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Recent experiments report the current (I) versus
voltage (V) characteristics of a tunnel junction
consisting of a metallic tip placed at a distance d
from a planar electrode, d varying over six orders of
magnitude, from few nanometres to few millimetres.
In the ‘electric-field-assisted’ (or ‘field emission’)
regime, as opposed to the direct tunnelling regime
used in conventional scanning tunnelling microscopy,
all I–V curves are found to collapse onto one single
graph when d is suitably rescaled, suggesting that
the current I = I(V, d) is in reality a generalized
homogeneous function of one single variable, i.e.
I = I(V · d−λ), where λ being some characteristic
exponent and I(x) being a scaling function. In this
paper, we provide a comprehensive explanation—
based on analytical arguments, numerical simulations
and further experimental results—for the scaling
behaviour that we show to emerge for a variety of
tip–plane geometries and thus seems to be a general
feature of electric-field-assisted tunnelling.

1. Introduction
A sharp tip approached vertically to a conducting surface
at subnanometre distances and biased with a small
voltage with respect to the surface builds a junction
across which electrons can be transferred from the tip
apex to the nearest surface atom (or vice versa) by
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Figure 1. Schematic of the tunnel junction. The emitter (shaded in grey) possesses rotational symmetry with respect to the
z-axis and carries the x, y, z-coordinate system at its apex. The azimuthal angle φ used throughout the paper is defined as
the angle formed by the x-axis and the projection onto the xy-plane of the coordinate vector of an observation point in space
(black dot). In a typical I–V experiment, a positive voltage V is applied to the planar counterelectrode residing at a distance d
from the emitter and the resulting current I flowing from the planar counterelectrode to the emitter (meaning that the electrons
flow from the emitter to the planar counterelectrode) is recorded.

direct quantum-mechanical tunnelling. Such a junction is used, e.g., in scanning tunnelling
microscopy (STM) for imaging the surface topography with the spectacular atomic spatial
resolution that was awarded the Nobel Prize in 1986 [1–3]. When the distance d between
tip and collector is increased, one enters the electric-field-assisted tunnelling regime [1,3,4],
where the current is dominated by electrons emitted from the (typically sharp) tip into the
vacuum region residing between the tip apex and the target through a classically forbidden
zone enveloping the tip apex (figure 1). Such a regime is, for instance, the one underlying
the topografiner technology [5,6]—an imaging technique which was the precursor of STM
but was abandoned, probably because of the enormous success of STM. Electric-field-assisted
quantum tunnelling is also widely used in recent and less recent developments in micro- and
nano-electronics [7,8]. Recent experiments [9] in the regime of electric-field-assisted tunnelling
suggest a remarkable scaling invariance of the current flow with respect to changes in the
tip-to-collector distance d by several orders of magnitude (from a few nanometres to a
few millimetres). This scaling invariance was detected by observing the collapsing of the
family of I–V curves, measured at various distances d, onto one single curve when the
voltage was suitably rescaled with a scaling factor R depending on d through a power law
R ∼ d−λ, i.e. I = I(V · d−λ), I(x) being a scaling function. Such a scaling invariance—well known,
e.g., in the field of critical phenomena [10]—is certainly not realized in the direct tunnelling
regime [1], and it is also not usual in solid-state electronics, so that its observation is yet
somewhat surprising and unexplained. It is the scope of this paper to provide a comprehensive
explanation of the experimentally reported [9] scaling invariance by using analytical and
numerical arguments, and by introducing further experimental results that establish the scaling
behaviour as a systematic property of junctions in the electric-field-assisted tunnelling regime.
The paper is organized as follows.

In §2, we consider the electrostatic problem of a sharp metallic tip, forming one side of the
junction, which is approached vertically at a distance d by a planar counterelectrode, forming
the other side of the junction. We formally solve the associated Laplace equation and find
analytical expressions for the electrostatic potential Φ(x, y, z) by considering tip and plane as
equipotential boundaries, with the tip being at ground and the plane being at a positive potential
+V. Within our treatment, we consider only highly symmetric, realistic tip shapes. The wording
‘highly symmetric realistic’ describes here the fact that the geometries considered in §2 are (i) close
to the shape one expects for ‘real’ tips (as revealed by a systematic tip imaging via light and
electron microscopy [9]) and (ii) sufficiently symmetric so that the electrostatic problem can be
solved to a large extent analytically. On the one hand, this choice helps the reader to follow the
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main arguments without relying on numerical results only, and on the other hand it is well-
known that unequivocally revealing power laws in experiments and numerical computations
is a very difficult task, but it is quite straightforward within an analytical framework. The
main result of §2 is the conjecture that in the vicinity of the tip end the ‘almost’ singularity
associated to the tip apex introduces a power-law dependence of the potential on d and V of
the form:

Φ(x, y, z; d, V) ∼ V · d−λ · Φ̃(x, y, z), (1.1)

where λ is a characteristic exponent that depends on the geometrical details of the tip and on
the range of distances d (see the detailed discussion in §2). Φ̃(x, y, z) is some function containing
only the coordinates (x, y, z), (x, y, z) indicating points residing very close to the tip apex so that
z � d. The meaning of the symbol ‘∼’ in equation (1.1) and other equations in this paper will be
discussed in detail in §2. Note that, for example, for a ‘planar’ tip (in which case we should no
longer speak of ‘sharp tip’, of course) λ assumes the trivial value of 1.

In §3, we use the one-dimensional Jeffreys–Wentzel–Kramers–Brillouin approximation of
quantum tunnelling [11] to compute the tunnelling current density J from the tip into the planar
electrode in the presence of a potential that behaves as given in equation (1.1). The main result
of this section is to show that, for an emitter subject to the electrostatic potential worked out for
different geometries in §2, the scaling behaviour of the potential implies that the current density
J becomes a function of one single variable

J(V, d) =J (V · d−λ), (1.2)

where λ is the same exponent appearing in equation (1.1). We obtain an analytical expression
for the scaling function J (x) both for λ = 1 [12–15] and for λ �= 1. These exact scaling results led
us to identify a fundamental length scale Λϕ—the De Broglie wavelength associated with the
maximum height of the tunnelling barrier (ϕ)—and an effective barrier width � that determine
the leading behaviour of the current density

J(Λϕ , �) ∼ e−�/Λϕ . (1.3)

This equation is certainly true for the few, highly symmetric models of electric-field-assisted
tunnelling discussed in this paper, but it might hold approximately in general and for both direct
and electric-field-assisted tunnelling.

In §4, we present experimental data and numerical results from simulations that corroborate
the scaling hypothesis and establish its systematicness. Moreover, we report on the experimental
observation of small deviations from the scaling hypothesis and discuss their possible origin.
Finally, we attempt to combine experiments, numerical results and scaling hypothesis into a
proposal for a functional dependence J (x) that explains most of the data.

The appendices A and B present the mathematical details of the calculations leading to the
results summarized in the main text. The scope of these appendices is to allow the verification
of our computations which, reporting about the relatively recent idea of scaling in the tunnelling
regime (Cabrera et al. [9]), might evoke some (salutary) scepticism.

2. Electrostatics of the junction in the electric-field-assisted tunnelling regime
Within the purpose of this paper, we consider a conducting tip as an infinitely long object with
‘small’ cross section and ending with a more or less sharp apex. The tip is kept at 0 potential and it
is placed vertically at a distance d from a conducting plane held at potential +V (figure 1). The aim
of this section is to evidence the scaling behaviour of the potential Φ(x, y, z) on the parameters V
and d, which are typically imposed experimentally [9]. If Ω denotes the region of space excluding
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Figure 2. (a) Emitter with conical profile. The coordinates of a point (black dot) in the y − z-plane are described by the
intersection of a line of constant spherical coordinateϑ and a circle of radius r centred at the origin. The full angle of aperture of
the coneω0 is indicated in the figure. (b) Emitter with cuspidal profile. The coordinates of a point (black dot) in the y − z-plane
are described by the intersection of a circle of constant bispherical coordinateβ (circle centred at the focal point z′ = a) and a
circle of constant bispherical coordinateα (a circle with centre along the axis z′ = 0). Tangent lines to the cusp at the tip apex
define an angleω0, which can be identified as the full angle of aperture of the cusp.

the tip and the plane, then the electrostatic problem defining the electrostatic potential Φ(x, y, z) is
a well-defined Dirichlet problem and reads

∇2Φ = 0 in Ω

Φ = 0 on the surface of the tip
Φ = +Φd on the plane

and |Φ(x, y, z)| ≤ +Φd ∀(x, y, z) ∈ Ω ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

where the last equation follows from the maximum principle of harmonic functions. The solution
of equation (2.1) is unique and can be computed, at least numerically, in the entire space Ω .
However, for the purposes of §§3 and 4, where analytical expressions for the tunnelling current
density will be derived, only the behaviour of the potential in the very vicinity of the tip apex and
along the tip axis is required [1,11]. In this section, we therefore focus only on the behaviour of
Φ (x = 0, y = 0, z) for small z. In the following, we summarize the main results. The details of the
calculations are presented in appendix A.

Remark. The boundary condition on the tip assigns a uniform value of the electrostatic
potential Φd to the tip surface. We use the symbol V (figure 1) to denote the experimental
voltage recorded during the measurements of the experimental I–V characteristics, instead. We
acknowledge that V contains an electrostatic contribution (which can be considered to be the Φd
defined here), but also a contribution due to work function difference between tip and planar
electrode, not considered in these sections. Moreover, real emitters might have a non-uniform
spatial distribution of work functions, which is also neglected in this section. We point out that
the difference between Φd and V is typically 1 V or less, so that the distinction between them can
usually be neglected. However, for small d and for small V, this difference might be a source
of small deviations from practical scaling (experimental deviations are indeed observed and
reported later).

(a) Conical and cuspidal tips
These geometries describe the shape of real tips on the micrometre scale [9], but contain a true
singularity at the tip apex (figure 2). For both distant (d 
 0) and near (d small) planes, we have
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Figure 3. (a) Small sphere of radius a terminating a conical profile with aperture angle ω0. (b) Hyperboloid of revolution. A
point (black dot) in the z′ − y-plane is the intersectionof a line of constant prolate spheroidal coordinatev (an ellipsewith focal
points at±a along the axis z′) and a line of constant spheroidal coordinate ν (a hyperbola with focus at z′ = a or z′ = −a).
The asymptotes of the hyperboloidal profile define the full angle of aperture of the tipω0.

proved in ref. [9] (see also appendix A for more details) that the potential in the vicinity of the tip
apex has a leading term of the form

Φ(z, d) ∼ Φd ·
( z

d

)λ1
, (2.2)

where the exponent λ1 is defined as the smallest index λ for which the Legendre function Pλ(x) has
a zero at x = cos(π − ω0/2). For small angles of aperture, the exponent λ1 is given approximately
by [16,17] λ1(ω0) ∼= [2 ln(2/ω0)]−1, whereas for ω0 = π , corresponding to a planar emitter, we have
λ1 = 1 [16,17].

Remark. Quoting from ref. [18, pp. 39–40], almost ‘verbatim’ but ‘mutatis mutandis’, we
point out that the relation Φ(z, d) ∼ Φd · (z/d)λ1 does not imply the relation Φ(z, d) = A · (z/d)λ1 .
In general, we find (see ref. [9] and appendix A) that there is an infinite number of additional
correction terms of the type (z/d)λk , with—and this is the crucial point—λk > λ1. In the limit
(z/d) → 0—which is the asymptotic case considered for discussing ‘scaling’—these additional
terms become infinitesimally small with respect to the leading one (z/d)λ1 , so that we can write

lim
z/d→0

Φ(z, d)
Φd · (z/d)λ1

= const., (2.3)

which is equivalent to writing Φ(z, d) ∼ Φd · (z/d)λ1 . Equation (2.3) establishes the significance of
the symbol ‘∼’ and our use of it in relation to the concept of ‘scaling’.

(b) Sphere-on-the-cone and hyperboloid of revolution
The sphere-on-the-cone model is particularly suitable for mimicking a rounded tip with overall
conical shape (figure 3). In fact, the sphere-on-the-cone model terminates the cone with a small
sphere of radius a. Hyperboloids of revolution are suitable to mimic rounded tips with asymptotic
conical shape. They have, in fact, two asymptotes that can be used to define a full angle of aperture
ω0. The two asymptotes meet at a point in front of the apex that is the intersection between the
z′-axis and the so-called confocal plane. The focal length a is the distance between this point and
the focal point of the hyperboloid, which is located within the tip on the tip axis. In contrast with
conical and cuspidal tips, the scaling properties of the leading potential term close to the tip apex



6

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140014

...................................................

x

u
z

y

u

d

Fd

Figure 4. Paraboloidal emitter. A point (black dot) in the z − y-plane is the intersection of a line of constant paraboloidal
coordinate u (a downward oriented parabola) and a line of constant paraboloidal coordinate v (an upward oriented parabola).
The tip apex is at a distance R0/2 from the origin of the coordinate system, where R0 is the radius of curvature of the tip.

for the sphere-on-the-cone and the hyperboloid of revolution depend on whether the plane is
‘distant’ (d 
 a) or ‘near’ (d � a). In particular, we obtain

Φ(z, d) ∼ Φd · z
d

for d � a

and Φ(z, d) ∼ Φd ·
( a

d

)λ1 · z
a

for d 
 a,

⎫⎪⎬
⎪⎭ (2.4)

where λ1 is the same exponent found for conical and cuspidal tips.

(c) Paraboloid of revolution
A paraboloid of revolution is characterized by a radius of curvature R0, but it does not have a
characteristic angle of aperture and therefore misses one essential characteristic of the tips used,
for example in ref. [9] (figure 4). However, it provides an interesting limiting case

Φ(z, d) ∼ Φd · z
d

for d � R0

and Φ(z, d) ∼ Φd · 2
ln(2d/R0)

· z
R0

for d 
 R0.

⎫⎪⎬
⎪⎭ (2.5)

In fact, by exploiting the identity limμ→0((xμ − 1)/μ) = ln x, we might consider the logarithmic
dependence on d in equation (2.5) as a special case of equation (1.1) when λ → 0.

(d) General tip geometry
Equations (2.2), (2.4) and (2.5) provide analytical expressions for the potential along the tip axis,
ready to be used for computing the tunnelling current (§3). However, the scaling behaviour with
Φd and d observed along the tip axis can be extended by continuity to a small neighbourhood of
the tip apex as well, yielding equation (1.1). Moreover, the scaling hypothesis, equation (1.1), has
been verified explicitly for a restricted number of highly symmetric geometries, but we propose
that it might have general validity.

3. The tunnelling current density in the presence of a non-trivial exponentλ1
One of the most remarkable results of §2 is that, even if the planar electrode is a ‘distant’ one, the
boundary condition on the plane determines the electrostatic potential in the vicinity of the tip
apex, where electric-field-assisted (or field emission) quantum tunnelling occurs. Having shown
some scaling properties of the electrostatic potential with d, now we would like to address the
question whether these scaling properties affect the field emission process at all. In this section,
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Figure 5. Sketch of the one-dimensional tunnelling barrier profile along the tip axis, showing the potential energy originating
from the electrostatic potential for the case of a linear dependence on z, for simplicity. This sketch is used to define some
quantities used in the bulk of the section. z1 and z2 are the points at which the potential energy −eΦ(z) crosses the Fermi
level, with |z2 − z1| being the width of the potential barrier.ϕ is the work function of the tip.

we compute the tunnelling current density for a very simplified model of electric-field-assisted
quantum tunnelling, which only involves the presence of the pure electrostatic potential within
the tunnelling barrier (figure 5). We also assume, for the sake of simplicity, the purely one-
dimensional model used, for example, in ref. [1], which foresees free electrons within the tip,
and is therefore strictly applicable only to a large flat planar emitter [19]. For very small radii
of curvature—in particular for the conical and cuspidal models—quantum confinement can,
for example, occur and the electron energies might become quantized [20]. We also neglect the
image potential correction to the electrostatic potential energy, which is known to substantially
lower the barrier height and to modify by orders of magnitude the current density [1,11]. Thus,
owing to these assumptions, the calculations performed in this section are far from being realistic.
Nevertheless, we would like to point out that the scaling properties derived in this section
on the base of the pure electrostatic potential are actually obeyed by the experimental data
presented in ref. [9] and in this paper (with the limitations discussed in §3a). Given this agreement
with experiments, we suspect (but cannot prove it!) that all the elements neglected by our
simple—perhaps trivial, model—are not really modifying the scaling properties obtained from
the pure electrostatic potential. Of course, we are convinced that this last sentence will raise some
controversial discussion, but we feel that it might justify the publication of the results presented
in this section.

Within our simple, not-so-realistic-model, the current density along the tip axis can be
written as [1]

|Jz| = e
∫∞

0
dvz · vz · ρ(vz) · D(vz), (3.1)

where −e is the charge of the electron, vz is the z-component of the velocity of the free
electrons within the metal and dvzρ(vz) is the number of electrons per unit volume with velocity
between vz and vz + dvz. Finally, D(vz) is the transmission coefficient of tunnelling describing
the probability that an electron with velocity vz overcomes the potential barrier. By inserting the
suitable (free electron like) expression for ρ(vz) [1,11] in equation (3.1) and by using the standard
Jeffreys–Wentzel–Kramers–Brillouin approximation of quantum tunnelling [1,11], one obtains the
following result:

|Jz| = J0(Ef) · e−G(Ef)

G(Ef) =
⎛
⎝2

√
8π2m

h2

∫ z2

z1

√
−eΦ(z) − Ef dz

⎞
⎠

and J0(Ef) = 4πem
h3 ·

⎛
⎝
√

8π2m
h2

∫ z2

z1

1√−eΦ(z) − Ef
dz

⎞
⎠

−2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)
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where Ef is the Fermi energy of the tip, −eΦ(z) is the potential energy of the electron within the
tunnelling barrier, m is the mass of the electron and G(Ef) is the so-called Gamov exponent. The
integration limits z1 and z2 are the zeros of the quantity −eΦ(z) − Ef (figure 5).

We now summarize the main scaling results obtained for the current density by assuming a
potential that satisfies the scaling hypothesis derived in the previous section. The details of the
derivation are described in appendix B.

(a) Non-analytic potential: conical and cuspidal tip
These two geometries for the tip provide a special case. First, the apex represents a geometrical
singularity where it is difficult to imagine that a ‘current density’ is well defined, as the
area of the apex itself is zero. Second, the electrostatic potential is non-analytic within the
tunnelling barrier: Φ(z) ∼ Φd · (z/d)λ1 . The electric field at the apex, e.g., diverges to infinity, so
that standard formulae of field emission [1,11,14,15] are useless. We are therefore in the presence
of a mathematically difficult problem: ‘a zero area’ of emission and an ‘infinite’ electric field. It
is therefore most remarkable that application of equation (3.2) to the non-analytic electrostatic
potential (note that the integrals in equation (3.2) can be computed exactly in terms of known
mathematical functions (see equations (B 3) and (B 4))) produces a finite current density J(Φd, d)
which has a remarkable scaling property associated with the scaling behaviour of the electrostatic
potential: although there are two independent experimental variables Φd and d, the current
density is a function of one single variable Φd · d−λ1 , namely

|Jcone(Φd, d)| =J cone

(
eΦd

ϕ
·
(

d
Λϕ

)−λ1
)

and J cone(x) = a1 · x2/λ1 · e−a2·x−1/λ1 ,

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

where a1, a2 are dimensionless numbers, containing, for example, natural constants and J cone(x)
is the scaling function. The Φd · d−λ1 scaling agrees with the experimentally observed scaling
behaviour [9]. The scaling function will be discussed in §4.

Remark. It is beyond the scope of this paper to attempt to derive a more realistic expression
for the emission current from a conical or cuspidal emitter. The significance of equation (3.3)
is that, even in a situation of extreme singularity, the simple model underlying equation (3.2)
provides the base for the data collapsing observed experimentally. Note that the calculation
has produced a fundamental scale for the energy, ϕ, and a fundamental scale for the length
Λϕ

.=
√

h2/2mϕ. Typical values [9] for these parameters are ϕ ≈ 4.5 eV and Λϕ ≈ 0.6 nm. Λϕ is the
De Broglie wavelength corresponding to the maximum barrier height ϕ. Finally, we note that the
case corresponding to a planar electron emitter in front of a planar counterelectrode [13–15] is
also covered by the scaling law when the suitable value λ1 = 1 is inserted.

(b) Rounded tips: analytical potential
Realistic tips—such as those described by the sphere-on-the-cone, hyperboloid and parabolic
models—might have some rounding, characterized by a spatial scale that we called a in §2 and is
absent in the conical geometry. Accordingly, as shown in §2, the rounding produces for all of them
a potential with leading linear term within the tunnelling barrier. The scaling of the potential with
d depends on whether the planar counterelectrode providing one boundary condition is distant
(Φ(z) ∼ (a/d)λ1 · Φd · z/a) or near (Φ(z) ∼ Φd · z/d). In both cases, the integrals in equation (3.2)
can also be computed in terms of elementary functions [11,13] and the resulting scaling
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laws write

|Jnear(Φd, d)| =J near

(
eΦd

ϕ
·
(

d
Λϕ

)−1
)

|Jdistant(Φd, d)| =J distant

(
eΦd

ϕ
·
(

d
a

)−λ1
)

and J distant, near(x) = adistant, near
1 · x2 · e−adistant, near

2 ·x−1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

Note that for near planes, the scale a cancels out from the problem and only one fundamental scale
remains, namely Λϕ . By contrast, for distant planes, the problem has two fundamental scales: a—
originating from the geometry of the tip—and Λϕ—originating within the quantum mechanics of
the tunnelling process. The dimensionless constants a1 and a2 depend on the geometry, on natural
constants and, in the case of distant planes, on a/Λϕ .

(c) Proposal for a unified approach and relationship with direct tunnelling
If we introduce the barrier length �

.= |z2 − z1|, the tunnelling current densities for the non-
analytic potential (equations (B 3) and (B 4)) and for the linear potential (equation (B 7)) can be
unified into one single expression in the variables ϕ (the barrier height) and �:

J(�, ϕ) = b1
eϕ
h

· 1
�2 · e−b2(�/Λϕ ), (3.5)

where b1 and b2 are some numbers that take into account the exact shape of the potential within
the tunnelling barrier. Note that the exponential (leading) term in equation (3.5) appears also
in models of direct quantum tunnelling, the process underlying STM (see eqn. (25) in ref. [1]),
where � is given by the tip-to-surface distance. Therefore, it seems that equation (3.5)—at
least its exponential factor—is a general motive in tunnelling phenomena. What distinguishes
direct tunnelling from electric-field-assisted tunnelling—the process described in this paper—is
the functional dependence of J on Φd, d. In the case of electric-assisted tunnelling, the scaling
hypothesis imposes the special functional dependence of � on Φd, d, i.e. � = �(Φd · d−λ). The
current density behaves accordingly and the functional dependence is reduced to one single
variable. In direct tunnelling, this reduction to one single variable is not realized (see eqn (25)
in ref. [1] and ref. [3]). We also mention here that the spin of the electrons is a further variable that
appears in direct (STM) tunnelling phenomena [21]. It would be interesting to study whether the
spin also plays a role in electric-field-assisted tunnelling and its scaling properties.

4. Experimental and numerical evidence of the scaling hypothesis

(a) Experimental evidence
(i) I–V curves

The first observation of the scaling behaviour is contained in the experimental data reported in
ref. [9]. We reproduce part of these data in figure 6a(i,ii), which also contains further experimental
data (b(i,ii) and c(i,ii)). Most remarkably, these further data, taken with different tips, strongly
support the collapsing behaviour reported in ref. [9]. We conclude that the scaling behaviour is a
general feature of electric-field-assisted tunnelling. Let us discuss now some details of the data in
figure 6. The top panel of the figure shows a set of current (I) versus voltage (V) curves taken for
three different tips (a,b,c) at different distances from a doped Si(111)-single crystal surface used
as counterelectrode. Experimental details about the measurements are reported in ref. [9]. We
recall that our tips are fabricated starting with a tungsten wire with a few millimetres length and
250 µm diameter. The last few hundreds of micrometres close to one end of the wire are etched
electrochemically to assume a cuspidal profile which, in the final few micrometres towards the
apex, resembles very much a cone with a full angle of aperture between 6◦ and 12◦. Electron
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Figure 6. (a–c)(i) Family of I–V curves in the range of d = 3–300 nm. (a–c)(ii) The curves on the top are made to collapse
onto a reference curve (chosen arbitrarily as the one corresponding to d = 300 nm) by multiplying the voltage with a number
R(d), plotted in the insets on the bottom. The continuous curves through R(d) in the insets are power laws ∝ d−λ, with
λ ≈ 0.2 ± 0.05. The alternative horizontal scale in the bottom figure gives the electric field F at the apex, as derived in ref. [9].

microscope imaging of the tip reveals a rounding of the tip towards its apex. The rounding varies
between 5 and 30 nm, depending on the details of the tip preparation in ultra-high vacuum [9].
The counterelectrode is typically a W(110) or a Si(111) single-crystal surface: it turned out that
low-noise I–V characteristics are favoured by the use of typically very flat Si(111)-surfaces. The
family of curves in the top of the figure collapses onto one single reference curve (figure 6a–c(ii))
when the voltage is multiplied by a d-dependent factor R(d), which is well described by a power
law of the type ∼d−λ, with λ ∼ 0.2. The analysis of the data presented in figure 6 demonstrates
that I is a function of V · d−λ, i.e. I = I(V · d−λ). This is the essential point of the scaling hypothesis
proposed in §3. Furthermore, the experimentally observed values for the exponent λ fall in the
range of values expected for λ1 by equations (2.2) and (2.4). We recall that the scaling hypothesis
in §3 refers to the current density while experiments measure the total tunnelling current. Yet, the
scaling hypothesis is realized for the current as well. This points to the fact that the details of
the area on the apex where the electrons originate from (uniformity of emission, variable size of
the area of emission with d and V) are not relevant for the scaling behaviour. In other words, the
tunnelling process is dominated by the exponential function over any multiplicative, probably
non-exponential prefactor.

(ii) V–d curves

The scaling equation I = I(V · d−λ) can be inverted to yield V = I(−1)(I) · dλ, where I(−1) indicates
the inverse scaling function. Accordingly, if we plot the experimental data of figure 6 in a
V–d diagram, a family of V–d curves appears (figure 7a(i-iii)). When V is multiplied by the
scaling factor R(I) .= 1/I(−1)(I) (see insets in figure 7b(i–iii)), the family of V–d curves collapses
onto one single reference curve, behaving as dλ, with the exponent being the same entering
the insets of figure 6. We find that the factor R(I) closely follows a curve of the type ≈ I−μ,
with a very small value for μ [9]. It follows that 1/I(−1)(I) ≈ I−μ and therefore I(x) ≈ x1/μ. We
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note that, in the range available experimentally, this scaling function describes properly the
experimental results but is unusual in tunnelling phenomena. On the other side (see ref. [18,
pp. 40–41] for a complete discussion), a very small critical exponent might be the sign of a peculiar
singular behaviour, like, for example, a logarithmic singularity. In fact, for small μ and moderate
currents, one has I−μ ≈ 1 − μ ln I, and thus 1/I(−1)(I) ≈ 1 − μ ln I. Inverting the latter, we obtain
I(x) ≈ e−1/μx. This is the scaling function predicted by equation (3.4) and, in the available range
of experimental values of I, it appears to describe as properly as the scaling function x1/μ the bulk
of the experimental data. Note, however, that on the basis of the experimental data alone, it is
impossible to discriminate between the scaling functions x1/μ and e−1/μx. The two functions could
hypothetically be distinguished in the limit of x going to infinity. However, this limit corresponds
to very large currents, while a maximal current of only a few microamperes can be driven through
realistic tips without destroying them. Note also that there are still some details of the reference
graphs in figures 6 and 7 which are not properly covered by either scaling functions.

(iii) Deviations from scaling

In order to enhance these details, we single out two typical I–V curves within a so-called
Fowler–Nordheim [13] plot of log(I/V2) versus 1/V (figure 8a). Although the scaling function
of equation (3.4) predicts a strict linearity of the graphs in this kind of plot, we observe a
systematic downward curvature of the graphs, which is more pronounced at larger distances. The
observed curvature represents a deviation from the scaling function predicted by equation (3.4),
while the separation of the two curves on figure 8a for small voltages means a slight deviation
from collapsing towards smaller currents. In the following, we offer some arguments that might
account for these observations.

The scaling function for a non-analytical potential implies naturally the experimentally
observed downward curvature, but it cannot be applied straightforwardly to real tips, which
have necessarily a rounded apex. A simple way of avoiding the unphysical non-analyticity by
simultaneously keeping its welcome nonlinearity is to introduce a finite cut-off length r into the
cone solution by substituting the power-law (z/d)λ1 with its Taylor series at a finite distance r
from the tip apex. Here, r might be considered a measure for the radius of curvature. This yields√

ϕ − eV · A ·
( z

d

)λ1 →
√

ϕ − Φ(r) − eV · λ1 · A ·
( r

d

)λ1
[

z − r
r

− 1 − λ1

2
(z − r)2

r2 + · · ·
]

, (4.1)
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where A being a dimensionless factor (see appendix A). Note that a similar quadratic correction
to the linear term can also be found using the sphere-on-the-cone or the hyperboloidal models
for a rounded tip, but the mathematics entailed by the physically plausible cut-off approximation
is more transparent. We also observe that this approximation introduces a linear and a quadratic
term into the potential within the tunnelling barrier, but the presence of the quadratic term does
not break the scaling invariance. The simplest way of taking the quadratic term into account in
the calculation of the tunnelling current density is to use the proposed unifying equation, which
implies finding the value of z for which the argument of the square root in equation (4.1) vanishes
(Φ(r) is set for convenience to zero by modifying the boundary condition so that the zero of
the potential is at z = r). Mathematically speaking, this means solving a quadratic equation. In
the range of V for which the equation has a solution, we approximately find

� ≈ r · ϕ

λ1eVA(r/d)λ1
+ r · 1 − λ1

4

(
ϕ

λ1eVA(r/d)λ1

)2
(4.2)

and accordingly

J(V, d) ≈ exp

[
−a1

r · ϕ/λ1eVA(r/d)λ1 + r · (1 − λ1)/4(ϕ/λ1eVA(r/d)λ1 )2

Λ

]
. (4.3)

The quadratic part of the potential, which mimics the upward curvature of the potential energy
entailed by the original power law, increases the tunnelling width above the value obtained
with the linear term only and introduces an extra term which is responsible for the downward
curvature observed in the experimental Fowler–Nordheim plots (see figure 8a and ref. [9]). Note
that equation (4.3) still obeys the scaling hypothesis which is apparently ‘robust’ also with respect
to quadratic corrections of the potential. However, the appearance of the non-leading power
(r/d)2λ1 in the expression for the tunnel width suggests that, ultimately, a realistic expression for
the current density will need the use of other non-leading powers of r/d as well. But as soon as
we allow non-leading powers of the type (r/d)λk , the scaling behaviour is broken and deviation
from collapsing is expected (and indeed observed, see ref. [9] and figure 8a). We conclude that
a scaling function of the type J (x) = a1 e−a2/x−a3/x2

, which generalizes the expression obtained in
equation (4.3) for a nonlinear potential, might be useful to interpolate experimental data that show
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Figure 9. (a) Potential profileΦ(z) along the tip axis, for a given distance d. The tip used in this simulation is a hyperboloidal
model of a ‘real’ tip (a= 1528 nm,ω0 = 11◦). The planar counterelectrode is moved between d = 20 nm and d = 1646 nm.
All profiles are made to approximately collapse onto the reference curve (d = 1646 nm) when the potentialΦ(z) is multiplied
by RΦ (d) (see inset). RΦ (d) is shown in the top right corner of the figure. Note that both RΦ (d) and the scaled profile in the
inset behave as a power law, with a power-law exponent of about 0.3. This value is larger than the one of about 0.21 expected
fromω0 = 11◦. We point out that the value of 0.21 is an asymptotic value expected when the planar counterelectrode is much
farther away than the confocal plane. In the present simulation, d is smaller or in the range of the confocal plane distance so
that we might not have reached yet the true power law range. In fact, we have performed computations with d = 6000 nm
(not shown) and the exponent is seen to converge towards the analytical value of 0.21. We note, however, that the collapsing
of profiles is realized also in this non-asymptotic range, showing that the scaling property itself is a robust one. (b) Scaling of
Φ(z) andΦd(d). The continuous line is the potential profile obtained as described above, for d = 1646 nm. The full squares are
Φd(d) data points obtained at a given current, the current of 150 pA having being chosen so that theΦd(d) curve almost lies
onto theΦ(z) graph, without need of a rescaling factor. Inset:Φd(d) data points obtained in a junction with Si(111) at selected
currents, given in the legend. In the inset, data are rescaled so that they fall onto the same power law. The potential profile
computed for d = 300 nm (continuous curve) can also be rescaled onto the same curve as theΦd(d) data.

a downward curvature and small deviations from scaling in Fowler–Nordheim plots. An example
of such a procedure is reported here in figure 8b. A similar proposal was also put forward in
ref. [22] on the basis of numerical results (see also ref. [23] for a recent discussion on the curvature
problem).

(b) Numerical evidence
The principle of Saint-Venant [24] implies a further interesting scaling symmetry of the electric-
field-assisted tunnelling junction. In fact, this principle can be used to extend the validity of the
conical solution, equation (2.2), to real tips, supposing that they can be viewed as a ‘cone with a
rounded apex’. According to the principle of Saint-Venant, if the rounding of the cone singularity
is local enough—say limited to a scale length �, which does not need to be atomic, describing the
‘radius of curvature’—then the conical solution, equation (2.2), can be used in the range � � z � d
as well (the origin of the z-axis being, as usual, the apex of the tip):

Φ(z) ∼ Φd ·
( z

d

)λ1
, a � z � d. (4.4)

This equation is valid for any real tip shape with arbitrary but sufficiently localized rounding,
provided that asymptotically away from the rounded apex the conical shape is recovered. Note
that the region of validity of this equation makes it irrelevant for the field emission process,
which occurs at positive z � �, so that the discussion of this paragraph refers only to a property
of the electrostatic potential. Equation (4.4) provides a further scaling law which can be tested
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numerically by verifying, e.g., the collapsing of the family of Φ(z, d)-curves taken for different
d onto one single curve, when Φ(z) is multiplied by a suitable RΦ (d) ∼ dλ1 (figure 9a). The
latter is inversely proportional to R(d) introduced previously (figure 6), i.e. RΦ (d) ∼ 1/R(d).
For the computation of the potential, we have fitted a hyperboloid of revolution onto the
electron microscope micrograph of the tip used for the taking of the experimental V–d-curves.
Subsequently, we have used a numerical routine [25] to compute Φ(z) in the presence of a
plane placed at a well-defined (large) fixed distance in front of the hyperboloidal tip. A further
consequence of equation (4.4) is that an experiment where d is changed and Φd is adjusted
so that the tunnelling current (i.e. the potential within the tunnelling barrier) is kept constant
yields Φd ∼ dλ, i.e. the same power-law dependence that one expects for the z-dependence of the
potential Φ itself. In other words, we expect that all experimental Φd − d graphs (i) can be made
to collapse onto themselves (figure 7 and inset of figure 9b) and (ii) they can be collapsed onto a
Φ(z) profile, provided that one is not too close to z = d or z = 0 (figure 9b).
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Appendix A. Electrostatics
We will consider tips (‘needles’) with ‘realistic’ but highly symmetric geometries. The most
important symmetry, common to all tips, is the rotational symmetry with respect to the tip
axis. One speaks of axially symmetric Laplace problem because the sought for potential will be
independent on the rotational angle φ (figure 1) and that part of the Laplace operator which
contains derivatives with respect to φ can be neglected from the beginning. A further symmetry
is imposed on the electrostatic problem: the surface of the tip has a particular geometry along
which, when suitable, typically curvilinear coordinates x̃ and ỹ are introduced and one of them
(say, ỹ) assumes a fixed value ỹ0. One of the boundary conditions reads therefore: Φ(x̃, ỹ0) = 0 ∀x̃.
In view of the need to fulfil this boundary condition, it is suitable to introduce a separation Ansatz
Φ(x̃, ỹ) = X(x̃) · Y(ỹ) for solving the associated Laplace equation, yielding

�x̃X(x̃)
X(x̃)

= −�ỹY(ỹ)

Y(Ỹ)
, (A 1)

where �x̃,ỹ denote the Laplace operators in the variables x̃ and ỹ, respectively. Because the two
sides of the equation depend on two different variables, the problem reduces to two ordinary
differential equations

�x̃X(x̃)
X(x̃)

= λ · (λ + 1)

and
�ỹY(ỹ)

Y(Ỹ)
= −λ · (λ + 1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 2)

where λ · (λ + 1) is a separation constant to be determined by implementing the boundary
conditions. Equations (A 2), in general, have two linear independent solutions X(1,2)

λ (x̃) and

Y(1,2)
λ (ỹ). The boundary condition on the tip results in two eigenvalue problems for the separation

constant λ(λ + 1):

Y(1)
λ (ỹ0) = 0

and Y(2)
λ (ỹ0) = 0.

⎫⎬
⎭ (A 3)

The solution of equation (A 3) is a countable set of values λh and λk with h = 1, 2, . . . and
k = 1, 2, . . ., which we can order starting from the smaller one. By superposition, the general
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solution of the Laplace equation fulfiling the boundary condition on the tip reads

Φ(x̃, ỹ, φ) =
∑
λh

[A(1)
h · X(1)

h (x̃) + A(2)
h · X(2)

h (x̃)]Y(1)
h (ỹ)

+
∑
λk

[A(1)
k · X(1)

k (x̃) + A(2)
k · X(2)

k (x̃)]Y(2)
k (ỹ), (A 4)

where the coefficients A(1,2)
h,k in general depend on d, Φd and are determined by the boundary

condition on the plane. The conducting plane is generally described by an equation of the type
x̃ =P(ỹ, d) and does not necessarily coincide with a surface of the type ỹ = ỹ0. By implementing
the boundary condition on the plane, we obtain the following condition:

Φd =
∑
λh

[A(1)
h · X(1)

h (P(ỹ, d)) + A(2)
h · X(2)

h (P(ỹ, d))]Y(1)
h (ỹ)

+
∑
λk

[A(1)
k · X(1)

k (P(ỹ, d)) + A(2)
k · X(2)

k (P(ỹ, d))]Y(2)
k (ỹ), (A 5)

which must be fulfiled for any ỹ. Consequently, an infinite set of equations for the infinite number
of coefficients A(1,2)

h,k is obtained.
Scaling hypothesis. The analysis of the boundary condition equation (A 5) determines the scaling
properties of the potential with d and Φd. We note that the scaling property with Φd follows
directly from the fact that equation (A 5) must hold for any value of d and ỹ, such that each term
in the sum must scale with Φd as

A(1,2)
h,k (d, Φd) ∼ Φd · A(1,2)

h,k (d, 1). (A 6)

The scaling behaviour of the potential with d is determined by the specific geometry of the
considered problem.

(a) Conical tip
Differential equations. We introduce spherical coordinates (r, ϑ , φ) with respect to the origin of the
coordinate system [26] (figure 2), such that the surface of the cone is a surface of constant polar
angle ϑ = ϑ0. With the separation Ansatz Φ(x, y, z) = R(r) · Θ(ϑ), we obtain the following Laplace
equation:

r2 R′′(r)
R(r)

+ 2r
R′(r)
R(r)

= − 1
Θ(ϑ) sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ
Θ(ϑ)

)
⇐⇒

r2R′′(r) + 2rR′(r) − λ · (λ + 1)R(r) = 0

and
1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ
Θ(ϑ)

)
+ λ · (λ + 1)Θ(ϑ) = 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 7)

the lowest one being the Legendre differential equation.
General solution. For any value of λ, the linearly independent solutions of equation (A 7) are

R(1)
λ (r) = rλ, R(2)

λ (r) = 1
rλ+1

and Θ (1)(cos ϑ) = Pλ(cos ϑ), Θ (2)(cos ϑ) = Qλ(cos ϑ),

⎫⎪⎬
⎪⎭ (A 8)

where Pλ(cos ϑ) and Qλ(cos ϑ) denote the Legendre functions of the first and second kind [27].
Some of these functions are, however, not suitable as solutions of our conical tip problem. In fact,
for non-integer values of λ, the Legendre function of the first kind is regular for all angles 0 ≤
ϑ < π , but it is singular for ϑ = π . However, this singularity is excluded from Ω so that Pλ(cos ϑ)
can be admitted as solution. Legendre functions of the second kind, however, are singular for
both ϑ = 0 and ϑ = π , such that we must exclude them, as the line ϑ = 0 is part of Ω . Similarly,
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R(2)(r) has a singularity at r = 0 and therefore cannot enter the general solution of our problem.
The general solution of equation (A 7) reads, therefore,

Φ(x, y, z) =
∑
λ

Aλ(Φd, d) · rλ · Pλ(cos ϑ), (A 9)

where the sum runs over a countable set of values λ, which is determined by the boundary
condition on the cone.
The eigenvalue problem: boundary condition on the tip. The allowed values for the separation constant
λ are obtained by implementing the boundary condition on the cone

Pλ(cos ϑ0) = 0. (A 10)

The above equation has an infinite countable number of solutions λk(ϑ0), k = 1, 2, 3, . . ., which can
be ordered with increasing magnitude and have been calculated as a function of ϑ0, for example,
in ref. [17]. For sharp cones (ϑ0 ≈ π ), the smallest index λ1 can be written approximately as a
function of the the full angle of aperture of the cone ω0

.= 2π − 2ϑ0

λ1(ω0) � 1
[2 ln(2/ω0)]

. (A 11)

In summary, the general solution of the electrostatic problem pertaining to a conical tip reads

Φ(r, ϑ) =
∑

k

Ak(d, Φd)rλk Pλk (cos ϑ). (A 12)

Scaling behaviour: the boundary condition on the plane. The coefficients Ak are uniquely determined
by imposing the boundary condition on the plane placed in front of the tip, defined by the
equation r cos ϑ = d with 0 ≤ ϑ ≤ π/2:

∑
k

Ak(d, Φd)
[

d
cos ϑ

]λk

Pλk (cos ϑ) = Φd. (A 13)

Because equation (A 13) must hold for any value of the parameter d, the d-dependence must
cancel out from each term on the left-hand side. This requirement produces the scaling law for
the parameter d, which combined with equation (A 6) yields

Ak(d, Φd) = Ak(1, 1) · Φd · d−λk . (A 14)

The potential in the vicinity of the tip apex. The infinite set of constants Ak(1, 1) is determined by
requiring that equation (A 13) is fulfiled for 0 ≤ ϑ ≤ π/2. In principle, by multiplying both sides
by, for example, Pλq (cos ϑ) and integrating over the range 0 ≤ ϑ ≤ π/2, one can transform this
boundary condition into a system of an infinite number of coupled linear equations for the
infinite number of constants Ak(1, 1). Unfortunately, finding Ak(1, 1) is complicated by the fact that
the functions of cos ϑ appearing in the sum do not obey simple orthonormality relations in the
range 0 ≤ ϑ ≤ π/2, so that the diagonalization of the resulting matrix is a cumbersome numerical
problem which can be solved only approximately. It is, however, not our purpose to find the entire
set (or even a large number) of the constants Ak(1, 1). In fact, of relevance to the discussion of §3 is
only the potential close to the tip apex and along the tip axis z, which is given by the leading term
in equation (A 12). Provided that the term equation (A 12) corresponding to λ1 is not vanishing,
we have

Φ(z) ∼ Φd · d−λ1 zλ1 . (A 15)

The non-vanishing of this term can be proved using the maximum principle for harmonic
functions, which states that any harmonic function on a domain Ω with boundary ∂Ω takes its
maximum and minimum values necessarily on the boundary. This implies that A1 �= 0: otherwise,
the leading term would be the one corresponding to λ2, but Pλ2 also vanishes again for ϑ < ϑ0,
thus violating the maximum principle for harmonic functions. Note that this expression for the
potential is valid for any distance d, as, in the vicinity of a cone-singularity, r can be made
arbitrarily small.
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(b) Sphere on the cone
This is a slight modification of the conical problem but allows an exact model of a rounding of the
tip apex, which is expected for realistic tips.
General solution. The cone acts as a post supporting a small sphere of radius a. The sphere replaces
the point singularity at the apex of the cone. For the computations in this particular section, it is
convenient to set the origin of the coordinate system at the centre of the sphere, such that we write
(x, y, z′ = z + a), where z is measured from the tip apex (figure 3). In this coordinate system, the
position of the plane is given by z′

P = d + a. The general solution of this axially symmetric problem
follows the same lines as in the previous subsection. In this case, the general solution reads

Φ(r, ϑ) =
∑

k

Ak(z′
P, Φd)

[( r
a

)λk −
(a

r

)λk+1
]

Pλk (cos ϑ), (A 16)

where λk(ϑ0), k = 1, 2, 3, . . . are the solutions of equation (A 10).

(i) Scaling behaviour: distant planes

The boundary condition on the plane requires

Φd =
∑

k

Ak(z′
P, Φd)

[(
z′

P
a cos ϑ

)λk

−
(

a cos ϑ

z′
P

)λk+1
]

Pλk (cos ϑ) (A 17)

for all 0 ≤ ϑ ≤ π/2. In order to find the scaling behaviour with Φd, z′
P, however, it is sufficient to

consider the boundary condition along the tip axis and thus we set ϑ = 0 in equation (A 17). For
z′

P 
 a, equation (A 17) reduces to

∑
k

Ak(z′
P 
 a, Φd)

(
z′

P
a

)λk

Pλk (1) = Φd, (A 18)

wherefore the following scaling relation holds

Ak(z′
P 
 a, Φd) ∼ Φd ·

(
a

z′
P

)λk

. (A 19)

Accordingly, the leading order term of the potential in the vicinity of the tip apex and along the
tip axis reads

Φ(z′) ∼ Φd ·
(

a
z′

P

)λ1 (z′ − a)
a

. (A 20)

When written in terms of the coordinates x, y, z on the tip apex, equation (A 20) recovers
equation (2.4) exactly, where we have exploited the fact that z′

P ≈ d, which holds for distant planes.

(ii) Scaling behaviour: near planes.

As described above, it is sufficient to set ϑ = 0 in equation (A 17). For planes close to the tip,
(z′

P − a)/a � 1, wherefore [(
z′

P
a

)λk

−
(

a
z′

P

)λk+1
]

∼ z′
P − a

a
(A 21)

to leading order. From equation (A 21), we deduce the scaling behaviour

Ak

(
a

z′
P − a

� 1, Φd

)
∼ Φd ·

(
z′

P − a
a

)
. (A 22)

The leading order term of the potential along the z′-axis and in the vicinity of the tip apex is thus
given by

Φ(z′) ∼ Φd · z′ − a
z′

P − a
, (A 23)

which is exactly equation (2.4) in terms of the coordinates (x, y, z).
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(c) Hyperboloid of revolution
Differential equations and general solution. The tip surface is modelled as a hyperboloid of
revolution, obtained by rotating a hyperbola around the axis containing its focus with coordinates
x = y = 0 and z′ = −a (figure 3). In order to implement the boundary condition on the tip surface,
it is convenient to introduce the prolate-spheroidal coordinates (μ, ν, φ) [28], with μ ∈ [0, ∞[,
ν ∈ [0, π ], and φ ∈ [0, 2π ], defined through

x = a sinh μ sin ν cos φ,

y = a sinh μ sin ν sin φ

and z′ = a cosh μ cos ν.

⎫⎪⎪⎬
⎪⎪⎭ (A 24)

Surfaces of constant μ are ellipsoids of revolution with foci at z′ = ±a, where the limiting case
μ = 0 is a straight line connecting the foci. Surfaces of constant ν are hyperboloids with focus
at +a for ν ∈ [0, π/2] and at −a for ν ∈ [π/2, π ]. In particular, the surface of the tip is ν = ν0. The
corresponding Laplace equation reads

1
a2

1
ξ2 − η2

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+ ∂

∂η
(1 − η2)

∂

∂η

ξ2 − η2

(ξ2 − 1)(1 − η2)
∂2

∂φ2

]
Φ = 0, (A 25)

where we have introduced ξ = cosh μ and η = cos ν. The rotational symmetry of the problem
implies that the potential is independent of the angle φ. With the separation Ansatz Φ(ξ , η) =
Ξ (ξ )N(η), we obtain the following equations:

∂

∂ξ

(
(1 − ξ2)

∂

∂ξ
Ξ (ξ )

)
+ λ(λ + 1)Ξ (ξ ) = 0

and
∂

∂η

(
(1 − η2)

∂

∂η
N(η)

)
+ λ(λ + 1)N(η) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 26)

with solution
Φ(ξ , η) =

∑
λ

[AλPλ(ξ ) + BλQλ(ξ )] · [CλPλ(η) + DλQλ(η)], (A 27)

where the sum extends over suitable values of λ, determined by implementing the boundary
condition on the tip.

(i) Scaling behaviour: distant planes (z′P/a
 1)

In the limit of distant planes, we must exclude terms proportional to Qλ(ξ ) in equation (A 27), as
they diverge along the line ν = 0 (x = y = 0, a ≤ z′ < ∞). The boundary condition Pλ(cos ν0) = 0
is satisfied by the same values λk that we have obtained when considering conical tips. The
boundary condition on a distant plane involves finding the behaviour of Pλk and Qλk for large
arguments. For this purpose, we let μ → ∞ and a → 0 by keeping r .= a · cosh μ constant. To
visualize the significance of this limit, consider that in this limit the foci are ‘moved’ towards the
origin and a cosh μ ≈ a sinh μ, so that constant-ξ ellipsoids become constant-r spheres. Formally,
in the limit μ → ∞ with r = aξ = constant, prolate spheroidal coordinates are in fact the same
as spherical coordinates. To appreciate this point, we rewrite the differential equation for ξ in
terms of r

a2 ∂

∂r

((( r
a

)2
− 1

)
∂

∂r
Ξλk (r)

)
− λkΞλk (r) = 0. (A 28)

In the limit a → 0, equation (A 28) simplifies to

r2Ξ ′′
λk

(r) + 2rΞ ′
λk

(r) − λkΞλk (r) = 0, (A 29)

whose solution reads

Ξ
(1)
λk

(r) = rλk and Ξ
(2)
λk

(r) = 1
rλk+1 . (A 30)
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For distant planes, Ξ (2)(zP/a cos ν) becomes negligible and the boundary condition on the plane
simplifies to

Φd =
∑
λk

AλkΞ
(1)
λk

(
z′

P
a cos ν

)
· Pλk (cos ν), (A 31)

which, in virtue of the asymptotic behaviour of Ξ
(1)
λk

(r), requires the scaling property

Aλk (Φd, z′
P) ∼ Φd ·

(
a

z′
P

)λk

. (A 32)

Potential close to the apex. The potential in the vicinity of the tip apex does not contain Qλk (cosh μ)
which is singular in the interval z′ ∈ [−a, a], corresponding to μ = 0. In addition, we point out
that in the vicinity of cos ν0 both Pλk (cos ν) and Qλk (cos ν) are analytic functions having a Taylor
expansion starting with a linear term in cos ν − cos ν0, z′

0 = a cos ν0 being the z′-coordinate of the
tip apex. Thus, to leading order in (z′ − z′

0)/a, the potential in the vicinity of the hyperboloid apex
and along the hyperboloid axis reads

Φ(z) ∼ Φd ·
(

a
z′

P

)λ1
(

z′ − z′
0

a

)
. (A 33)

This is equivalent to equation (2.4) in terms of the x, y, z-coordinates (recall that z′ = z + a cos ν0).

(ii) Scaling behaviour: near plan (|z′P − z′0|/a� 1)

In this case, we must exclude terms proportional to Qλ(μ) in equation (A 27), as they diverge
along the axis μ = 0. The boundary condition along the surface of the hyperboloid selects indices
λh and λk for which either Pλh (cos ν0) = 0 (and Bλh = 0) or Qλk (cos ν0) = 0 (and Aλk = 0) holds. The
general solution then reads

Φ(ξ , η) =
∑
λh

Aλh Pλh (ξ ) · Pλh (η) +
∑
λk

Bλk Pλk (ξ ) · Qλk (η). (A 34)

We consider the boundary condition on the plane in the case μ = 0 and obtain

Φd =
∑
λk

Aλk Pλk (1) · Pλk

(
z′

P
a

)
+
∑
λh

Bλh Pλ(1) · Qλh

(
z′

P
a

)
. (A 35)

Because for z′
P close to the tip apex both Pλh and Qλk can be approximated by linear terms in

(z′
P − z′

0)/a, equation (A 35) implies the following scaling relations:

Aλh ∼ Φd
a

z′
P − z′

0
and Bλk ∼ Φd

a
z′

P − z′
0

. (A 36)

Potential near the apex. To leading order, the potential in the vicinity of the hyperboloid apex and
along the hyperboloid axis reads

Φ(z′) ∼ Φd · z′ − z′
0

z′
P − z′

0
, (A 37)

which is equivalent to equation (2.4) in terms of the coordinates x, y and z.

(iii) Scaling behaviour: confocal plane (z′P = 0)

This case is special, because the conducting plane coincides with the hyperboloid defined by
ν = π/2, and thus it is confocal to the tip surface. Boundary conditions are therefore homogeneous
in the variable ν, such that the solution does not depend on μ. This requirement determines
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uniquely that λ = 0 and B0 = 0 is the only possible solution. Accordingly, the general solution
simplifies to

C0P0(η) + D0Q0(η) = C0 + D0

2
ln
(

1 + cos ν

1 − cos ν

)
. (A 38)

The constants C0 and D0 must be chosen in order to satisfy the boundary conditions Φ(ν = ν0) = 0
and Φ(ν = π/2) = +Φd, so that the potential reads, exactly [29]

Φ(μ, cos ν, φ) = Φd − Φd

ln((1 + cos ν0)/(1 − cos ν0))
· ln

(
1 + cos ν

1 − cos ν

)
. (A 39)

Close to z′
0 = a cos ν0 and along the z′-axis we have, to leading order in z′ − z′

0

Φ(z′) ≈ −Φd
2

ln((1 + cos ν0)/(1 − cos ν0))
· z′ − z′

0
a · (1 − cos2 ν0)

≈ Φd
2

R0
· 1

ln(4d/R0)
· z. (A 40)

Here, we have used the relation a2 cos2 ν0 = d2 and cos ν0 =√
d/(d + R0), R0 � d being the radius

of curvature of the hyperboloid. This result shows that the linear dependence on 1/d of the
potential crosses over to a logarithmic dependence when the planar electrode crosses the confocal
plane. This is consistent with the idea that equation (1.1) corresponds to a logarithmic dependence
on d when λ = 0, which we put forward when discussing the paraboloid solution for d 
 R0.
When the plane becomes a distant one a true power law intervenes.
A remark. One might be tempted to use the method just illustrated to solve the electrostatic
problem of an infinitely thin semi-infinite needle placed vertical to a conducting plane [30]. In fact,
a semi-infinite needle can be viewed as the limit of an axially symmetric hyperboloidal tip with
angle of aperture ω0 → 0. We point out that in the hyperboloidal problem, λ1 becomes arbitrarily
small when ω0 → 0, both being well-defined and finite as long as ω0 �= 0. However, for ω0 = 0, the
boundary condition on the tip cannot be fulfiled, as the equation Pλ1 (cos π ) = 0 has no solution
(in particular, λ1 = 0 is not a solution of this equation). This result shows that it is impossible to
run a junction between a truly semi-infinite one-dimensional wire and a planar counterelectrode at
a finite potential difference, at least in a three-dimensional space.

(d) Paraboloid of revolution
Differential equations and general solution. We now model the microtip as paraboloid of revolution
by introducing three-dimensional parabolic coordinates [31] (figure 4)

x = uv cos φ,

y = uv sin φ

and z′ = u2 − v2

2
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 41)

where u, v ∈ [0, ∞[ and φ ∈ [0, 2π [. Surfaces of constant u are paraboloids of revolution with
negative curvature, the limiting case u = 0 corresponding to the negative z-axis. Surfaces of
constant v are paraboloids of revolution with positive curvature, where the limiting case v = 0
corresponds to the negative z-axis. The microtip is taken to be a paraboloidal surface of constant
u = u0 or, equivalently, it is described by the equation z′ = −(1/2)(r/R0) + R0/2, where R0

.= u2
0

is the radius of curvature of the paraboloid. The coordinates of the tip apex are x = y = 0 and
z′

0 = u0/2. The Laplace equation in these coordinates reads

1
u2 + v2

{
1
u

∂

∂u

(
u

∂

∂u

)
+ 1

v

∂

∂v

(
v

∂

∂v

)}
+ 1

u2v2
∂2

∂φ2 Φ = 0. (A 42)
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By exploiting the rotationally symmetric Ansatz Φ(u, v, φ) = U(u) · V(v), we obtain the following
differential equations:

u2U′′(u) + uU′(u) − n2u2U(u) = 0

and v2V′′(v) + vV′(v) + n2v2V(v) = 0,

⎫⎬
⎭ (A 43)

where n2 is the separation constant. The solution of equation (A 43) can be written in terms of
Bessel functions J0(nu) and Y0(nu) and modified Bessel functions I0(nv) and K0(nv)) of order 0

Φ(u, v) =
∑

k

[Ank J0(nku)I0(nkv) + Bmk Y0(mku)I0(mkv)]

and Φd =
∑

k

[
Ank J0

(
nk

√
2z′

P + v2
)

I0(nkv) + Bmk Y0

(
mk

√
2z′

P + v2
)

I0(mkv)
]

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 44)

where nk and mk are defined by J0(nku0) = 0 and Y0(mku0) = 0, as a consequence of implementing
the boundary condition Φ(u0, v) = 0 on the tip surface. To obtain equation (A 44), we have
implemented the boundary condition on the plane (u2 − v2)/2 = z′

P as well.

(i) Scaling behaviour: near planes
(√

2z′P − u0 ≥ u0
)
.

We consider the boundary condition along the line v = 0 and exploit the fact that for near planes,√
2z′

P is close to u0. Because the functions J0(nku) and Y0(mku) vanish at u0, we have to lowest
order

J0

(
nk

√
2z′

P

)
∼
[√

2z′
P − u0

]

and Y0

(
mk

√
2z′

P

)
∼
[√

2z′
P − u0

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 45)

These equations imply the scaling behaviour

Ank , Bnk ∼ Φd
z′

0
z′

P − z′
0

(A 46)

and the potential close to the tip apex and along the z′-axis reads, therefore,

Φ(z′) ∼ Φd · (z′ − z′
0)

z′
P − z′

0
. (A 47)

In terms of the x, y and z-coordinates, equation (A 47) recovers equation (2.5) exactly.

(ii) Scaling behaviour: distant planes
(√

2z′P − u0 
 u0
)

The formulation of a scaling law in the case of a distant planar counterelectrode is difficult,
because J0 and Y0 share the same asymptotic behaviour and are both oscillating, so that
cancellations might occur. However, a strategy which foresees to approximate a large but finite

distant plane with the flat portion of a confocal paraboloid u = u1 =
√

2z′
P might give a useful

approximation. This specific choice of the counterelectrode geometry has the advantage that
boundary conditions are homogeneous in the coordinate u, such that the solution solely depends
on the variable u. Under these circumstances, equation (A 42) simplifies to

u2Φ ′′(u) + uΦ ′(u) = 0. (A 48)

By accounting for the boundary conditions on the tip and on the parabolic counterelectrode, the
solution of equation (A 48) reads

Φ(u) = Φd

ln(u1/u0)
· ln

(
u
u0

)
. (A 49)
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Close to u0 and along the tip axis, the potential reads, therefore,

Φ(z′) = Φd · 1
ln(z′

P/z′
0)

· z′ − z′
0

z′
0

, (A 50)

which is equivalent to equation (2.5) in terms of the coordinates x, y and z.

(e) Cuspidal tip
Differential equations. In this case, it is convenient to introduce bi-spherical coordinates (α, β, φ)
(figure 2), defined through [32]

x = a sin α cos φ

cosh β − cos α
,

y = a sin α sin φ

cosh β − cos α

z′ = a sinh β

cosh β − cos α
,

where 0 ≤ α ≤ π , −∞ < β < ∞, 0 ≤ φ ≤ 2π and a is the focal distance. Surfaces of constant α are
tori with radius a/ sin α and centre on the z′ = 0-plane at a distance a cot α from the origin of the
coordinate system (√

x2 + y2 − a cot α

)2
+ z′2 = a2

sin2 α
, (A 51)

whereas surfaces of constant β are spheres of radius a/ sinh β centred at (0, 0, a coth β)

(z′ − a coth β)2 + (x2 + y2) = a2

sinh2 β
. (A 52)

In these coordinates, the tip surface is given by α = α0 > 0, such that the associated boundary
condition is Φ(α0, β, φ) = 0. The corresponding Laplace equation is separable if the following
rotationally symmetric Ansatz is used

Φ(α, β) =
√

2 cosh β − 2 cos α · A(α) · B(β).

The functions A(α) and B(β) satisfy the following equations:

1
sin α

d
dα

(
1

sin α

dA
dα

)
+ λ(λ + 1)A = 0

and
d2B
dβ2 =

(
λ + 1

2

)2
B.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 53)

with solution

Φ(α, β) =
√

2 cosh β − 2 cos α

×
∑
λ

[AλPλ(− cos α) + BλQλ(cos α)]

× [Cλ e(λ+1/2)β + Dλ e−(λ+1/2)β ]. (A 54)

Divergences at α = π (−a ≤ z′ ≤ a) are avoided by setting Bλ = 0.
Boundary condition on the tip. By implementing the boundary condition on the tip, we obtain the
equation Pλ(− cos α0) = 0, with solutions λ1, λ2, . . .. These indices coincide with those computed
for the conical tip model with aperture angle ω0 = 2α0.
Scaling properties. Let us consider a plane at z′ = z′

P close to tip apex. Note that this plane cannot
extend indefinitely in the xy-direction, because it would encounter the boundary represented by
the tip itself, which is kept at a different potential. Relevant in this case is the behaviour of the
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solution for β → −∞. Under these circumstances, sinh(β) ∼ e−β/2 and coth(β) ∼ −1, such that
equation (A 52) simplifies to

(x2 + y2) + (z′
P + a)2 = (2a)2

e−2β
, (A 55)

which is the equation of a sphere with radius 2a eβ centred at the tip apex. Note that for the above
approximation to hold, z′

P needs to lie in the interval [−a, 0]. Along the tip axis, equation (A 55)
implies β ≈ ln((z′

P + a)/2a), such that we must set Dλ = 0 in equation (A 54) to avoid divergence
at z′

P → −a. The boundary condition along the axis reads accordingly

Φd =
∞∑

k=1

Cλk (Φd, z′
P)Pλk (1)

(
z′

P + a
a

)λk

, (A 56)

wherefore

Cλk ∼ Φd

(
a

z′
P + a

)λk

. (A 57)

Finally, the leading order term of the potential along the tip axis and in the vicinity of the apex
reads

Φ(z′) ∼ Φd

(
a

z′
P + a

)λ1
(

z′ + a
a

)λ1

, (A 58)

which is equivalent to equation (2.2) in terms of x, y and z (recall: z′
P + a = d, figure 2).

Appendix B. The tunnelling current density
In this appendix, we present the details regarding the computation of the integrals appearing in
G(Ef) and J0(Ef).

(a) Non-analytic potential
The potential within the tunnelling barrier writes, to leading order, Φ(z) = Aλ1 · Φd · (z/d)λ1 , where
Aλ1 is a dimensionless constant. Referring to figure 5, we set z1 = 0 and

z2 = d
(

ϕ

Aλ1 eΦd

)1/λ1

. (B 1)

By introducing the dimensionless variable

y = z
d

(
Aλ1 eΦd

ϕ

)1/λ1

, (B 2)

we obtain

G(Ef) = 2

√
8π2m

h2

∫ z2

0

√(
ϕ − Aλ1 eΦd

( z
d

)λ1
)

dz

= 2

√
8π2mϕ

h2 · d
(

ϕ

Aλ1 eΦd

)1/λ1 ∫ 1

0

(√
1 − yλ1

)
dy

= 2

√
8π2mϕ

h2 · d
(

ϕ

Aλ1 eΦd

)1/λ1

·
√

π · Γ (1 + 1/λ1)
2 · Γ (3/2 + 1/λ1)

= 2π3/2 Γ (1 + 1/λ1)
Γ (3/2 + 1/λ1)

·
(

Aλ1 eΦd

ϕ
·
(

d
Λϕ

)−λ1
)−1/λ1

(B 3)
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and, similarly,

J0(Ef) = 4πem
h3

⎛
⎝
√

8π2m
h2

d · ϕ1/λ1−1/2

(Aλ1 eΦd)1/λ1
·
∫ 1

0

1√
1 − yλ1

dy

⎞
⎠

−2

= 4πem
h3

⎛
⎝
√

8π2m
h2

d · ϕ1/λ1−1/2

(Aλ1 eΦd)1/λ1
·
√

πΓ (1 + 1/λ1)
Γ (1/2 + 1/λ1)

⎞
⎠

−2

= e · ϕ

h · Λ2
ϕ

·
(

Γ (1/2 + 1/λ1)√
2πΓ (1 + 1/λ1)

)2
·
(

Aλ1 eΦd

ϕ
·
(

d
Λϕ

)−λ1
)2/λ1

. (B 4)

We observe that both the expressions for G(Ef) and J0(Ef) depend on the scaling variable
Φd d−λ1 , whose natural unit turns out to be ϕ Λ

−λ1
ϕ /e.

(b) Rounded tips: linear potential
In this case, the potential is given by Φ(z) = Aλ1 (a/d)λ1 · Φd · z/a for distant planes providing the
boundary condition and by Φ(z) = A1 · Φd · z/d for near planes. Therefore, we set z1 = 0 and

z2 = d · ϕ

Aλ1 eΦd
(near plane)

and z2 = a · ϕ

Aλ1 eΦd(a/d)λ1
(distant plane).

⎫⎪⎪⎬
⎪⎪⎭ (B 5)

The computation of G(Ef) and J0(Ef) reduces to the computation of the elementary integrals
∫ 1

0

(√
1 − y1

)
dy and

∫ 1

0

1√
1 − y1

dy, (B 6)

such that one obtains

Gnear(Φd, d) = 8π

3
· ϕ

A1eΦd · Λϕ/d
,

Jnear
0 (Φd, d) = 1

8π
· e · ϕ

h · Λ2
ϕ

· (A1eΦd · Λϕ/d)2

ϕ2 ,

Gdistant(Φd, d) = 8π

3
· a
Λϕ

· ϕ

Aλ1 eΦd · (a/d)λ1

and Jdistant
0 (Φd, d) = 1

8π
· e · ϕ

h · Λ2
ϕ

· Λ2
ϕ

a2 · (Aλ1 eΦd · (a/d)λ1 )2

ϕ2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 7)

(c) The appearance ofΛϕ

A most remarkable feature common to all equations in this appendix is the appearance of a
characteristic length Λϕ , which is the De Broglie wavelength associated with an electron with
an energy corresponding to the potential energy barrier ϕ. The simplest way to illustrate this
somewhat surprising appearance of Λϕ is to consider the Gamov factor for the elementary
triangular barrier in the planar geometry [33]

Gel = 8π

3
·
√

2m
e · h

ϕ3/2

F
, (B 8)

where F is the electric field and the superscript el used in ref. [33] probably stands for ‘elementary’.
In the planar geometry, one has F = Φd/d. Accordingly, Gel writes

Gel = 8π

3
·
√

2m
h

· d · ϕ3/2

eΦd
. (B 9)
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Note that the Gamov factor must be dimensionless, as it is an exponent. To rewrite Gel as a
manifestly dimensionless quantity proceed as follows:

(i) ϕ3/2 is written as ϕ · ϕ1/2.
(ii) The first factor ϕ has the units of energy and is used to cancel the dimension of eΦd.

(iii) The second factor ϕ1/2 is associated with the remaining terms to create a quantity with
the dimensions of an inverse length, which cancels the dimension of d. One finds that this
quantity is exactly the inverse of the characteristic length Λϕ .

This shows that Λϕ was just hidden in the widely known expression for Gel. Having (proudly)
demonstrated the appearance of Λϕ in the Gamov exponent, we discovered that the same length
was already introduced into a Gamov exponent more than 80 years ago by J. R. Oppenheimer
(eqn (1) in ref. [12])!

References
1. Simmons JG. 1963 Generalized formula for the electric tunnel effect between similar electrodes

separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803. (doi:10.1063/1.1702682)
2. Binnig G, Rohrer H, Gerber Ch, Weibel E. 1982 Surface studies by scanning tunneling

microscopy. Phys. Rev. Lett. 49, 57–61. (doi:10.1103/PhysRevLett.49.57)
3. Feenstra RM, Stroscio JA, Fein AP. 1987 Tunneling spectroscopy of the Si(111) 2 × 1 surface.

Surf. Sci. 181, 295–306. (doi:10.1016/0039-6028(87)90170-1)
4. Pitarke JM, Flores F, Echenique PM. 1990 Tunneling spectroscopy: surface geometry and

interface potential effects. Surf. Sci. 234, 1–16. (doi:10.1016/0039-6028(90)90659-V)
5. Young R, Ward J, Scire F. 1972 The topografiner: an instrument for measuring surface

microtopography. Rev. Sci. Instrum. 43, 999–1011. (doi:10.1063/1.1685846)
6. Zanin DA, Cabrera H, De Pietro LG, Pikulski M, Goldmann M, Ramsperger U, Pescia D,

Xanthakis JP. 2012 Fundamental aspects of near-field emission scanning electron microscopy.
Adv. Imaging Electron Phys. 170, 227–258. (doi:10.1016/B978-0-12-394396-5.00005-1)

7. Ferain I, Colinge CA, Colinge J. 2011 Multigate transistors as the future of classical
metaloxidesemiconductor field-effect transistors. Nature 479, 310–316. (doi:10.1038/
nature10676)

8. Haselman M, Hauck S. 2010 The future of integrated circuits: a survey of nanoelectronics.
Proc. IEEE 98, 11–38. (doi:10.1109/JPROC.2009.2032356)

9. Cabrera H, Zanin DA, De Pietro LG, Michaels Th, Thalmann P, Ramsperger U, Vindigni
A, Pescia D. 2013 Scale invariance of a diodelike tunnel junction. Phys. Rev. B 87, 115436.
(doi:10.1103/PhysRevB.87.115436)

10. Hankey A, Stanley HE. 1972 Systematic application of generalized homogeneous
functions to static scaling, dynamic scaling, and universality. Phys. Rev. B 6, 3515–3542.
(doi:10.1103/PhysRevB.6.3515)

11. Duke CB. 1969 Tunnelling in solids. In Solid state physics (eds F Seitz, D Turnbull,
H Ehrenreich), pp. 30–89. New York, NY: Academic Press.

12. Oppenheimer JR. 1928 On the quantum theory of the autoelectric field currents. Proc. Natl
Acad. Sci. 14, 363–365. (doi:10.1073/pnas.14.5.363)

13. Fowler RH, Nordheim L. 1928 Electron emission in intense electric fields. Proc. R. Soc. Lond. A
119, 173–181. (doi:10.1098/rspa.1928.0091)

14. Murphy EL, Good RH. 1956 Thermionic emission, field emission, and the transition region.
Phys. Rev. 102, 1464–1473. (doi:10.1103/PhysRev.102.1464)

15. Miller HC. 1966 Values of Fowler–Nordheim field emission functions: v(y), t(y), and s(y). J.
Franklin Inst. 282, 382–388. (doi:10.1016/0016-0032(66)90043-3)

16. Jackson JD. 1999 Classical electrodynamics, 3rd edn., pp. 104–107. New York, NY: J. Wiley and
sons, Inc.

17. Hall RN. 1949 The application of non-integral legendre functions to potential problems.
J. Appl. Phys. 20, 925–931. (doi:10.1063/1.1698254)

18. Stanley HE. 1971 Introduction to phase transitions and critical phenomena. Oxford, UK: Clarendon
Press.

http://dx.doi.org/doi:10.1063/1.1702682
http://dx.doi.org/doi:10.1103/PhysRevLett.49.57
http://dx.doi.org/doi:10.1016/0039-6028(87)90170-1
http://dx.doi.org/doi:10.1016/0039-6028(90)90659-V
http://dx.doi.org/doi:10.1063/1.1685846
http://dx.doi.org/doi:10.1016/B978-0-12-394396-5.00005-1
http://dx.doi.org/doi:10.1038/nature10676
http://dx.doi.org/doi:10.1038/nature10676
http://dx.doi.org/doi:10.1109/JPROC.2009.2032356
http://dx.doi.org/doi:10.1103/PhysRevB.87.115436
http://dx.doi.org/doi:10.1103/PhysRevB.6.3515
http://dx.doi.org/doi:10.1073/pnas.14.5.363
http://dx.doi.org/doi:10.1098/rspa.1928.0091
http://dx.doi.org/doi:10.1103/PhysRev.102.1464
http://dx.doi.org/doi:10.1016/0016-0032(66)90043-3
http://dx.doi.org/doi:10.1063/1.1698254


26

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140014

...................................................

19. Forbes RG. 2010 Simple derivation of the formula for Sommerfeld supply density used in
electron-emission physics and limitations on its use. J. Vac. Sci. Technol. B 28, 1326–1329.
(doi:10.1116/1.3501118)

20. Qin X-T, Wang W-L, Xu N-S, Li Z-B, Forbes RG. 2011 Analytical treatment of cold field electron
emission from a nanowall emitter, including quantum confinement effects. Proc. R. Soc. A 467,
1029–1051. (doi:10.1098/rspa.2010.0460)

21. Wiesendanger R, Güntherodt HJ, Güntherodt G, Gambino RJ, Ruf R. 1990 Observation of
vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys.
Rev. Lett. 65, 247–250. (doi:10.1103/PhysRevLett.65.247)

22. Cutler PH, Jun H, Miller J, Miskovsky NM, Weiss B, Sullivan TE. 1993 Theory of electron
emission in high fields from atomically sharp emitters: validity of the Fowler–Nordheim
equation. Prog. Surf. Sci. 42, 169–185. (doi:10.1016/0079-6816(93)90068-7)

23. Fischer A, Mousa MS, Forbes RG. 2013 Influence of barrier form on Fowler–Nordheim plot
analysis. J. Vac. Sci. Technol. B 31, 032201. (doi:10.1116/1.4795822)

24. Oleinik OA, Iosif’yan GA. 1977 Removable singularities on the boundary and uniqueness
of solutions of boundary-value problems for second-order elliptic and parabolic equations.
Funct. Anal. Appl. 11, 206–217. (doi:10.1007/BF01079466)

25. COMSOL Multiphysics 4.3b, AC/DC Module, c©2011 by COMSOL AB.
26. Weisstein EW. Spherical Coordinates, from MathWorld-A Wolfram Web Resource. See

http://mathworld.wolfram.com/SphericalCoordinates.html.
27. Stegun IA 1972 Legendre functions. In Handbook of mathematical functions (eds M Abramowitz,

IA Stegun), 9th printing, pp. 331–339. New York, NY: Dover.
28. Weisstein EW. Prolate Spheroidal Coordinates, ibidem. See http://mathworld.wolfram.

com/ProlateSpheroidalCoordinates.html.
29. Zuber JD, Jensen KL, Sullivan TE. 2002 An analytical solution for microtip field emission

current and effective emission area. J. Appl. Phys. 91, 9379–9384. (doi:10.1063/1.1474596)
30. Jackson JD. 2002 Charge density on a thin straight wire: the first visit. Am. J. Phys. 70, 409–410.

(doi:10.1119/1.1432973)
31. Weisstein EW. Parabolic coordinates, ibidem. See http://mathworld.wolfram.com/

ParabolicCoordinates.html.
32. Weisstein EW. Bispherical Coordinates, ibidem. See http://mathworld.wolfram.com/

BisphericalCoordinates.html.
33. Forbes RG, Deane JHB. 2007 Reformulation of the standard theory of Fowler–Nordheim

tunnelling and cold field electron emission. Proc. R. Soc. A 463, 2907–2927. (doi:10.1098/
rspa.2007.0030)

http://dx.doi.org/doi:10.1116/1.3501118
http://dx.doi.org/doi:10.1098/rspa.2010.0460
http://dx.doi.org/doi:10.1103/PhysRevLett.65.247
http://dx.doi.org/doi:10.1016/0079-6816(93)90068-7
http://dx.doi.org/doi:10.1116/1.4795822
http://dx.doi.org/doi:10.1007/BF01079466
http://mathworld.wolfram.com/SphericalCoordinates.html
http://mathworld.wolfram.com/ProlateSpheroidalCoordinates.html
http://mathworld.wolfram.com/ProlateSpheroidalCoordinates.html
http://dx.doi.org/doi:10.1063/1.1474596
http://dx.doi.org/doi:10.1119/1.1432973
http://mathworld.wolfram.com/ParabolicCoordinates.html
http://mathworld.wolfram.com/ParabolicCoordinates.html
http://mathworld.wolfram.com/BisphericalCoordinates.html
http://mathworld.wolfram.com/BisphericalCoordinates.html
http://dx.doi.org/doi:10.1098/rspa.2007.0030
http://dx.doi.org/doi:10.1098/rspa.2007.0030

	Introduction
	Electrostatics of the junction in the electric-field-assisted tunnelling regime
	Conical and cuspidal tips
	Sphere-on-the-cone and hyperboloid of revolution
	Paraboloid of revolution
	General tip geometry

	The tunnelling current density in the presence of a non-trivial exponent 1
	Non-analytic potential: conical and cuspidal tip
	Rounded tips: analytical potential
	Proposal for a unified approach and relationship with direct tunnelling

	Experimental and numerical evidence of the scaling hypothesis
	Experimental evidence
	Numerical evidence
	Conical tip
	Sphere on the cone
	Hyperboloid of revolution
	Paraboloid of revolution
	Cuspidal tip
	Non-analytic potential
	Rounded tips: linear potential
	The appearance of 

	References

