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Abstract. The COVID-19 pandemic poses serious threats to global health, and the emerging mutation in SARS-
CoV-2 genomes is one of the major challenges of disease control. Considering the growth of epidemic curve and the cir-
culating SARS-CoV-2 variants in Brazil, the role of locally prevalent E484K and N501Y substitutions in contributing to the
epidemiological outcomes is of public health interest for investigation. We developed a likelihood-based statistical frame-
work to reconstruct reproduction numbers, estimate transmission advantage associated with different SARS-CoV-2
variants regarding the marking (identifying) 484K and 501Y substitutions (including Alpha, Zeta, and Gamma variants) in
Brazil, and explored the interactive effects of genetic activities on transmission advantage marked by these two muta-
tions. We found a significant transmission advantage associated with the 484K/501Y variants (including P.1 or Gamma
variants), which increased the infectivity significantly by 23%. In contrast and by comparison to Gamma variants, E484K
or N501Y (including Alpha or Zeta variants) substitution alone appeared less likely to secure a concrete transmission
advantage in Brazil. Our finding indicates that the combined impact of genetic activities on transmission advantage
marked by 484K/501Y outperforms their independent contributions in Brazil, which implies an interactive effect in shap-
ing the increase in the infectivity of COVID-19. Future studies are needed to investigate the mechanisms of how E484K
and N501Y mutations and the complex genetic mutation activities marked by them in SARS-CoV-2 affect the transmissi-
bility of COVID-19.

INTRODUCTION

COVID-19, the etiological agent of which is severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2),1 posed a
serious threat to global health and swept the world in 2020;
the pandemic is still ongoing.2,3 As of March 31, 2021, more
than 127 million COVID-19 cases had been confirmed world-
wide, with more than 2.7 million associated deaths.
The control of COVID-19 requires knowledge of the driving

factors that may affect the transmission process4,5; virus
mutation is one of the major challenges.6,7 Around Septem-
ber 2020, genetic variants carrying the N501Y substitution
on the spike (S) protein of SARS-CoV-2 were first detected
in the United Kingdom8 and, then spread globally and
trended to reach fixation rapidly in many places (e.g., South
Africa,9 Brazil,10 the United States,11 and the United King-
dom).12,13 In Brazil, the 501Y variants, as well as other amino
acid changes, were clustered into the B.1.1.28.1 lineage by
COVID-19 Genomics Consortium UK, which is also known
as the variant of concern (VoC) 202101/02.14 The B.1.1.28.1
lineage is a descendant of the B.1.1.28 lineage that has
another similar descendant lineage, B.1.1.28.2, carries the
E484K substitution but not N501Y substitution.15,16 The
mutation E484K was first identified in South Africa and
became prevalent in many places, including the United King-
dome and Brazil.17 These emerging variants may affect the
epidemiological characteristics of COVID-1918,19 and the
protective effects of vaccines.20–23 Considering the growing
patterns of the epidemic curve in Brazil, the possible contri-
butions of both E484K and N501Y substitutions are of public
health interest for investigation.

The rapid spread of 501Y and 484K variants indicates a
possible transmission advantage over their preceding var-
iants.24 On one hand, recent analyses reported evidence
that the N501Y substitution was associated with an
increase in infectivity of COVID-19,12,13,25–27 which appears
similar to the situation of D614G substitution reported previ-
ously.28–31 On the other hand, the relationship between
E484K substitution and COVID-19 transmissibility appears
inconclusive.32,33 The survival or functional profile of patho-
gen could be altered through genetic mutation and, as a
consequence, change its infectivity.34 Referring to the previ-
ous studies on seasonal influenza viruses,35 a few key
amino acid substitutions may lead to changes in antigenic
features and epidemiological outcomes,36,37 and the inter-
action among them may become more complicated. As an
example, the R384G substitution in the nucleoprotein (NP)
of H3N2 virus enhances the ability of in-host immune
escape,38 which increases transmissibility,35 but this substi-
tution appears detrimental. In contrast, the commutations
including E375G and M239V in NP could compensate and
restore the viral fitness or functionality of H3N2 virus,39,40

just as the mutated strains rapidly reached fixation in
1993–1994 influenza season. For the COVID-19 epidemics
in Brazil, how the mutation activities marked by E484K and
N501Y substitutions, as well as the possible interactive
effect between them, might shape the transmission advan-
tage remains unassessed.
Exploring the role of mutation activities in determining dis-

ease transmissibility is of importance to understand how the
evolutionary process at molecular scale may shape the epi-
demiological outcomes at population scale.28,31,41,42 In this
study, we adopt a statistical framework to infer the real-time
transmissibility associated with different SARS-CoV-2 var-
iants with respect to E484K and N501Y substitutions in Bra-
zil. We explore the interactive effects between E484K and
N501Y in shaping the transmission advantage of COVID-19.

*Address correspondence to Shi Zhao, Rm.: 502, 5/F, Public
Health Building, Prince of Wales Hospital, ST, NT, Hong Kong, E-
mail: zhaoshi.cmsa@gmail.com or Lefei Han, Rm.: 407, Building
No. 1, 280 South Chongqing Rd., Shanghai, China, E-mail: lfhan@
sjtu.edu.cn.

1247

Am. J. Trop. Med. Hyg., 105(5), 2021, pp. 1247–1254
doi:10.4269/ajtmh.21-0412
Copyright © 2021 by The American Society of Tropical Medicine and Hygiene

mailto:zhaoshi.cmsa@gmail.com
mailto:lfhan@sjtu.edu.cn
mailto:lfhan@sjtu.edu.cn


METHODS

SARS-CoV-2 sequencing data and COVID-19 surveil-
lance data. The SARS-CoV-2 strains were obtained via the
global initiative on sharing all influenza data (GISAID) with
collection dates ranging from January 1, 2020 to January 31,
2021, in the Brazil.43 A total of 4,210 complete human
SARS-CoV-2 strains were retrieved. We excluded sequences
with more than 5% ambiguous amino acids during the align-
ment, and a total of 4,052 sequences were included for further
analysis. Multiple sequence alignment was performed using
MAFFT version 7,44 and the “Wuhan-Hu-1” (GISAID: EPI_-
ISL_402125 or GenBank: NC_045512.2) SARS-CoV-2
genome is considered as the reference sequence.
The surveillance data of COVID-19 cases in the Brazil were

collected via the WHO COVID-19 surveillance platform.45 To
avoid the under-ascertainment due to reporting delay, we
drop the observations since February 2021. As such, the sur-
veillance data of COVID-19 cases from January 1, 2020 to
January 31, 2021, are included in the analysis, which match
the period of SARS-CoV-2 sequencing data. To adjust for the
weekly cycle in the COVID-19 case time series, the 7-day
moving average is adopted for further analysis. The COVID-
19 cases time series are shown in Figure 1A.

Statistical parameterization. Variant-specific reproduc-
tion number. The time-varying reproduction number is com-
monly adopted to quantify the instantaneous transmissibility

of infectious disease in an epidemic. Using the
estimation framework in Cori et al.,46 the epidemic growth is
modeled as a branching process. Thus, the reproduction
number at time t, R(t), is expressed as the ratio of C(t) overÐ1
0 wðtÞCðt2tÞdt, which is commonly known as the renew-
able equation.47,48 Here, the C(t) is the observed new
incidences of COVID-19 at time t. The function w(�) is the dis-
tribution of the generation time (GT) of the disease, that is,
COVID-19. The GT is defined as the time interval between
the time of exposure, that is, being infected, of a primary
case and that of his associated secondary case in the con-
secutive transmission generation.49 Thus, the distribution
w(�) is predefined in our model, which is commonly esti-
mated from contract tracing surveillance data.50–53 To set up
the analysis for COVID-19, we consider w as a Gamma dis-
tribution having mean (6SD) values of 5.3 (62.1) days by
averaging the GT estimates from the existing literatures.50–57

Slight variation in the settings of the GT will not affect our
main findings.
To incorporate the information of SARS-CoV-2 variants,

we denote the proportion (or prevalence) of the j-th variant of
concern (VoC) at calendar time t by rj(t), which is time-
varying. Straightforwardly,

X
j
rjðtÞ51 for all t. We denote

the variant-specific reproduction number for the j-th VoC at

time t by Rj(t), and we have RjðtÞ5 rjðtÞCðtÞÐ1
0
wðtÞrjðt2tÞCðt2tÞdt

. We
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FIGURE 1. (A) The daily number of COVID-19 cases in Brazil, (B) the reconstructed reproduction number (Rt), (C) proportions of the 484E/501N
variants, (D) 484E/501Y variants (including B.1.1.7 or Alpha variants), (E) 484K/501N variants (including P.2 or Zeta variants), and (F) 484K/501Y
variants (including P.1 or Gamma variants). Panel B shows the estimated Rts of 484K/501Y variants (in blue) and the other three types of variants
(in gray). The dots are the estimates, and bars are the 95% confidence intervals (CIs). In panels C through F, the dots are the observations, the
curve indicates the mean fitting results, and the shading area indicates the 95% CI. This figure appears in color at www.ajtmh.org.

ZHAO AND OTHERS1248

http://www.ajtmh.org


consider the expected new incidences infected by j-th
VoC at time t, denoted by E[Cj(t)], which can be modeled
in Eq. (1).

E½CjðtÞ�5RjðtÞ
ð1
0
wðtÞrjðt2tÞCðt2tÞdt: (1)

Equation (1) will be used to formulate the likelihood function
in the remaining sections. Note that the index j is merely
used for labeling instead of ranking.
Transmission advantages and their interactive effects.

For convenience, we label the original variant as the (j5)
0-th VoC, that is, the 484E/501N variant, and thus its associ-
ated variant-specific reproduction number is Rj 5 0. Similarly,
we label the 484E/501Y, 484K/501N, and 484K/501Y var-
iants as the j51, 2, and 3 VoC, respectively.
Following previous work,28,58 the transmission advantage

of the mutated variant against the original type is defined as
the ratio (denoted by h) of the strain-specified reproduction
numbers. Considering the transmissibility of the original
484E/501N variant (Rj5 0) as the reference level, the trans-

mission advantage of the j-th VoC is hj5
Rj

Rj50
. Thus, the

reproduction number of cases infected by the j-th VoC is
Rj5hj�Rj50, and hj 5 051 by definition. If hj . 1, the j-th vari-
ant may be more infectious than the original genetic variant,
and vice versa. In addition, the overall reproduction number
is Rj50ðtÞ

X
j
½hjrjðtÞ�.

We consider hj as a constant, which reflects an intrinsic
nature of the j-th SARS-CoV-2 variant, and thus hj is invari-
ant with time. Hence, we have Rj(t)5hj�Rj50(t) for all time t.
Then, we calculate the expected number of COVID-19
cases, E[C(t)], at time t in Eq. (2).

E½CðtÞ�5Rj50ðtÞ
X

j
hj

ð1
0
wðtÞrjðt2tÞCðt2tÞdt

� �
: (2)

As such, for the observed sequencing data, the expected
chance (or probability) that a randomly selected strain at the
t-th day is j-th VoC, E[rj(t)], is given in Eq. (3).

E½rjðtÞ�5
E½CjðtÞ�
E½CðtÞ� 5

hj

ð1

0

wðtÞrjðt2tÞCðt2tÞdt

X
j
hj

ð1

0

wðtÞrjðt2tÞCðt2tÞdt
2
4

3
5
:

(3)

Straightforwardly,
X

j
E½rjðtÞ�51 for all t.

For the E484K and N501Y substitutions, the 484E/501Y
(j51, i.e., including the B.1.1.7 or Alpha variants) and 484K/
501N (j52, i.e., including the P.2 or Zeta variants) are
two variants with merely one substitution, whereas the
484K/501Y variant (j53, i.e., including the P.1 or Gamma
variants) has both substitutions. To explore the interactive
effects on the variant-specific reproduction number, we
compare hj53 and the product of (hj51�hj52). If hj53 is larger
than (hj51�hj52), the E484K and N501Y substitutions may
enhance the transmissibility than their separated partial
effects, and vice versa.

Likelihood-based inference. According to Eq. (2), we
construct the likelihood function LðcÞt of the daily number of

cases using a Poisson-distributed framework with observa-
tion at Ct and rate parameter at E[Ct] as in Eq. (4).

LðcÞt ðCtjE½Ct�Þ5E½Ct�Ct � e2E½Ct�

Ct!
: (4)

Here, the Ct is the observed number of COVID-19 cases on
day t and is the discretized C(t), which means

Ct5

ð
day t

CðxÞdx. The value of Ct can be obtained from the

number of COVID-19 cases time series as shown in
Figure 1A. Note that the superscript (c) merely indicates that
the likelihood function is for the number of cases, which
does not indicate the power.
For the observed sequencing data, we denote the num-

bers of j50, 1, 2, and 3 variants by mj50,t, mj51,t, mj52,t, and
mj53,t, respectively, for the day t. Thus, we model the
sampling process of genetic variants using a generalized
Bernoulli distribution, that is, categorical distribution, with
probabilities at E[rj(t)]s in Eq. (3). The likelihood function LðsÞt
is constructed in Eq. (5).

LðsÞt ðmj50,t, :::,mj53,tjE½rj50,t�, :::,E½rj53,t�Þ5
Y

j
E½rj,t�mj,t :

(5)

Here, the E[rj,t] is the expectation of variant prevalence for
day t. Note that the superscript (s) merely indicates that the
likelihood function is for genetic variants, which does not
indicate the power.
With Eqs. (4) and (5), we reconstruct the Rj50,t time series,

denoted by fRj50,tg, and estimate hj51, hj52, and hj53 using
the overall log-likelihood function ‘ defined in Eq. (6).

‘ðfRj50,tg,hj51,hj52,hj53jfCtg,fmj50,tg,
:::,fmj53,tgÞ5

X
t
log½LðcÞt 3LðsÞt �:

(6)

We calculate the maximum likelihood estimates (MLE) of
parameters to determine transmission advantage of 484E/
501Y (hj51), 484K/501N (hj52), and 484K/501Y (hj53) variants
by using the likelihood framework defined in Eq. (6). The
95% confidence intervals (95% CI) are calculated using the
profile likelihood estimation framework with a x2 quantile as
the cutoff,59,60 which has also been adopted in previous
work.61–67

Fitting schemes and their selection. We explore the
interactive effects between E484K and N501Y substitutions
of SARS-CoV-2 in shaping the transmission advantage in
Brazil. We consider the following eight fitting scenarios with
respect to hj and investigate the role of E484K and N501Y
substitutions contributing to the transmissibility of COVID-19:

� all of hj51, hj52, and hj53 are assumed at 1:
scenario (#1): hj515hj525hj535 1;

� two of hj51, hj52, or hj53 are assumed at 1, and the remain-
ing one is freely estimated:
scenario (#2): hj515hj5251,
scenario (#3): hj515hj5351, and
scenario (#4): hj525hj5351;

� one of hj51, hj52, or hj53 is assumed at 1, and the remaining
two are freely estimated:
scenario (#5): hj5151,
scenario (#6): hj5251, and
scenario (#7): hj5351;

COVID-19 IN BRAZIL 1249



� none of hj51, hj52, or hj53 is assumed at 1, and all three of
them are freely estimated:
scenario (#8): none of hj51, hj52, or hj53 is assumed at 1.

The settings of the eight fitting scenarios are presented in
Table 1.
We conduct the model fitting and parameter estimation

under each scenario. The scenario with the best fitting per-
formance is selected according to lowest values of 4 differ-
ent information criteria including Akaike information criterion
(AIC), corrected AIC for small sample size (AICc), Bayesian
information criterion (BIC), and Hannan-Quinn information
criterion (HQIC).

Sensitivity analysis. Sensitivity analysis was conducted
to examine the robustness and significance of the determine
transmission advantage estimates, that is, hs. We examine
the consistency of both directions of the effects and
their 95% confidence intervals (CI) under alternative settings.
The following three sensitivity checking schemes
are performed.
For the first scheme, we consider a univariate logistic

regression model between the overall Rt as response and
rj51,t, rj52,t, and rj53,t as regressors. The regression coeffi-
cients of all rj,t are evaluated as the effect size of SARS-
CoV2 variants on the overall transmissibility of COVID-19.
For the second scheme, we repeat the estimating process of
transmission advantage with alternative PDF of GT, that is,
w(�), which is introduced in the previous section, “Variant-
specific reproduction number.” We consider shorter and lon-
ger versions of mean GT at 4 days,53,68 and 7.5 days,2

respectively. For the third scheme, we repeat the analysis by
replacing the Poisson-distributed likelihood function in Eq.
(4) with a negative binomial (NB) distribution to further
account for the superspreading potential of COVID-19 trans-
mission. For the setting of NB distribution, we fixed the dis-
persion parameter at 0.4, which follows the estimation in
recent studies.55,69–74

RESULTS AND DISCUSSION

As of this writing, in Brazil, the epidemic curve had grown
since March 2020 with two major epidemic waves, the first
in August 2020, and the second is ongoing (Figure 1A). The
original 484E/501N variants started being replaced by the
other three types of variants in October 2020 and had almost
vanished in Brazil after January 2021 (Figure 1C). In January
2021, the prevalence of the emerging 484K variants was

71.1% and 46.6% for 501Y variants. The prevalence of
484E/501Y (j51 type) variants is 10.1%, 34.6% for 484K/
501N (j52 type) variants, and 36.5% for 484K/501Y (j53
type) variants (Figure 1D–F). As such, the linkage disequilib-
rium (LD) is calculated at 0.03, which indicates the occur-
rence of two mutations is likely random. Specially, the 484K/
501Y variants are classified into the B.1.1.28.1 (or P.1, or
20J/501Y.V3) lineage.
For the eight fitting scenarios summarized in Table 1, we

find that the transmission advantage of 484K/501Y (hj53)
variants is estimated larger than 1 significantly and consis-
tently. In contrast, the scale of hj51 for 484E/501Y variants
appears statistically unclear compared with 1, that is, not
significantly larger than 1. For the model selection, scenario
2 has the lowest AICc, BIC, and HQIC, and scenario 5 has
the lowest AIC, and AICc. Both scenarios 2 and 5 also have
close values of AIC with a difference of only 0.4. As such,
scenario 2 is considered the main result and thus is pre-
sented in Figure 1B.
The modeling framework in this study links the mutation

activity at molecular scale and COVID-19 transmissibility at
population scale. We reconstruct the instantaneous reproduc-
tion numbers (Rt) of COVID-19 cases infected by 484K/501Y
variants and other variants in Brazil under fitting scenario 2
(Figure 1B). The overall trends of reproduction numbers are
relatively high in the early phase of outbreak before and in
May 2020 and the November 2020 for the second major epi-
demic wave, but gradually decrease thereafter. The average
scale of reproduction number during the early outbreak is
largely consistent with previous estimates.2,3,75–77

We report the estimated proportions of four types of
SARS-CoV-2 variants, E[rt], fit the observed sequencing data
well (Figure 1C–F). We infer the transmission advantage hj53

for 484K/501Y variants at 1.23 (95% CI: 1.04–1.41), which
means the E484K and N501Y substitutions together increase
23% of COVID-19’s transmissibility in Brazil, whereas other
emerging variants, 484E/501Y and 484K/501N, are unlikely
to have significant transmission advantage. Thus, in Figure
1B, the reproduction number of the 484K/501Y variant
appears higher than that of the other genotypes (non-484K/
501Y, or non-Gamma variants). For sensitivity checking, we
find that the hj53 estimates are consistently and significantly
larger than 1 in similar scales as the main estimates (data not
shown), which validates our findings.
We focus on the second major epidemic wave because

E484K and N501Y substitutions emerged during the same

TABLE 1
The summary of transmission advantage estimates of different types of SARS-CoV-2 variants in Brazil under different scenarios

Scenario

Transmission advantage of

AIC AICc BIC HQIC Remarks

Original variant New emerging variant

484E/501N 484E/501Y 484K/501N 484K/501Y

(#1) 1 (reference) 1 (assumed) 1 (assumed) 1 (assumed) 6895.6 6960.3 8915.2 7615.1 Baseline model
(#2) 1 (reference) 1 (assumed) 1 (assumed) 1.23 (1.04–1.41) 6888.7 6953.8 8914.4 7610.4 Two types of new

variant are assumed
to have no effect

(#3) 1 (reference) 1 (assumed) 1.05 (0.93–1.17) 1 (assumed) 6893.5 6958.6 8919.3 7615.2
(#4) 1 (reference) 1.08 (0.78–1.41) 1 (assumed) 1 (assumed) 6893.5 6958.6 8919.3 7615.2
(#5) 1 (reference) 1 (assumed) 1.12 (1.01–1.22) 1.28 (1.08–1.47) 6888.3 6953.8 8920.3 7612.2 One type of new

variant is assumed
to have no effect

(#6) 1 (reference) 1.15 (0.83–1.52) 1 (assumed) 1.21 (1.05–1.42) 6889.9 6955.4 8921.9 7613.8
(#7) 1 (reference) 1.08 (0.79–1.43) 1.04 (0.92–1.16) 1 (assumed) 6895.3 6960.8 8927.2 7619.2
(#8) 1 (reference) 1.26 (0.92–1.66) 1.14 (1.03–1.27) 1.33 (1.13–1.56) 6888.4 6954.3 8926.5 7614.5 Full model
AIC5 Akaike information criterion; AICc5 corrected AIC for small sample size; BIC5 Bayesian information criterion; HQIC5 Hannan-Quinn information criterion. The highlighted scenario (#2) is

selected as the main result, and shown in Figure 1.
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period. Although the reproduction number of non-484K/
501Y variants has fluctuated around 1 since December
2020, the reproduction number, Rj53, of 484K/501Y variants
are largely greater than 1 during the same period, which
has led to a large epidemic wave in Brazil in 2021 (see
Figure 1A). Given that 484K/501Y variants trend to reach fix-
ation, both the herd immunity threshold and intrinsic growth
rate of epidemic may increase, which was previously dis-
cussed regarding the situation in United Kingdom,12,25 and
thus the local nonpharmaceutical interventions for COVID-
19 control may be enforced. Hence, we highlight the impor-
tance of our analytical framework, such that the public health
risks related to viral mutations may be controllable with early
preparedness.
The increase in transmissibility associated with the 484K/

501Y variants is biologically reasonable. The N501Y substi-
tution is a mutation on a key contact residue in the receptor
binding domain on the S protein78 and is found to increase
the ability of human angiotensin-converting enzyme 2 bind-
ing and cell infectivity in animal models,79 which appears
similar to the previous D614G substitution.80 The E484K
substitution is also located in the viral RBD and confers
resistance to several monoclonal antibodies by affecting the
binding process.6,81,82 However, according to the hj51 esti-
mates in Table 1, N501Y substitution alone appears less
likely to form an advantage in fitness without accompanying
484K. Similarly, E484K substitution alone also might not
secure a concrete transmission advantage robustly or signif-
icantly. Our finding indicates that the combined impact of
484K/501Y outperforms their independent effects, which
implies statistically an interactive relationship.
Previous studies reported a higher case fatality risk among

the individuals infected by SARS-CoV-2 strains in the
B.1.1.7 lineage,42,83 some of which carry both E484K and
N501Y substitutions. Given the transmission advantage of
484K/501Y (i.e., hj53 . 1), the increasing intensity of COVID-
19–related mortality is a public health concern. Clinical
severity remains largely unassessed for the B.1.1.28 lineage
in Brazil, and unexpected clinical outcomes may warrant
adjustments in the treatment strategies. The emergence of
484K/501Y variants and its mutations (e.g., K417N or
V1176F), combined with other VoC in Brazil and other
places, implies the capacity of SARS-CoV-2 to evolve new
phenotypes rapidly.84 Although the neutralizing level of
BNT162b2 vaccine-elicited sera is recently found to be satis-
factory for 484K/501Y variants,20 further investigation is
required for other vaccine candidates at population scale.
This study has the following limitations. First, our analysis

was based on the sequence data released in GISAID and
thus is subject to the selection bias of sequences being
released to the public domine.12 Second, the reconstruction
of reproduction numbers relies on the setting of the genera-
tion time (GT). Theoretically, the GT distribution might be
altered by the mutated strains. However, by screening the lit-
erature, we find no evidence that GT is associated with the
E484K or N501Y substitution in SARS-CoV-2, and thus we
model GT distribution of COVID-19 w(�) as a fixed Gamma
distribution, following previous studies.50–54 Third, we con-
sider w(�) as a fixed distribution. In the real-world situation, the
time interval between transmission generations might

vary,75,85 which may affect the reconstruction of the repro-
duction number. However, the long-term trends of Rt esti-
mates are unlikely to change due to slight variation in GT.75,86

Thus, we consider the impact of this limitation on the infer-
ence of transmission advantage may be negligible, and our
model can be extended to a more complex context with the
time-varying GT data available. Fourth, due to the lack of data
from different Brazilian regions, we aggregated the national
COVID-19 cases in Brazil to reconstruct the reproduction
number series (Figure 1B). We acknowledge this analytical
scheme neglects the heterogeneities in epidemiological char-
acteristics of COVID-19 transmission,55,74,87,88 geographic
separation in SARS-CoV-2 variants,89 individual response
and vulnerability to COVID-19,90–92 and various nonpharma-
ceutical interventions93,94 for wide regions across different
Brazilian locations. We note that the transmission advantage
may vary under different local settings or situations. Fifth, ide-
ally, C(t) in the Rt estimation should be the number of COVID-
19 cases with onset at time t. However, because surveillance
data by date of onset are unavailable, we adapted the current
dataset by reporting data as a proxy for the COVID-19 inci-
dence time series. If one considers a constant reporting lag,
the Rt estimates will have the same trends but are shifted for
this lag. Considering that a similar reporting delay also
occurred during the collection of SARS-CoV-2 sequencing
data, the effects of the two reporting lags could be counter-
acted. We believe that this approximation is unlikely to affect
the main conclusions of this study. Furthermore, with detailed
reporting lag of information for each individual case, adjust-
ments for reporting delay can be carried out based on our
current analytical framework. Sixth, this study focuses on
exploring the effects on changing disease transmissibility
associated with mutation activities, but real-world biological
mechanisms, which are usually more complex, remain uncov-
ered. Future studies are needed to explore the mechanisms
of how E484K and N501Y mutations in SARS-CoV-2 affect
the transmissibility of COVID-19. Seventh, there exist other
mutations in the B.1.1.28 lineage, such as K417N and
V1176F, but we merely considered the E484K and N501Y
because they are dominant in B.1.1.28.1 and B.1.1.28.2 line-
ages, respectively. Given the lack of individual patient infor-
mation, time-series data were used in this work, which means
there is information loss from the data aggregation. As
pointed out in previous studies,83 the independent effects of
each commutation may not be disentangled in this study due
to identification issues that the samples might fail to inform
each estimate. Eighth, the interpretation of our findings should
be limited to the COVID-19 epidemics in Brazil, but similar
investigations could be conducted for other regions. Ninth, for
simplification, we consider the transmission advantage (h) of
new variants versus the wildtype as constant over time. This
model assumption may not necessarily be strictly held con-
sidering several real-world determinants, including the accu-
mulation of population immunity against different strains,24

selection pressure due to intervention strategies,27,58 and
behavioral factors related to disease spread and transmis-
sion.95 Alternatively, the estimating framework of h can be
extended into a real-time basis. Lastly, as a data-driven study,
the estimated association should be treated with caution. In
an ecological setting,13 although our analysis provides
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statistical evidence on the likelihood of causality, the findings
in this study cannot guarantee causality, which requires fur-
ther biomedical experiments for verification.
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