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BACKGROUND Current risk stratification strategies for patients with hypertrophic cardiomyopathy (HCM) are limited
to traditional methodologies.
OBJECTIVES The authors aimed to establish machine learning (ML)-based models to discriminate major cardiovascular
events in patients with HCM.
METHODS We enrolled consecutive HCM patients from 2 tertiary referral centers and used 25 clinical and echocar-
diographic features to discriminate major adverse cardiovascular events (MACE), including all-cause death,

admission for heart failure (HF-adm), and stroke. The best model was selected for each outcome using the area

under the receiver operating characteristic curve (AUROC) with 20-fold cross-validation. After testing in the

external validation cohort, the relative importance of features in discriminating each outcome was determined

using the SHapley Additive exPlanations (SHAP) method.
RESULTS In total, 2,111 patients with HCM (age 61.4 � 13.6 years; 67.6% men) were analyzed. During the median
4.0 years of follow-up, MACE occurred in 341 patients (16.2%). Among the 4 ML models, the logistic regression

model achieved the best AUROC of 0.800 (95% CI: 0.760-0.841) for MACE, 0.789 (95% CI: 0.736-0.841) for

all-cause death, 0.798 (95% CI: 0.736-0.860) for HF-adm, and 0.807 (95% CI: 0.754-0.859) for stroke. The

discriminant ability of the logistic regression model remained excellent when applied to the external validation

cohort for MACE (AUROC ¼ 0.768), all-cause death (AUROC ¼ 0.750), and HF-adm (AUROC ¼ 0.806). The

SHAP analysis identified left atrial diameter and hypertension as important variables for all outcomes of interest.
CONCLUSIONS The proposed ML models incorporating various phenotypes from patients with HCM accurately
discriminated adverse cardiovascular events and provided variables with high importance for each

outcome. (JACC: Asia 2024;4:375–386) © 2024 The Authors. Published by Elsevier on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AF = atrial fibrillation

AUROC = area under the

receiver operating

characteristic curve

HCM = hypertrophic

cardiomyopathy

HF = heart failure

HF-adm = heart failure

admission

LA = left atrium

LR = logistic regression

LV = left ventricle

LVESVi = left ventricle end-

systolic volume index

ML = machine learning

SCD = sudden cardiac death

SHAP = SHapley Additive

exPlanations
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H ypertrophic cardiomyopathy (HCM)
is an inheritable myocardial dis-
ease with a prevalence of 1:500 in

the general population.1 HCM is a well-
known leading cause of sudden cardiac death
(SCD), especially in young individuals.2,3

Thus, the current risk stratification approach
for patients with HCM has primarily focused
on SCD.4,5 Given the advancing age of newly
diagnosed HCM patients,6 however, it is not
surprising that their life expectancy and
quality of life are largely determined by car-
diovascular complications, such as heart fail-
ure (HF),7 stroke,8 or atrial fibrillation (AF).9

Notwithstanding, well-validated prediction
models for adverse cardiovascular events
are hitherto rare in HCM.

Machine learning (ML)-based models con-
taining multidimensional variables predict
adverse events with more precision and
generalizability than conventional risk predictors in
various cardiovascular diseases.10 By incorporating
high-order and nonlinear interactions among vari-
ables, ML methods provide improved predictive
ability compared with the standard regression tech-
niques.11 Therefore, several ML models for predicting
unfavorable cardiovascular outcomes in patients with
HCM have been suggested.12-14 However, previous
models have not been validated in external inde-
pendent cohorts, substantially limiting the general-
izability of the established models. Thus, we aimed to
establish and validate data-driven ML-based models
to discriminate major cardiovascular events using 2
independent largescale HCM cohorts. Further, we
utilized an explainable ML method to provide novel
insights from important features affecting the
decision-making process of ML prediction models.

METHODS

STUDY DESIGN AND POPULATION. The study popu-
lation consisted of patients with HCM who received
their first echocardiography examination between
2003 and 2020 at 2 tertiary referral hospitals in Korea
(Seoul National University Hospital and Seoul Na-
tional University Bundang Hospital) (Figure 1). HCM
was defined as an increased left ventricular (LV) wall
thickness (end-diastolic LV wall thickness $15 mm
or $13 mm in individuals with a familial history of
HCM), with LV hypertrophy unattributable to sec-
ondary causes such as hypertension or aortic steno-
sis.5 In order to establish the ML models, the cohort
from Seoul National University Hospital (n ¼ 1,006)
was assigned as the derivation cohort.
The Seoul National University Bundang Hospital
cohort (n ¼ 1,105) was the external validation cohort
used to evaluate the predictive ability of the best
prediction model. The study protocol was approved
by the institutional review board of each hospital and
conducted according to the principles of the Decla-
ration of Helsinki. Written informed consent was
waived due to the retrospective nature of the study.

ECHOCARDIOGRAPHIC EXAMINATION. Three distinct
vendors (GE Medical Systems, Philips Healthcare, and
Siemens Medical Solutions) were utilized for the
echocardiographic examination. Dimensions of the
LV and left atrium (LA) and LV end-diastolic wall
thickness were measured on parasternal long-axis
views. In addition, the LV ejection fraction was
evaluated on the apical 4- and 2-chamber views using
the biplane Simpson’s method following the guide-
lines.15 The LV outflow tract pressure gradient was
measured at rest and with the Valsalva maneuver,
with the maximum value acquired. Apical HCM was
defined as pathological hypertrophy of the LV limited
to the apical segments of the ventricle.

FEATURE SELECTION AND DATA PREPROCESSING.

We first excluded 5 echocardiographic parameters (LV
internal diameter at end-systole, LV end-diastolic
volume index, stroke volume index, medial e’, and
E velocity) from 30 features due to a multicollinearity
issue. Because the proportion of missing values for
each feature was <5%, no feature was removed due to
the excessive missing values. As a result, 15 clinical
and 10 echocardiographic features were included in
the analysis. The variables used in the final analysis
are as follows: Age, sex, body mass index, hyperten-
sion, diabetes mellitus, dyslipidemia, history of HF,
AF, history of stroke, coronary artery disease,
valvular heart disease, history of cancer, family his-
tory of SCD, history of syncope, apical type HCM, use
of beta-blocker, maximum LV wall thickness,
maximum LV outflow tract pressure gradient, LV in-
ternal diameter at end-diastole, LV end-systolic vol-
ume index (LVESVi), LV ejection fraction, LA
diameter, deceleration time, E/e’, and estimated
pulmonary artery systolic pressure. The K nearest
neighbor imputation method was used to fill in
missing values to prevent the loss of important in-
formation and unstable model implementation. All
results were analyzed based on the imputed dataset.

STUDY OUTCOMES AND LONGITUDINAL FOLLOW-UP.

The outcomes of interest were MACE (defined as a
composite of all-cause mortality, HF admission [HF-
adm], and stroke) and the individual components.
Using the National Death Registration Records of
Korea (independently managed by the Korean



FIGURE 1 Study Flow

Patients who were diagnosed with hypertrophic cardiomyopathy (HCM) between 2003 and 2020 were consecutively enrolled. Two

independent cohorts were used for derivation and validation cohort, respectively. Using 25 clinical and echocardiographic features, major

cardiovascular adverse events (MACE) and its individual outcomes during median 4.0 years of follow-up were analyzed by 4 different

machine-learning based discriminative models. AI ¼ artificial intelligence; HF ¼ heart failure; LDA ¼ linear discriminant analysis; LR ¼ logistic

regression; RF ¼ random forest; SHAP ¼ Shapley additive explanation; SNUBH ¼ Seoul National University Bundang Hospital; SNUH ¼ Seoul

National University Hospital; SVM ¼ support vector machine.
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government), the vital status of all study participants
was verified. HF-adm was defined as at least 1 episode
of hospitalization owing to HF, which was clinically
diagnosed based on aggravating symptoms and in-
dications of congestion with volume overloads,
including dyspnea and peripheral edema, or using
diuretic agents for volume overload.16 Stroke was a
sudden neurologic impairment due to vascular pa-
thologies of the brain, such as thromboembolism,
hemorrhage, or ruptured aneurysm, that lasted over
24 hours. Dedicated research personnel gathered
clinical outcomes by reviewing electronic health re-
cords and performing telephone interviews. From the
initial echocardiographic examination date, partici-
pants were followed up until the event, the end of
follow-up, or death, whichever occurred first. The
median follow-up was 4.0 years (Q1-Q3: 1.6-7.6 years).

DEVELOPMENT OF ML MODELS AND EXTERNAL

VALIDATION OF THE BEST PREDICTION MODEL.

In contrast to the traditional methodologies, ML-
based methods utilize all provided variables through
multiple iteration processes to select the optimal
model.17 Consequently, ML-based methods can
manage nonlinearity, high dimensionality, and vari-
able interactions, delivering more accurate variable
importance and superior predictive performance.18 In
this study, 4 ML classifiers—logistic regression (LR),
linear discriminant analysis, random forest, and
support vector machine—were used to construct the
discriminative models for each target outcome. The
20-fold cross-validation method was used for the
fine-tuning of the optimal model parameters in the
derivation cohort. The performance of the established
model in the derivation cohort was assessed using the
area under the receiver operating characteristic curve
(AUROC) and the calibration plot by deciles of pre-
dicted risk of event. Based on the AUROC values, the
best performing model was chosen for each outcome.
We then evaluated the discriminant ability of ML
models in the external validation cohort. A sensitivity
analysis was followed as a cross-over analysis with
the roles of the derivation and validation cohorts
switched. In addition, we performed a hold-out



TABLE 1 Baseline Characteristics of Study Population

Derivation Cohort
(n ¼ 1,006)

Validation Cohort
(n ¼ 1,105) P Value

Demographic features

Age, y 61.6 � 13.3 61.3 � 13.8 0.630

Male 67.2 (676) 67.9 (750) 0.740

Body mass index, kg/m2 24.8 � 3.3 24.9 � 3.5 0.247

Comorbidities

Hypertension 45.2 (455) 62.8 (694) <0.001

Diabetes mellitus 19.1 (192) 22.7 (251) 0.041

Dyslipidemia 23.6 (237) 44.9 (496) <0.001

History of heart failure 4.1 (41) 4.8 (53) 0.423

Atrial fibrillation 21.5 (216) 16.6 (183) 0.004

History of stroke 4.2 (42) 13.2 (146) <0.001

Coronary artery disease 10.9 (110) 8.0 (88) 0.019

Valvular heart disease 3.9 (39) 4.9 (54) 0.259

History of cancer 11.0 (111) 13.0 (144) 0.159

HCM-related risk factors

Familial history of SCD 7.6 (76) 7.1 (79) 0.721

History of syncope 13.3 (134) 7.6 (84) <0.001

Apical type 43.2 (435) 38.6 (426) 0.029

Beta-blocker use 35.6 (358) 69.4 (767) <0.001

Echocardiographic parameters

Maximal LV wall thickness, mm 18.3 � 4.0 18.0 � 3.8 0.039

Maximal LVOT pressure gradient, mm Hg 13.9 � 27.2 16.3 � 31.3 0.068

LVEDVi, mL/m2 86.3 � 19.1 81.2 � 19.1 <0.001

LVESVi, mL/m2 30.7 � 10.4 30.1 � 11.9 0.230

LVEF, % 63.6 � 6.9 63.8 � 7.2 0.471

LA diameter, mm 45.8 � 7.5 42.3 � 7.6 <0.001

E velocity, m/s 0.6 � 0.2 0.7 � 0.2 <0.001

Deceleration time, msec 211.6 � 90.5 205.3 � 68.6 0.073

Medial e’, cm/s 4.7 � 1.6 5.5 � 2.0 <0.001

E/e’ 14.4 � 6.9 13.5 � 6.6 0.005

Estimated PASP, mm Hg 17.6 � 17.7 29.5 � 9.9 <0.001

Values are mean � SD or % (n).

HCM ¼ hypertrophic cardiomyopathy; LA ¼ left atrium; LV ¼ left ventricle; LVEDVi ¼ left ventricular
end-diastolic volume index; LVEF ¼ left ventricular ejection fraction; LVESVi ¼ left ventricular end-systolic
volume index; LVIDd ¼ left ventricular internal dimension at end-diastole; LVIDs ¼ left ventricular internal
dimension at end-systole; LVOT ¼ left ventricular outflow tract; PASP ¼ pulmonary arterial systolic pressure;
SCD ¼ sudden cardiac death.
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cross-validation analysis by merging the cohorts into
a single pooled dataset of 2,111 patients, which was
then randomly split into training and test cohorts in a
7:3 manner.

FEATURE IMPORTANCE ANALYSIS USING THE

SHAPLEY ADDITIVE EXPLANATIONS METHOD.

We utilized the Shapley additive explanations (SHAP)
method to rank the relative importance of each
feature incorporated in the ML models with best
discriminant ability established from the derivation
cohort. Using the SHAP method, the Shapley values,
indicating the contribution of each feature to the
predictive probability of target outcomes, were esti-
mated.19 Considering the possible interactions among
all features, the Shapley value of a feature represents
the effect of deleting the feature from the prediction
model.20 Model development was done using Python
software version 3.7.6 (Python Software Foundation)
and Scikit Learn software version 1.0.2 (scikit-learn
Project). The SHAP analysis results were reported as
radar plots and the SHAP summary plots, depicting
scaled importance (the relative importance of a
feature scaled with respect to the feature with the
greatest relative importance value) of each feature.

STATISTICAL ANALYSIS. The chi-square test was
utilized to compare categorical variables expressed as
numbers and relative frequencies (percentages).
Continuous variables were reported as mean � SD.
We utilized the Kolmogorov-Smirnov test to deter-
mine whether the continuous variables had a normal
distribution. Student’s t-test was used to analyze
differences between continuous characteristics with a
normal distribution; otherwise, the Mann-Whitney U
test was employed. All probability values were
2-sided, and P values <0.05 were considered signifi-
cant. Analyses were conducted using Stata software
version 17.0 (StataCorp).

RESULTS

CHARACTERISTICS AND CLINICAL OUTCOMES OF

THE STUDY POPULATION. The baseline characteris-
tics of the derivation and validation cohorts are pre-
sented in Table 1. In total, 2,111 patients (derivation
cohort n ¼ 1,006; validation cohort n ¼ 1,105) with
HCM (mean age 61.4 � 13.6 years; 67.6% men) were
analyzed. The distribution of age, sex, and body mass
index were comparable between the 2 cohorts.
Among HCM-related factors, the derivation cohort
had a higher proportion of patients with a history of
syncope and apical type HCM. The proportion of pa-
tients on beta-blockers was higher in the validation
cohort. The incidence rate of each outcome is pre-
sented in Table 2. During the median follow-up of 4.0
years, 3.72 per 100 person-years in the derivation
cohort and 3.35 per 100 person-years in the validation
cohort had MACE events.

DEVELOPMENT AND EXTERNAL VALIDATION OF THE ML

PREDICTION MODEL FOR CLINICAL OUTCOMES. The
ability of 4 ML models to discriminate clinical out-
comes is depicted in Figure 2. The 20-fold cross-
validated AUROC was 0.70 to 0.80 for each ML
model, indicating excellent discriminant ability for all
target outcomes (Table 3). The LR model demon-
strated the best performance for all outcomes of
interest among the 4 ML models. The 20-fold cross-
validated AUROC was 0.800 (95% CI: 0.760-0.841)
for MACE, 0.789 (95% CI: 0.736-0.841) for all-cause
death, 0.798 (95% CI: 0.736-0.860) for HF-adm, and
0.807 (95% CI: 0.754-0.859) for stroke. Calibration bar



TABLE 2 Incidence Rate of Study Outcomes

Derivation Cohort
(n ¼ 1,006)

Validation Cohort
(n ¼ 1,105)

MACE

Incidence rate, per 100 person-years 3.72 3.35

All-cause death

Incidence rate, per 100 person-years 2.46 1.11

HF admission

Incidence rate, per 100 person-years 1.51 1.24

Stroke

Incidence rate, per 100 person-years 1.43 1.42

HF ¼ heart failure; MACE ¼ major adverse cardiovascular event(s).
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plots by deciles of the observed vs predicted risk
estimated using the LR model are presented for each
outcome in Figure 3. Overall, the LR model–predicted
probability corresponded with the observed proba-
bility of each event in the derivation cohort. Figure 4
and Table 4 present the AUROC curves and detailed
metrics of the LR model performances in the external
validation cohort. When applied to the validation
cohort, the performance of the LR model remained
excellent for MACE (AUROC ¼ 0.771), all-cause death
(AUROC ¼ 0.759), and HF-adm (AUROC ¼ 0.807),
except for stroke (AUROC ¼ 0.694).

SENSITIVITY ANALYSIS. Sensitivity analyses were
performed to replicate the results. As a cross-over
analysis, LR-based ML models were developed from
the Seoul National University Bundang Hospital
cohort (validation cohort in the main analysis) and
subsequently tested in the Seoul National University
Hospital cohort (derivation cohort in the main anal-
ysis) (Supplemental Table 1). The discriminant ability
for MACE, all-cause death, and HF-adm was 0.759 to
0.790 when applied to the cross-over validation
cohort. Similar to the main result, the LR model per-
formance decreased to AUROC of 0.655 for stroke
prediction when externally validated.

A hold-out cross-validation analysis was per-
formed as another sensitivity analysis (Supplemental
Table 2). Random splitting of the merged total dataset
in a 7:3 manner yielded training sets (n ¼ 1,478) and
test sets (n ¼ 633) for analysis. The LR-based ML
model established in the training set yielded an
AUROC of 0.757 to 0.828. The model performance
remained excellent in the test set, with an AUROC of
0.778 to 0.824 for all outcomes.

To assess the impact of the missing data, a com-
plete data analysis without imputation was per-
formed (Supplemental Tables 3 and 4, Supplemental
Figure 1). Both the main result and the SHAP analysis
results were consistent, demonstrating the robust-
ness of established ML models across all outcomes.

SHAP FEATURE IMPORTANCE ANALYSIS. The rela-
tive importance of the top 8 features as significant
factors for each clinical outcome was determined
using Shapley values (Figure 5). The high-rank vari-
ables varied depending on the outcomes of interest.
Variables with the highest importance were age (for
MACE and all-cause death), AF (for HF-adm), and
apical HCM (as a protective predictor for stroke).
Increased LA diameter and hypertension, which
ranked highly in the ML models, strongly associated
with all 4 outcomes. Increased LVESVi and cancer
history were substantially linked with more than
2 individual outcomes (for LVESVi, all-cause death,
and HF-adm; for cancer history, all-cause death, and
stroke) and MACE.

The variables selected through the traditional
stepwise logistic regression method were compared
to the variables identified using the SHAP method
(Supplemental Table 5). One consistent finding was
the significance of the LA diameter across all out-
comes. However, there were notable differences in
the lists of selected variables for each outcome.

DISCUSSION

In this study, we developed ML-based discriminative
models using independent consecutive HCM cohorts
from 2 tertiary referral centers, focusing on the risk of
MACE, including all-cause death, HF-adm, and stroke
(Central Illustration). Our findings can be summarized
as follows. First, among the 4 ML models, the
LR-based ML algorithm had the best discriminant
ability for all 4 outcomes. Second, LR models for all
outcomes were well-calibrated and maintained good
discriminant ability when applied to the external
validation cohort, except for stroke. Third, the rela-
tive importance of clinical and echocardiographic
parameters in discriminating each outcome was
determined using the SHAP analysis. We observed
that LA diameter and hypertension had substantial
importance in discriminating all four outcomes.

In patients with HCM, major cardiovascular com-
plications, such as HF or stroke, significantly affect
their quality of life and prognosis.21 Patients with
HCM are at a substantially greater risk of mortality
owing to cardiovascular diseases than those without.4

In contrast to SCD, studies on prediction models and
predictors for adverse cardiovascular outcomes in
HCM are anecdotal. Current prediction models
depend on single-center observational data, estab-
lished based on traditional methodologies with hand-
crafted criteria.2 These models may be vulnerable and
perform poorly when applied to the new data.2 By
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FIGURE 2 Performance of 4 ML Models for Each Clinical Outcome

Predictive ability of 4 machine learning (ML) discriminative models for (A) MACE, (B) death, (C) HF admission, and (D) stroke are presented as receiver-operating

characteristic (ROC) curves and compared by the area under the receiver-operating curve (AUROC) with 95% CI. Abbreviations as in Figure 1.

TABLE 3 Predictive

MACE

Logistic regression

Linear discriminant a

Random forest

Support vector mach

All-cause death

Logistic regression

Linear discriminant a

Random forest

Support vector mach

HF admission

Logistic regression

Linear discriminant a

Random forest

Support vector mach

Stroke

Logistic regression

Linear discriminant a

Random forest

Support vector mach

Values in ( ) are 95% CI.

AUC ¼ area under the re

Rhee et al J A C C : A S I A , V O L . 4 , N O . 5 , 2 0 2 4

ML Models for HCM Outcomes M A Y 2 0 2 4 : 3 7 5 – 3 8 6

380
thoroughly incorporating multidimensional data and
factors that interact in linear and nonlinear manners,
the ML-based methodology may provide a model with
significantly enhanced prediction performance.22

Indeed, ML models to predict ventricular
arrhythmia,14 HF,13,14 or composite cardiovascular
Performance of Machine Learning-Based Models by 20-Fold Cross-Valida

AUC Sensitivity S

0.800 (0.760-0.841) 0.655 (0.592-0.718) 0.795

nalysis 0.800 (0.760-0.840) 0.659 (0.595-0.722) 0.794

0.793 (0.752-0.833) 0.771 (0.705-0.837) 0.688

ine 0.787 (0.746-0.829) 0.666 (0.597-0.735) 0.788

0.789 (0.736-0.841) 0.698 (0.599-0.796) 0.720

nalysis 0.786 (0.734-0.837) 0.667 (0.561-0.772) 0.747

0.782 (0.731-0.834) 0.707 (0.627-0.787) 0.704

ine 0.769 (0.707-0.831) 0.608 (0.547-0.734) 0.785

0.798 (0.736-0.860) 0.671 (0.621-0.721) 0.675

nalysis 0.792 (0.734-0.850) 0.633 (0.557-0.710) 0.739

0.776 (0.713-0.839) 0.550 (0.448-0.652) 0.789

ine 0.728 (0.666-0.790) 0.596 (0.491-0.701) 0.676

0.807 (0.754-0.859) 0.600 (0.509-0.691) 0.758

nalysis 0.804 (0.752-0.856) 0.596 (0.508-0.684) 0.769

0.773 (0.710-0.835) 0.671 (0.615-0.727) 0.693

ine 0.762 (0.690-0.834) 0.588 (0.498-0.677) 0.791

ceiver operating characteristic curve; NPV ¼ negative predictive value; PPV ¼ positive pred
events12 were recently presented in HCM pop-
ulations. However, all previous studies only offered
an ML model based on single-center data that had not
been verified in an external cohort. This is a critical
drawback that substantially limits the applicability of
the established models. There is still room for
tion for Each Clinical Outcome in Derivation Cohort

pecificity PPV NPV

(0.740-0.851) 0.460 (0.393-0.527) 0.912 (0.899-0.926)

(0.738-0.850) 0.456 (0.398-0.515) 0.914 (0.901-0.926)

(0.608-0.768) 0.394 (0.334-0.453) 0.934 (0.921-0.946)

(0.718-0.858) 0.488 (0.396-0.580) 0.914 (0.900-0.927)

(0.645-0.795) 0.344 (0.249-0.438) 0.943 (0.929-0.958)

(0.668-0.827) 0.365 (0.270-0.459) 0.941 (0.927-0.955)

(0.635-0.772) 0.288 (0.236-0.340) 0.943 (0.931-0.956)

(0.730-0.818) 0.308 (0.272-0.345) 0.934 (0.923-0.951)

(0.575-0.775) 0.212 (0.118-0.305) 0.954 (0.936-0.972)

(0.652-0.827) 0.257 (0.157-0.357) 0.960 (0.951-0.969)

(0.716-0.862) 0.281 (0.167-0.395) 0.956 (0.948-0.964)

(0.584-0.768) 0.171 (0.116-0.226) 0.954 (0.946-0.962)

(0.676-0.840) 0.287 (0.156-0.418) 0.960 (0.952-0.967)

(0.697-0.841) 0.274 (0.160-0.389) 0.960 (0.952-0.968)

(0.617-0.768) 0.191 (0.121-0.262) 0.962 (0.955-0.969)

(0.737-0.845) 0.243 (0.149-0.337) 0.961 (0.953-0.968)

ictive value; other abbreviations as in Table 2.



FIGURE 3 Observed Risk of Outcomes According to Deciles of Predicted Probability

The predicted and observed risk probability of (A) MACE, (B) death, (C) HF admission, and (D) stroke calculated by the logistic regression

machine learning model are presented. Abbreviations as in Figures 1 and 2.
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improvement regarding the precision and trans-
ferability of these ML models, along with a need for
tailored approaches in HCM patient care.

Our study has the following methodological
strengths: 1) for the first time, we established the
generalizability of a model developed from 2 inde-
pendent HCM cohorts (each with over 1,000 patients);
2) we analyzed and compared 4 ML approaches
frequently used in classification, including LR, linear
discriminant analysis, random forest, and support
vector machine, to determine the most appropriate
ML prediction model for our data distribution; and 3)
model training with 20-fold cross-validation. More-
over, sensitivity analyses using cross-over or hold-
out cross-validation further improved and consoli-
dated the reliability of our results.

The LR ML model provided the best discriminant
ability for all 4 outcomes of interest in this study
population. However, the lowest AUROCs of ML
models in our study were still comparable to those
of prior research, falling in the range of 0.73 to
0.79. Consequently, the data structure and distri-
bution from the derivation and validation cohorts
used in this study were generally suitable for
developing and applying ML-based models. This
indicates that our data may be utilized to train and
validate other ML-based models with novel
methodologies.

Notably, the discriminant performance of the
model for stroke dropped significantly compared with
other outcomes during external validation. A
discrepancy in the baseline distribution between the
derivation and validation cohorts might have
contributed to this result. In particular, features
directly associated with the occurrence of stroke,
such as previous history of stroke, prevalence of AF,
and LA diameter in echocardiography examination,
significantly differed between 2 cohorts. Further-
more, because cohorts used in this study mainly
focused on HCM and its cardiovascular outcomes,
unmeasured factors that may significantly affect
stroke occurrence (such as carotid artery stenosis,



FIGURE 4 External Validation of LR ML Model

Ability of the best discriminative model (logistic regression machine learning model) for (A) MACE, (B) death, (C) HF admission, and (D) stroke was tested in the external

validation cohort and presented with AUROC. Abbreviations as in Figures 1 and 2.
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smoking status, alcohol intake, or physical activity)23

may not have been considered in our models. To
further improve the efficacy of the stroke discrimi-
native models, subsequent studies using cohorts with
various phenotypes are helpful.

The ML model is a black-box system, making it
challenging to comprehend decision-making. This
results in limited implications on clinical practice
despite the enhanced discriminant ability.24 To
overcome these limitations, we used the SHAP
method—an explainable AI methodology based on
game theory that indexes and communicates the
degree of the relative contribution of features to the
discriminative model via the Shapley value. The
SHAP analysis demonstrated that the relative
importance of variables changes meaningfully based
on the outcomes. These outcome-specific important
TABLE 4 Predictive Performance of Machine Learning-Based Logistic

AUC Sensitivity

MACE 0.771 0.705

All-cause death 0.759 0.746

HF admission 0.807 0.700

Stroke 0.694 0.912

Abbreviations as in Tables 2 and 3.
features should be considered in further studies
with larger, more comprehensive predictive models
for cardiovascular outcomes in HCM patients. The
significant discrepancies between the traditional
stepwise variable selection and ML-based
SHAP approach highlight an opportunity to update
significant predictors considering high-dimensional
intervariable interactions, and may provide
novel clinical insights as well as new treatment
targets.

The SHAP analysis revealed that LA diameter and
hypertension were common significant factors of the
4 outcomes of interest. Although routinely measured
in echocardiography examinations, the size of the LA
cavity is often overlooked in clinical practice. As a
representative, chronic marker for the diastolic
function of the LV, the LA size should be considered
Regression Model for Each Clinical Outcome in Validation Cohort

Specificity PPV NPV

0.737 0.306 0.938

0.657 0.102 0.980

0.818 0.181 0.979

0.380 0.088 0.985



FIGURE 5 Relative Importance of Features in Discriminative Models by SHAP Values

Feature importance was determined and presented with the SHAP values that represent the relative contribution of each feature to the model.

Features are listed from the top in order of their relative importance. AF ¼ atrial fibrillation; BMI ¼ body mass index; HTN ¼ hypertension;

LA ¼ left atrium; LVESVi¼ left ventricular end-systolic volume index; SHAP ¼ Shapley additive explanation; other abbreviations as in Figures 1

and 2.
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an essential imaging index for long-term prognosis in
patients with HCM.25 It is crucial to investigate how
the LA reservoir strain—recently reported as a novel
parameter with a strong predictive ability for incident
HF in patients with HCM—may influence the ML-
based model enhancement.26 Hypertension is the
leading cause of cardiovascular disease, substantially
impacting mortality, HF, and stroke.27 In our study
cohorts, 54.4% of patients diagnosed with HCM had
concomitant hypertension. This proportion is higher
than that in studies recruiting a relatively young
Western HCM population.12,13 However, it is compa-
rable to Japanese data28 or the Korean national health
insurance database,1 reflecting the different charac-
teristics of the study population. Uncontrolled hy-
pertension enhances LV hypertrophy and hastens
unfavorable remodeling of the myocardium.29

Considering the continually aging HCM population,6

it is necessary to carefully examine hypertension in
patients with HCM at diagnosis and during follow-up,
and to make every effort to manage blood pressure
adequately. Furthermore, the LV chamber size and
the patient’s malignancy history, which were noted
as additional key determinants in the occurrence of
unfavorable cardiovascular events, including mor-
tality, should not be ignored at the time of HCM
diagnosis, especially in the contemporary era of the
enhanced HCM care.

Notably, the apical type HCM was the most
important factor inversely correlated with the inci-
dent stroke. Similarly, a Japanese HCM cohort study
observed that apical HCM is linked with a lower
incidence of thromboembolic events, including
stroke.30 Apical HCM is characterized by less severe
diastolic dysfunction and a smaller extent of
myocardial fibrosis than HCM with septal hypertro-
phy.31 In this study, patients with non-apical HCM
had a higher E/e’ ratio (14.7 � 7.4 vs 12.9 � 5.5) despite
similar sizes of LA cavity than those with apical type,
suggesting a higher chance of LV diastolic dysfunc-
tion in patients with non-apical HCM. Furthermore,
patients with HCM with a greater extent of septal
hypertrophy were prone to AF, possibly explaining
the higher risk of stroke in patients with non-apical
HCM.32 Because our data are limited to provide a
clear explanation for causal relationship, this finding
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Rhee T-M, et al. JACC: Asia. 2024;4(5):375–386.

This study aimed to develop and validate machine learning (ML)-based models for discriminating major cardiovascular events in hypertrophic cardiomyopathy (HCM)

patients, using data from 2 largescale HCM cohorts from independent tertiary referral centers. Among the 4 ML models, the logistic regression-based ML algorithm

had the best discriminant ability for all 4 outcomes. The relative importance of clinical and echocardiographic parameters in discriminating each outcome was

determined using the SHapley Additive exPlanations (SHAP) analysis. We observed that left atrial (LA) diameter and hypertension (HTN) had substantial importance in

predicting all 4 outcomes in patients with HCM. AF ¼ atrial fibrillation; AUC ¼ area under the curve; BMI ¼ body mass index; HF ¼ heart failure; LDA ¼ linear

discriminant analysis; LR ¼ logistic regression; LVESi ¼ left ventricular end-systolic volume index; MACE ¼major cardiovascular adverse event(s); RF ¼ random forest;

SVM ¼ support vector machine.
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PERSPECTIVES

COMPETENCY IN PATIENT CARE AND PROCEDURAL

SKILLS: We developed ML models for discriminating all-cause

death, admission for heart failure, and stroke in HCM patients

using data from 2 referral centers. ML-based discriminative

models enhanced the accuracy of predicting major cardiovascular

events in HCM patients, identifying important features for each

outcome. Early recognition and management of high-risk HCM

subsets could be facilitated by applying these models.

TRANSLATIONAL OUTLOOk: The findings of this study,

which were derived from Asian data, underscore the importance

of validating the results in cohorts representing diverse ethnic

backgrounds, while also emphasize the necessity for refining the

discriminative model by incorporating data from advanced

cardiovascular imaging or functional test.
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is currently hypothesis-generating at best. Future
prospective studies should validate the risk of stroke
according to the type of HCM and reveal its mecha-
nistic background.

STUDY LIMITATIONS. First, this study was based on
real-world observational Asian cohort data. There-
fore, the generalizability of the current ML models
should be reinvestigated internationally using
external HCM cohorts. Our established ML model
pipeline can also be applied for validation within
specific populations by age, sex, or underrepresented
groups in future research. Second, we used ML clas-
sifiers that did not account for the time variable and,
thus, did not consider the longitudinal aspect of the
cohort study. However, our primary objective in this
research was to compare various well-established and
widely used ML classifiers. Third, the short follow-up
periods and relatively few events for each individual
outcome may limit the statistical power of this study.
Fourth, the black box nature of the ML models limits
the interpretability, which could be mitigated by
utilizing the SHAP method in this study to elucidate
the influence and importance of individual variables.
Fifth, this study did not include the detailed assess-
ment of HCM disease severity or risk stratification for
HCM. Sixth, our data did not include parameters from
advanced imaging techniques or functional tests,
such as LV global longitudinal strain, LA reservoir
strain, cardiac magnetic resonance imaging, treadmill
test, or Holter monitoring. However, advanced im-
aging technique (eg, cardiac magnetic resonance) has
its own limitations such as long acquisition time,
difficult accessibility, and challenges in real-time
evaluation. It is important that we incorporated the
most commonly used clinical and echocardiographic
parameters to pursue high adaptability of the estab-
lished model.

CONCLUSIONS

Applying ML approaches to models incorporating a
wide variety of phenotypes improved the ability to
discriminate major cardiovascular events and
provided features of high importance for each
outcome in HCM patients. If clinically applicable, it
can be helpful to early recognize and manage high-
risk subsets of HCM patients.
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