promise, they also bring forth critical challenges that need 
careful consideration. The integration of MR with other omics data, such as genomics, 
transcriptomics, and proteomics, presents a complex landscape of biological interactions 
and regulatory mechanisms. This complexity raises concerns about the robustness and 
reliability of the findings. Specifically, the potential for confounding in omics data, which 
could lead to spurious associations, needs to be rigorously addressed.67 Furthermore, the 
application of machine learning techniques in MR studies, although innovative, carries the 
risk of overfitting. Overfitting occurs when a model is excessively complex and captures noise 
instead of the underlying biological signal.68 This can lead to overly optimistic estimates of 
the model’s predictive power and may not generalize well to new datasets. Therefore, while 
embracing these technological advancements, researchers must employ stringent validation 
and cross-validation methods, along with sensitivity analyses, to ensure the credibility and 
generalizability of their findings.

8. Implications of MR studies on clinical practices
In the dynamic field of cardiovascular research, MR studies have not only deepened our 
understanding of disease mechanisms but are also beginning to shape clinical practices. 
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These studies show promise in transforming treatment protocols and preventive strategies 
in clinical environments. For instance, MR research has shed light on the interplay between 
cardiometabolic factors and coronavirus disease 2019 (COVID-19). It reveals that higher levels of 
HDL-C, typically considered protective, do not necessarily reduce COVID-19 risk. Additionally, 
higher body mass index and LDL-C levels have been linked to increased susceptibility to 
COVID-19, highlighting them as potential risk factors in the context of the pandemic.69

CONCLUSIONS

Supported by the insights presented in this review, MR represents a pivotal methodology in 
ASCVD research. It has not only enriched our understanding of the complex causal pathways 
underlying ASCVD, but has also offered a robust mechanism to circumvent the inherent 
limitations of traditional observational studies. Significant strides have been made in the 
use of MR to elucidate the causal relationships between various risk factors and ASCVD. 
By leveraging genetic variants as instrumental variables, MR has provided a more nuanced 
and reliable lens through which the relationships between exposures and outcomes can be 
observed. Revelations concerning LDL-C, blood pressure, and other lifestyle factors have 
been particularly illuminating, offering actionable insights that hold significance for both 
preventive and therapeutic contexts. However, like any scientific methodology, MR is not 
without certain challenges. Pleiotropy, the selection of appropriate genetic instruments and 
the need for large sample sizes are among the obstacles that researchers must overcome 
when using this technique. However, the evolution of statistical methods and the advent of 
technologies such as machine learning and network analysis are promising developments 
that hold the potential to address these challenges effectively.

The future of MR in ASCVD research is marked by immense potential. The integration of MR 
with emerging technologies, the expansion of genetic instrument repositories, and global 
collaborations are expected to drive a new wave of discoveries. These advancements will 
not only refine our understanding of ASCVD, but will also catalyze the translation of these 
insights into tangible clinical and public health interventions. The prospect of personalized 
medicine, underpinned by causal inferences drawn from MR studies, promises an era in 
which interventions are tailored to each individual, maximizing efficacy and minimizing 
adverse effects.

In conclusion, MR has become a cornerstone of ASCVD research. Its contributions extend 
beyond the academic sphere and influence policies, clinical practices, and public health 
initiatives. As we continue to harness the power of genetics, coupled with advancements in 
technology and data science, MR will play a central role in shaping a future in which the burden 
of ASCVD has been significantly mitigated. The journey ahead, although marked by challenges, 
is replete with opportunities for innovation, collaboration, and discovery that will redefine our 
approach to ASCVD, guiding an era of enhanced understanding, prevention, and treatment.
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