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Abstract: Taurine is ubiquitously distributed in mammalian tissues and is highly concentrated in
the heart, brain, and leukocytes. Taurine exerts neuroprotective effects in various central nervous
system diseases and can suppress infarct formation in stroke. Taurine reacts with myeloperoxidase
(MPO)-derived hypochlorous acid (HOCl) to produce taurine chloramine (Tau-Cl). We investigated
the neuroprotective effects of taurine using a rat middle cerebral artery occlusion (MCAO) model and
BV2 microglial cells. Although intranasal administration of taurine (0.5 mg/kg) had no protective
effects, the same dose of Tau-Cl significantly reduced infarct volume and ameliorated neurological
deficits and promoted motor function, indicating a robust neuroprotective effect of Tau-Cl. There was
neutrophil infiltration in the post-MCAO brains, and the MPO produced by infiltrating neutrophils
might be involved in the taurine to Tau-Cl conversion. Tau-Cl significantly increased the levels of
antioxidant enzymes glutamate–cysteine ligase, heme oxygenase-1, NADPH:quinone oxidoreductase
1, and peroxiredoxin-1 in BV2 cells, whereas taurine slightly increased some of them. Antioxidant
enzyme levels were increased in the post-MCAO brains, and Tau-Cl further increased the level of
MCAO-induced antioxidant enzymes. These results suggest that the neutrophils infiltrate the area
of ischemic injury area, where taurine is converted to Tau-Cl, thus protecting from brain injury by
scavenging toxic HOCl and increasing antioxidant enzyme expression.

Keywords: taurine; taurine chloramine (Tau-Cl); middle cerebral artery occlusion (MCAO); neu-
trophils; myeloperoxidase (MPO); antioxidant enzymes

1. Introduction

Taurine (2-aminoethansulfolic acid), the decarboxylation product of cysteine, is one of
the most abundant free amino acids in the animal kingdom. It has various physiological
functions including osmoregulation, membrane stabilization, calcium mobilization, neuro-
transmission, reproduction, inflammation, and detoxification [1–3]. Taurine is ubiquitously
distributed in mammalian tissues, with the highest levels found in the heart, brain, and
leukocytes [1]. Taurine levels differ in different regions of the brain [4]. In the adult brains
of mice, rats, and humans, 8.6, 4.4, and 1.4 µmol/g wet weight of taurine, respectively,
were detected, and these were 2–4-fold higher in the newborn brain than in the adult
brain [5], which indicates that taurine concentration is the highest in developing brain and
decreases with development. Taurine has neuroprotective activity in various brain injury
models, including ischemic stroke and inflammation [6–10]. Taurine reduced apoptotic
protein expression in ischemic injury [11] and maintained intracellular Ca2+ homeosta-
sis [12], thereby attenuating apoptotic neuronal death [7]. Taurine also induced protection
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against endoplasmic reticulum (ER) stress by reducing the expression of the components
of the ER stress pathway and by suppressing excessive reactive oxygen species (ROS)
production [13]. Moreover, taurine suppressed proinflammatory cytokine production and
neutrophil infiltration [8] and prevented hemorrhage by reducing intravascular deposition
of fibrin/fibrinogen and platelets [14].

Neutrophils, the first-line immune defense cells, are the most abundant leukocytes
in the blood. Neutrophils infiltrate in the regions of inflammation or infected tissues and
engulf invading microorganisms, killing them with oxidants and microbicidal proteins.
Neutrophils contain large amounts of taurine, constituting 30–75% of the total free amino
acids. Human neutrophils contain 10–70 mM taurine, whereas plasma contains an average
of 50 µM taurine [15,16]. In activated neutrophils, taurine reacts with hypochlorous acid
(HOCl), which is released by the myeloperoxidase (MPO) system, to generate taurine chlo-
ramine (Tau-Cl) [17]. Thus, taurine ameliorates inflammation by eliminating highly toxic
HOCl. Moreover, Tau-Cl suppresses the production of many proinflammatory mediators
and upregulates antioxidant enzymes, thus protecting cells at the site of inflammation from
inflammatory cytotoxicity [2,3]. Tau-Cl increases the cytosolic levels and nuclear transloca-
tion of nuclear factor E2-related factor (Nrf2) and the binding of Nrf2 to the antioxidant
response element [18,19]. Nrf2 regulates the expression of antioxidant enzymes, such as
heme oxygenase (HO), NADPH:quinone oxidoreductase (NQO), glutathione peroxidase
(GPx), peroxiredoxin (Prx), and glutamate–cysteine ligase (GCL) [20,21]. GCL catalyzes glu-
tamate and cysteine ligation to synthesize glutathione, which regulates the redox balance
and prevents damage caused by ROS. HO catalyzes the oxidative degradation of free heme
and releases ferrous iron, CO, and biliverdin/bilirubin. Therefore, the Tau-Cl-induced
elevation of HO-1 produces bilirubin and CO, which eliminates toxic hydroxyl radicals and
prevents ROS production, respectively [3]. NQO is an obligate two-electron reductase that
catalyzes the reduction of quinones to hydroquinones using flavin adenine dinucleotide
as a cofactor [22], and it is commonly proposed to be involved in the mechanism of an-
tioxidation and detoxification. Prx reduces peroxide, and its activity is associated with the
removal of hydrogen peroxide, organic hydroperoxides, and peroxynitrite. Prx is critical
for protecting cellular components from oxidative damage [23,24].

Stroke is the third leading cause of mortality and the leading cause of disability
worldwide. Ischemic brain injury is induced by a complex series of pathological events
during stroke, which are initiated by excitotoxicity- and Zn2+-toxicity-dependent massive
neuronal death. This acute neuronal damage is followed by a second round of neuronal
injury in the neighboring regions [25]. Postischemic inflammation, apoptosis, and oxidative
stress, which occur from few hours to days after the primary ischemic event, are associated
with this delayed injury. In particular, oxidative stress contributes to the late stages of
ischemic injury and to worse neurological outcomes [25,26]. ROS are produced during
cerebral ischemia, perturbing the prooxidant–antioxidant balance and damaging cellular
macromolecules, such as lipids, proteins, and nucleic acids [27]. In addition, oxidative
stress indirectly causes cellular damage by inducing apoptosis and inflammation [27]. The
neuroprotective effects of taurine have been reported in transient stroke animal models,
such as the middle cerebral artery occlusion (MCAO) model [6–8,28–31].

The brain contains large amounts of taurine, and neutrophils infiltrate the ischemic
brain. The abundant taurine reacts with HOCl produced by the MPO system in activated
neutrophils to produce Tau-Cl. In the present study, we hypothesized that taurine exerts a
neuroprotective effect to some extent through the action of Tau-Cl. We investigated this
hypothesis using a rat MCAO model and BV2 microglial cells. The neutrophils infiltrated
in the MCAO brain. Tau-Cl reduced MCAO-induced infarct volume and neurological
deficits. Tau-Cl increased the expressions of antioxidant enzymes. Accordingly, the results
suggest that taurine is converted to Tau-Cl by the MPO released from neutrophils in the
postischemic brain, and Tau-Cl increases the antioxidant enzymes. Therefore, taurine
protects brain injury by scavenging toxic HOCl and increasing antioxidant enzymes in the
MCAO brain.
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2. Materials and Methods
2.1. Reagents and Tau-Cl Synthesis

Antibodies against HO-1 (Enzo, East Farmingdale, NY, USA), glutamate–cysteine
ligase modifier (GCLM) subunit and MPO (Abcam, Cambridge, UK), NQO1 and Nrf2
(Santa Cruz Biotech, Santa Cruz, CA, USA), Prx-1 (Ab Frontiers, Seoul, Korea), and β-actin
were purchased from commercial sources. Dulbecco’s modified Eagle’s medium (DMEM),
fetal bovine serum (FBS), phosphate-buffered saline (PBS), penicillin, and streptomycin
were purchased from HyClone (Logan, UT, USA). Oligonucleotides were purchased from
Bioneer (Daejeon, Korea). Other chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA) unless indicated otherwise.

Tau-Cl was synthesized freshly on the day of use by adding equimolar amounts
of NaOCl to taurine. The formation of Tau-Cl and its concentration were monitored by
measuring UV absorption at 200–400 nm [32].

2.2. MCAO Procedure

Male Sprague–Dawley rats were housed under diurnal lighting conditions and al-
lowed access to food and tap water ad libitum. All animal studies were conducted in
strict accordance with the Guide for the Care and Use of Laboratory Animals published
by the National Institute of Health (NIH, Bethesda, MD, USA, 2013) and the ARRIVE
guidelines (http://www.nc3rs.org/ARRIVE (accessed on 31 January 2021)). The animal
protocol used in this study was reviewed and approved by the University-Institutional
Animal Care and Use Committee (INHA-IACUC) (approval Number INHA-180105-531-2).
MCAO was carried out as previously described [33]. In brief, rats (250–300 g body weight)
were anesthetized with 5% isoflurane in 30% oxygen/70% nitrous oxide and maintained
using 0.5% isoflurane in the same gas mixture during surgery. Occlusion of the right
middle carotid artery (MCA) was induced for 1 h by advancing a nylon suture (4-0; AILEE,
Busan, Korea) with a heat-induced bulb at its tip (~0.3-mm diameter) along the internal
carotid artery for 20–22 mm from the bifurcation of the external carotid artery. MCAO was
followed by reperfusion for up to 2 days. The left femoral artery was cannulated for blood
sampling to analyze PaO2, PaCO2, pH, and blood glucose concentrations (I-STAT; Sensor
Devices, Waukesha, WI, USA). Regional cerebral blood flow (rCBF) was monitored using
a laser Doppler flowmeter (Periflux System 5000; Perimed, Jarfalla, Sweden). Occlusion
was considered successful if cortical CBF was reduced greater than 70% immediately after
inserting an occluding suture. Animals were excluded if CBF was not reduced to less than
30% of baseline during MCAO or the blood flow was not restored during reperfusion. Both
thermoregulated heating pad and heating lamp were used to maintain a rectal temperature
of 37.0 ± 0.5 ◦C during surgery. Animals in the sham control group were operated on in a
similar manner, but the MCA was not occluded. Animals were randomly allocated to one of
four groups: MCAO, PBS-treated MCAO controls; MCAO + Taurine, taurine administered
to MCAO; MCAO + Tau-Cl, Tau-Cl administered to MCAO; Sham, sham-surgery control
group that underwent surgery but was not subjected to MCAO.

2.3. Intranasal Delivery

Intranasal administration was performed as previously described by Kim et al. [34].
In brief, rats were anesthetized with an intramuscular injection of a mixture of ketamine
(3.75 mg/100 g body weight) and xylazine hydrochloride (0.5 mg/100 g body weight).
Animals were then randomly divided into eight groups, as mentioned previously. A nose
drop containing 0.1, 0.5, 1, or 2 mg/kg of Tau-Cl, 0.5 or 1 mg/kg of taurine, or PBS (10 µL)
was carefully placed in each nostril of the anesthetized animals (supine 90◦ angle) using a
pre-autoclaved pipet tip (T-200-Y, Axygen, CA, USA). The procedure was repeated until the
entire dosage (total 10 µL) had been administered, at 2 min intervals between applications.

http://www.nc3rs.org/ARRIVE
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2.4. Infarct Volume Assessment

Rats were decapitated at 2 days post-MCAO, and whole brains were dissected coro-
nally into 2 mm slices using a metallic brain matrix (RBM-40,000, ASI, Springville, UT, USA).
Slices were immediately stained by immersion in 2% 2,3,5-triphenyl tetrazolium chloride
(TTC) at 37 ◦C for 15 min and then fixed in 4% paraformaldehyde. Areas of infarcted
tissue were measured using Scion Image (Frederick, MD, USA). To account for edema
and shrinkage, areas of ischemic lesions were calculated as (contralateral hemisphere
volume—(ipsilateral hemisphere volume—measured injury volume)). Infarct volumes
were calculated (in mm3) by multiplying summed section infarct areas by section thickness.

2.5. Modified Neurological Severity Scores

Neurological deficits were evaluated using modified neurological severity scores
(mNSSs) 2 days post-MCAO. The mNSS system comprises motor, sensory, balance, and
reflex tests, and they are graded on a scale of 0–18, where higher scores represent more
severe injury. Motor scores were determined by two tests: (1) suspending a rat by its tail,
a score of zero or one was allocated for each sub-item (total score 0–3), that is, flexion of
forelimbs, flexion of hind limbs, head movement > 10◦ with respect to the vertical axis
within 30 s; (2) placing a rat on the floor, and scores from zero to three were allocated:
0—normal walking, 1—an inability to walk straight, 2—circling toward the paretic side,
and 3—falling on the paretic side. Sensory tests included a placement test (score 0 or 1) and
a proprioceptive test (score 0 or 1). The beam balance test was used to test balance, and
scores from 0 to 6 were allocated as follows: 0, balance with a steady posture; 1, grasping
the side of the beam; 2, hugging the beam with one limb off the beam; 3, hugging the beam
and two limbs off the beam or spinning around the beam for 60 s; 4, attempting to balance
on the beam but falling off within 20–40 s; 5, attempting to balance on the beam but falling
off within 20 s; and 6, making no attempt to balance or hang on to the beam. Reflex test
scores were determined by awarding scores to the following four items (total score 0–4):
pinna reflex, 0 or 1; corneal reflex, 0 or 1; startle reflex, 0 or 1; seizures, myoclonus, or
myodystony, 0 or 1.

2.6. Rotarod Test

Twenty-four hours before MCAO, rats were conditioned on a rotarod unit at a constant
speed (3 rpm) until they could remain on the rotating spindle for 180 s. Each rat was
subjected to rotarod testing at 5, 10, or 15 rpm at 2 days post-MCAO. Residence times on
the rotarod were measured.

2.7. Hematoxylin and Eosin (H&E) Staining

Animals were anesthetized and subjected to cardiac perfusion with saline, followed
by a 4% paraformaldehyde flush. Brains were soaked in the same fixative for 48 h at
4 ◦C, cut into appropriate portions (from bregma −1 to 3 mm coronally), and placed in
embedding cassettes. The tissues were dehydrated by submerging in 70, 80, 90, and 100%
alcohol for 1 h each, followed by 100% alcohol overnight at 20–22 ◦C. Tissue clearance
was performed by immersion in xylene twice for 30 min each, followed by immersion
three times in paraffin for 1 h each. Tissues were embedded into paraffin blocks, and 8 µm
sections were obtained with a microtome. Sectioned tissue was deparaffinized in xylene
twice for 3 min each, and rehydrated by submerging in 100, 90, 80, and 70% alcohol for
3 min. For H&E staining, slides were soaked in Mayer’s hematoxylin solution for 1 min,
transferred into 0.1% acid alcohol to reduce background, and processed in eosin solution
for 30 s.

2.8. Immunofluorescence Staining

Animals were euthanized at the indicated times after MCAO, and brains were fixed
in 4% paraformaldehyde by transcardiac perfusion and then postfixed in the same solution
overnight at 4 ◦C. Brain sections (20 µm) were produced using a vibratome, and im-
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munological staining was performed as previously described [35]. The anti-MPO primary
antibody was applied at 1:200 dilution. After washing with PBS containing 0.1% Triton
X-100, sections were incubated with anti-rabbit IgG (Vector Laboratories, Burlingame, CA)
in PBS for 1 h at 20–22 ◦C and visualized using the HRP/3,3′-diaminobenzidine system
(Vector Laboratories, Burlingame, CA, USA). For double fluorescent staining, fixed brain
tissues were soaked in anti-MPO (1:200) antibody solutions overnight at 4 ◦C. After wash-
ing three times with PBS, sections were incubated with rhodamine-conjugated anti-rabbit
IgG (1:200, Jackson ImmunoRes Lab, West Grove, PA, USA) in PBS for 1 h at 20–22 ◦C.
Brain sections were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) to visualize
nuclei, and observed under a fluorescence microscope (Axioplan 2, Zeiss, Oberkochen,
Germany).

2.9. BV2 Cell Culture

BV2 cells, murine microglial cells, were obtained from ATCC (Manassas, VA, USA);
grown in DMEM supplemented with 10% FBS, 100 U/mL penicillin and 100 µg/mL
streptomycin; and maintained at 37 ◦C in a 5% CO2 incubator.

2.10. RNA Preparation and qRT-PCR

Total RNA was extracted from BV2 cells and brain slices of cerebral cortex using a total
RNA isolation (TRI) reagent (MRC, Cincinnati, OH, USA), and then reverse transcribed
according to the manufacturer’s protocol (Takara Bio, Tokyo, Japan). Then, quantitative
PCR was performed using a real time PCR detection system (BioRad, Hercules, CA, USA)
with the SYBR Green PCR Master Mix (Toyobo, Osaka, Japan) and the following primers
(forward and reverse, respectively): GCLC, 5′-CCT TCT GGC ACA GCA CGT TG-3′

and 5′-TAA GAC GGC ATC TCG CTC CT-3′; HO-1, 5′-AAG CCG AGA ATG CTG AGT
TCA-3′ and 5′-GCC GTG TAG ATA TGG TAC AAG GA-3′; NQO1, 5′-AGA GGC TCT
GAA GAA GAG AGG-3′ and 5′-CAC CCT GAA GAG AGT ACA TGG-3′; Prx-1, 5′-CAC
TGA CAA ACA TGG GGA AGT–3′ and 5′-TTT GCT CTT TTG GAC ATC AGG–3′; MPO,
5′-ACCTACCCCAGTACCGATCC-3′ and 5′-AACTCTCCAGCTGGCAAAAA-3′; GAPDH,
5′-CCT TCC GTG TTC CTA CCC C-3′ and 5′-CCC AAG ATG CCC TTC AGT-3′.

2.11. Western Blotting

BV2 cell lysates were prepared in a lysis buffer containing 20 mM Tris-HCl (pH 8.0),
150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 20 µg/mL chymostatin, 10 µM leupeptin,
and 2 mM phenylmethylsulfonyl fluoride (PMSF) as described previously [36]. Brain slices
from cerebral cortex were lysed in radioimmunoprecipitation assay buffer (50 mM Tris-
HCl, pH 7.4, 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl) containing 20 µg/mL
chymostatin, 10 uM leupeptin, and 2 mM PMSF. Total protein (20–30 µg) was separated
by SDS-PAGE. The resolved proteins were transferred onto polyvinylidene fluoride mem-
branes (Millipore, Bedford, MA, USA), and the blots were probed with specific antibodies
and developed using a chemiluminescence kit (Amersham, Arlington Heights, IL, USA).
Integrated densitometry was used to determine the intensity of scanned films using Image
J software (NIH, Bethesda, MD, USA).

2.12. Statistical Analysis

Two-sample comparisons were performed using the Student–Newman–Keuls test,
multiple comparisons were performed using one-way analysis of variance (ANOVA), and
two-tailed Student’s t-test was performed with Prism 5.0 software (GraphPad, San Diego,
CA, USA). Results are presented as mean ± standard error of the mean (SEM) or mean ±
standard deviation (SD), and p < 0.05 was considered statistically significant.
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3. Results
3.1. Intranasally Delivered Tau-Cl Suppressed Infarct Formation in the Rat MCAO Model

Neuroprotective effects of taurine have been reported in previous studies, wherein
taurine was administered intraperitoneally [31] or intravenously [7,8,28] at 30 min prior
to [31] or 1 to 24 h post-MCAO [7,8,28]. To compare the neuroprotective potency of Tau-
Cl with that of taurine in the postischemic brain, we administered Tau-Cl (0.1, 0.5, 1, or
2 mg/kg) to a MCAO rat model intranasally at 1 h post-MCAO and examined the infarct
volume at 48 h after surgery. Although Tau-Cl had no effect at 0.1 mg/kg, the infarct
volume was significantly reduced by the administration of 0.5 mg/kg Tau-Cl and was
61.2 ± 5.4% (n = 8, p < 0.01) of that of PBS-treated MCAO controls (Figure 1A,B). A similar
level of reduction (69.5 ± 6.1%, n = 8, p < 0.01) was detected with 1 mg/kg of Tau-Cl
(Figure 1A,B), indicating a robust neuroprotective effect of Tau-Cl in the postischemic
brain. However, no significant reductions in the mean infarct volume were detected with
2 mg/kg of Tau-Cl (Figure 1A,B), indicating that its neuroprotective potency was not
dose-dependent. Interestingly, no significant reductions in the mean infarct volume were
detected in the MCAO + Taurine groups. The administration of 0.5 or 1 mg/mL taurine
(1 h post-MCAO, intranasal) failed to reduce mean infarct volumes 81.3 ± 8.1% (n = 5)
and 78.2 ± 8.8% (n = 4), respectively, compared with those of PBS-treated MCAO controls
(Figure 1A,B). When Tau-Cl (0.5 mg/kg) was administered intranasally 1 h prior to MCAO,
the mean infarct volume was significantly reduced (69.7 ± 9.3%, n = 4, p < 0.05) at 2 days
post-MCAO, and the administration of Tau-Cl at 4 h post-MCAO also reduced infarct
volume (84.5 ± 5.4%, n = 7, p < 0.05) (Figure 1C,D). These results indicate that Tau-Cl exerts
neuroprotective effects in the postischemic brain with a wide therapeutic window.

3.2. Tau-Cl Improved Neurological Deficits and Motor Impairment in the Rat MCAO Model

To determine whether Tau-Cl can improve neurological deficits and motor impairment,
0.5 mg/kg of Tau-Cl was administered 1 h post-MCAO, and mNSSs were measured 2 days
after MCAO. The mean mNSS at 2 days post-MCAO was 13.6 ± 0.5 (n = 5) for PBS-
treated MCAO controls (Figure 2A). The mean mNSSs were significantly lower in groups
receiving 0.5 or 1 mg/kg of Tau-Cl (8.8 ± 1.1, n = 5, p < 0.01 and 8.8 ± 0.7, n = 5, p < 0.01,
respectively), compared to those of PBS-treated MCAO controls (Figure 2A), indicating
significant improvement in neurological deficits. In contrast, the mean mNSS for the
MCAO + Taurine group was not significantly different from that of the MCAO-PBS control
group (Figure 2A). As expected, the mean mNSS of the two MCAO + Tau-Cl groups that
were administered Tau-Cl 1 h prior to or 4 h post-MCAO were also significantly lower than
the mean mNSS of the MCAO + PBS control group (Figure 2B). In addition, when motor
activities were assessed at 2 days post-MCAO using the rotarod test at 5 rpm, the mean time
spent on the rotarod by the MCAO + Tau-Cl (0.5 mg/kg, 1 h post-MCAO) group was almost
the same as that by the sham control group (Figure 2C). At 10 rpm, the mean time spent on
the rotarod by the MCAO + Tau-Cl group was significantly longer than that by PBS-treated
MCAO controls and the taurine-treated MCAO group (Figure 2C). Interestingly, at 15 rpm,
the mean time spent on the rotarod in MCAO + Tau-Cl group was markedly shorter than
those at 5 or 10 rpm, but it was still significantly higher than that by PBS-treated MCAO
controls (Figure 2C). These results suggest that the neuroprotective effect of Tau-Cl was
accompanied by the amelioration of motor impairment and neurological deficits. The
physiological parameters pH, PaO2, PaCO2, and blood glucose were similar in the MCAO
+ Tau-Cl, MCAO + Taurine, and PBS-treated MCAO groups (Table 1).
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images of infarctions are shown (A,C), and mean infarction volumes are presented as mean ± SEM (n = 4–10) (B,D). Sham,
sham-operated rats (n = 4); MCAO, PBS-treated MCAO control (n = 10); MCAO + Tau-Cl, Tau-Cl-treated MCAO rats
(n = 33); MCAO + Taurine, taurine-treated MCAO rats (n = 8). * p < 0.05, ** p < 0.01 vs. PBS-treated MCAO control by
one-way ANOVA with Student–Newman–Keuls test.

Table 1. Physiological parameters.

Vehicle-Treated Group (n = 3) Tau-Cl-Treated Group (n = 3)

Base During
Ischemia Base During

Ischemia

Rectal Temperature (◦C) 36.1 ± 0.3 * 36.5 ± 0.5 36.0 ± 0.6 36.1 ± 0.2
pH 7.5 ± 0.1 7.4 ± 0.1 7.5 ± 0.1 7.4 ± 0.1

PO2 mmHg 82.3 ± 4.6 89.0 ± 12.2 91.0 ± 10.6 74.7 ± 0.6
PCO2 mmHg 34.3 ± 7.4 43.8 ± 3.0 36.9 ± 6.1 36.2 ± 4.7

Glucose, mg/dL 111.3 ± 12.1 115.7 ± 7.1 106.7 ± 3.1 107.3 ± 3.1
* Values are means ± SD (n = 3). One-way ANOVA revealed no significant intergroup difference for any variance.
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Figure 2. Tau-Cl recovered neurological and motor deficits. (A,B) Tau-Cl (0.1, 0.5, 1 or 2 mg/kg)
or taurine (0.5 mg/kg) was administered intranasally 1 h post-MCAO (A), or Tau-Cl (0.5 mg/kg)
was administered intranasally at 1 h prior to or 1 or 4 h post-MCAO (B). Neurological deficits were
evaluated using modified neurological severity scores at 2 days post-MCAO. (C) Tau-Cl (0.5 mg/kg)
or taurine (0.5 mg/kg) was administered intranasally 1 h post-MCAO, and the rotarod test was
performed 2 days post-MCAO at 5, 10, and 15 rpm at with a 1 h inter-trial rest period. Data are
presented as mean ± SEM (n = 3–6). Sham, sham-operated rats (n = 4); MCAO, PBS-treated MCAO
controls (n = 10); MCAO + Tau-Cl, Tau-Cl-treated MCAO rats (n = 10); MCAO + Taurine, taurine-
treated MCAO rats (n = 8). * p < 0.05, ** p < 0.01 vs. PBS-treated MCAO controls by one-way ANOVA
with Student–Newman–Keuls test.

3.3. Neutrophils Were Infiltrated into the Brain Parenchyma after Ischemic Insult

Neutrophils are the first blood-derived cells to accumulate around damaged areas in
the ischemic brain [37], and the conversion of taurine to Tau-Cl is known to be mediated
by MPO, which is mainly provided by neutrophils [17]. A robust neuroprotective effect of
Tau-Cl, which is greater than that of taurine, prompted us to examine the temporal profile
of neutrophil infiltration in the postischemic brain. Neutrophils can be easily identified
by their multi-lobed nuclei after H&E staining. In sham controls, neutrophils were rarely
detected throughout the brain, including the cerebral cortex indicated by the black box
in Figure 3A–C). However, in PBS-treated MCAO controls, neutrophils were detected at
6 h post-MCAO, and their numbers increased until 18 h post-MCAO and then subsided
(Figure 3D–H). Double fluorescent staining of brain samples obtained at 12, 18, or 24 h
post-MCAO with an anti-MPO antibody and DAPI showed that neutrophils were present
in the brain parenchyma and intravascular and perivascular regions (Figure 3I–L). In
addition, immunohistochemistry showed that the number of MPO-positive cells increased
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at 18 h post-MCAO, further supporting the infiltration of neutrophils into the ischemic
cerebral cortex (Figure 3M–O).

Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 17 
 

 
Antioxidants 2020, 9, x; doi: FOR PEER REVIEW                                                        www.mdpi.com/journal/antioxidants 

3.3. Neutrophils Were Infiltrated into the Brain Parenchyma after Ischemic Insult 

Neutrophils are the first blood-derived cells to accumulate around damaged areas in 

the ischemic brain [37], and the conversion of taurine to Tau-Cl is known to be mediated 

by MPO, which is mainly provided by neutrophils [17]. A robust neuroprotective effect 

of Tau-Cl, which is greater than that of taurine, prompted us to examine the temporal 

profile of neutrophil infiltration in the postischemic brain. Neutrophils can be easily iden-

tified by their multi-lobed nuclei after H&E staining. In sham controls, neutrophils were 

rarely detected throughout the brain, including the cerebral cortex indicated by the black 

box in Figure 3A–C). However, in PBS-treated MCAO controls, neutrophils were detected 

at 6 h post-MCAO, and their numbers increased until 18 h post-MCAO and then subsided 

(Figure 3D–H). Double fluorescent staining of brain samples obtained at 12, 18, or 24 h 

post-MCAO with an anti-MPO antibody and DAPI showed that neutrophils were present 

in the brain parenchyma and intravascular and perivascular regions (Figure 3I–L). In ad-

dition, immunohistochemistry showed that the number of MPO-positive cells increased 

at 18 h post-MCAO, further supporting the infiltration of neutrophils into the ischemic 

cerebral cortex (Figure 3M–O). 

 
Figure 3. Neutrophils were infiltrated in the post-MCAO brains. (A–H) Coronal brain sections were prepared at 6, 12,
18, or 24 h post-MCAO and stained with Hematoxylin and Eosin. Numbers of neutrophils were counted in the cerebral
cortex indicated by the black box (0.5 × 0.5 mm2). Representative pictures are shown (B–G), and results are presented
as mean ± SEM (n = 12 from 3 animals) (H). (I–L) Coronal brain sections were prepared from the sham-operated control
group and MCAO group at 12, 18, or 24 h post-MCAO and stained with anti-myeloperoxidase (MPO) antibody and
4′,6-diamidino-2-phenylindole (DAPI). Representative pictures of the cortex are shown. (M–O) Coronal brain sections were
prepared from the sham control group and MCAO group at 18 h post-MCAO and stained with anti-MPO antibody, and
numbers of MPO-positive cells were counted in the indicated black box (0.5 × 0.5 mm2). Scale bars in (C–G) and (I–L)
represent 200 and 50 µm, respectively, and those in insets represent 10 µm. Sham, sham-operated rats; MCAO, PBS-treated
MCAO controls. ** p < 0.01 vs. sham control by one-way ANOVA with Student–Newman–Keuls test.

3.4. Tau-Cl Increased the Expression of Antioxidant Enzymes in BV2 Microglia

Antioxidant enzymes eliminate ROS in the brains of patients with neuropathological
diseases [38,39], and Tau-Cl can increase the levels of antioxidant enzymes [3,40]. In the
present study, BV2 cells were employed to determine if the effects of Tau-Cl, shown in
the MCAO model, occur through antioxidant activity. We determined the cellular levels
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of antioxidant enzymes GCLC, HO-1, NQO1, and Prx-1 in BV2 cells, and evaluated the
effect of taurine and Tau-Cl on the expression of these antioxidant enzymes. The maximum
HO-1 mRNA and protein expressions were reached at 6–12 and 12 h, respectively (data
not shown). We therefore treated BV2 cells for 6 h to measure mRNA expression, and for
12 h to measure protein expression. Tau-Cl increased the mRNA expression of antioxidant
enzymes in BV2 cells compared to untreated control cells, and the highest expression was
observed at concentrations between 0.2–0.5 mM (Figure 4A–D). Tau-Cl treatment resulted
in significantly higher expression of HO-1 (11.4- and 9.2-fold) and NQO1 (25.8- and 28.2-
fold) at 0.2 and 0.5 mM, respectively, compared to the control. Tau-Cl also increased the
expression of GCLC (2.1- and 1.8-fold) and Prx-1 (2.3- and 2.3-fold) at 0.2 and 0.5 mM,
respectively, compared to the control. Taurine slightly but significantly increased HO-1
(1.5-fold at 0.2 and 0.5 mM) and Prx-1 (1.2-fold at 0.5 mM) expression, which may mean
the effect of the conversion of taurine to Tau-Cl. However, taurine had no significant effect
on GCLC and NQO1 expression.
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Figure 4. Tau-Cl increased the expression of antioxidant enzymes in BV2 cells. (A–D) BV2 cells were treated with various
concentrations of taurine and Tau-Cl. The expressions levels of glutamate–cysteine ligase catalytic (GCLC) subunit (A),
heme oxygenase-1 (HO-1) (B), NADPH:quinone oxidoreductase-1 (NQO1) (C), and peroxiredoxin-1 (Prx-1) (D) mRNA were
determined by qRT-PCR (n = 4). (E–H) The protein levels of glutamate–cysteine ligase modifier (GCLM) subunit, HO-1, and
NQO1 were determined by immunoblotting, and blots quantified by using the Image J software are presented as arbitrary
density units (F–H) (n = 3). A representative arbitrary density of NQO1 from one of three independent experiments is
shown in (H). Results are presented as mean ± SEM, * p < 0.05, ** p < 0.01, and *** p < 0.01 vs. control by a two-tailed
Student’s t-test.

Consistent with the mRNA expression, Tau-Cl increased the expression of antioxidant
proteins GCLM, HO-1, and NQO1 compared to the control; however, taurine had no
significant effect on the expression of these proteins (Figure 4E–H). In addition, although
the mRNA levels were highest 0.2–0.5 mM Tau-Cl, protein expression levels remained
elevated up to 0.7 mM Tau-Cl. Protein expression of Prx-1 was not detected, which supports
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the previous finding that Prx-1 is expressed moderately in microglia but apparently in
oligodendrocytes [41], whereas Prx-5 is highly expressed in macrophages [42].

3.5. Tau-Cl Increased Antioxidant Enzyme Expression in a Rat MCAO Model

Ischemic injury causes oxidative stress, which induces the expression of antioxidant
genes as well as proinflammatory genes. The mRNA expression levels of HO-1 and NQO1
in the 24 h post-MCAO brain were increased (Figure 5A,B). Importantly, they increased
further in the MCAO + Tau-Cl group, and the enhancement of NQO1 expression was also
observed in the MCAO + Taurine group (Figure 5A,B), indicating that Tau-Cl exerts anti-
oxidative effects in the postischemic brain. Similar results were obtained by immunoblot
analysis of HO-1 and Nrf2, but the increase by Tau-Cl at the protein level was not as
prominent as found at the mRNA level (Figure 5C–E). Together, these results indicate that
the anti-oxidative effects of Tau-Cl were responsible, at least in part, for the observed robust
neuroprotective effect in MCAO animals. Along with the presence of neutrophils, these
effects might contribute to the previously reported neuroprotective effects of taurine.
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Figure 5. Tau-Cl increased the expression of antioxidant enzymes in the post-MCAO brains. Brain samples for qRT-PCR and
immunoblot analysis were prepared from cerebral cortex indicated in Figure 3A at 24 h post-MCAO. (A,B) The expression
levels of mRNA of HO-1 (A) and NQO1 (B) were determined by qRT-PCR (n = 3). (C–E) The protein levels of HO-1 and
Nrf2 were determined by immunoblotting (C), and blots quantified by using the Image J software are presented as arbitrary
density units (D,E) (n = 3). Results are presented as mean ± SEM, *** p < 0.001 vs. sham control, and ### p < 0.001 vs.
PBS-treated MCAO controls by one-way ANOVA with Student–Newman–Keuls test.

4. Discussion

In the present study, we demonstrated a robust neuroprotective effect of Tau-Cl using
an experimental stroke animal model and proposed that upregulation of anti-oxidative
genes could be responsible for these effects. Although the beneficial effects of Tau-Cl have
been reported in various pathological conditions, such as arthritis [43,44], testicular dam-
age [45], and sepsis [46], to the best of our knowledge, this is the first report demonstrating
a direct neuroprotective effect of Tau-Cl in cerebral ischemia. We showed that Tau-Cl
at the doses of 0.5 or 1 mg/kg significantly suppressed infarct volume when they were
delivered intranasally at 1 h post-MCAO. However, it is noteworthy that the effect was
insignificant when Tau-Cl was administered at a dose of 2 mg/kg. This might be due to the
cytotoxic effect of Tau-Cl at a high concentration reported in a previous study [32]. Tau-Cl
(0.5 mg/kg) has a relatively wide therapeutic window, from 1 h prior to to 4 h post-MCAO.
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In the ischemic brain, extracellular taurine levels are significantly increased following
the release of intracellular taurine, which might scavenge HOCl generated after ischemic
insult to produce Tau-Cl. Taurine can exert protective effects in animal models of stroke by
reducing brain infarct volume, ameliorating morphological injury, and mitigating neuro-
logical deficits [6,8,29,31]. Several underlying molecular mechanisms have been proposed,
including prevention of neuronal cell apoptosis [6,7,29,30]; activation of neuronal receptors,
such as γ-aminobutyric acid type A and glycine receptors [6]; suppression of inflamma-
tion by inhibiting neutrophil infiltration and pro-inflammatory cytokine production [8,31];
restoring brain injury-induced antioxidants and increasing antioxidant capacity [30,31];
and preventing brain hemorrhage [14]. Based on the present study, we can speculate that
the above-mentioned anti-oxidative effects of taurine are attributable to Tau-Cl. Taurine
showed no protective effect at a dose of 0.5 or 1 mg/kg, which is 50–100-fold lower than the
doses used in previous reports [6,7,30]. Tau-Cl therefore has a much greater anti-oxidative
capacity than taurine. Notably, we also observed effective suppression of infarct formation
by taurine when 10, 20, 50, or 100 mg/kg was administered intranasally 1 h prior to MCAO
(unpublished data). However, it cannot be said that high concentrations of taurine have
only positive effects. Because different doses of taurine (0.03, 2.8, and 5.6 g/kg) had oppo-
site effects on dopamine transporter expression and dopamine uptake [47], and despite
neuroprotective effects, high dose of taurine inhibited the proliferation and differentiation
of neural cells [48].

The rolling and adhesion of neutrophils infiltrating in the ischemic brain begins at 2 h
post-ischemia, which is followed by their accumulations within vessels near injured brain
regions 6–8 h later and peak infiltration into brain tissue at 18–24 h post-ischemia [49,50].
The accumulated active neutrophils release ROS, granular enzymes, and cytokines and
form neutrophil extracellular traps at the site of infarction [51]. These increase inflammation
and chemoattraction/activation of adjacent immune cells, causing further damage to the
blood–brain barrier and inducing the activation of microglial cells. Neutrophils contain
a large amount of primary granule MPO, which catalyzes the formation of HOCl. MPO
has been implicated in many brain diseases, including stroke, Alzheimer’s disease, and
multiple sclerosis [52,53]. MPO is widely distributed in ischemic tissues and correlates
positively with infarct size [52]. The inhibition of MPO markedly decreases infarct size
and neuronal damage [54,55]. Accordingly, serum MPO levels are elevated in human
stroke patients [56,57], and certain MPO genotypes are associated with increased brain
infarct size and poor functional outcome in human cerebral ischemia [58]. Neutrophils and
macrophages/microglia are known to contribute to the secretion of MPO in the ischemic
brain, and the infiltration of neutrophils and macrophages/microglia in the infarct region
was detected in the present study [50]. We compared the basal levels of MPO expression in
murine bone marrow neutrophils, macrophage cell line RAW 264.7 cells, and BV2 cells, and
murine bone marrow neutrophils expressed more than 50,000 times of MPO at the mRNA
level compared to RAW 264.7 cells and BV2 cells (unpublished data), which suggests that
neutrophils are the main source of MPO in the ischemic brain. However, many reports state
that MPO is present, to a lesser extent, in macrophages/microglia. In particular, activated
macrophages/microglia contain higher levels of MPO than unstimulated cells [59,60].

Taurine reacts stoichiometrically with HOCl to produce Tau-Cl by the MPO system,
resulting in the elimination of the most powerful oxidant HOCl. In the present study,
we showed neutrophil infiltration and the presence of MPO in the ischemic hemisphere
of the postischemic brain (Figure 3). The large amount of taurine present in the brain
scavenges ROS and generates Tau-Cl. In addition to this ROS scavenging activity, Tau-Cl
possesses its own anti-inflammatory and anti-oxidative properties. Tau-Cl inhibits the
overproduction of inflammatory mediators, such as nitric oxide, tumor necrosis factor-α,
prostaglandins, interleukins, macrophage inflammatory protein, monocyte chemoattractant
protein, and matrix metalloproteinases. Tau-Cl plays an anti-oxidative role by inhibiting
ROS production and increasing the levels of antioxidants, such as glutathione, HO-1, GPx,
Prx, and catalase [3,40]. Although we do not know exactly how many neutrophils infiltrate
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and how much MPO and Tau-Cl are produced in the ischemic brain, the neuroprotective
effect of taurine appears to be closely linked to Tau-Cl.

In the present study, exogenously applied Tau-Cl suppressed infarct formation and
improved neurological deficits and motor impairment to a greater degree than that by
taurine in a rat MCAO model. Tau-Cl increased the expression of antioxidant enzymes
in a dose-dependent manner in BV2 cells, whereas taurine had a little effect. At 24 h
post-MCAO, the expression of antioxidants was induced, and Tau-Cl treatment during
the acute phase (1 h post-MCAO) further enhanced this induction, possibly mitigating
ischemic brain damage. However, contradictory results have been reported regarding the
expression and activation of antioxidant enzymes in MCAO models, with some reporting
increasing [61,62] and some decreasing expressions [63,64]. These contradictions might be
caused by the experimental conditions, such as reperfusion time and brain region assayed.

5. Conclusions

In summary, Tau-Cl reduced MCAO-induced infarct volume and improved neurologi-
cal deficits and motor impairment in a rat MCAO model. Tau-Cl increased the expression
of antioxidant enzymes in BV2 cells and further enhanced the induction of the same an-
tioxidant enzymes in the postischemic brain. These results suggest that taurine protects
against ischemic brain injury via Tau-Cl, which inhibits proinflammatory mediators and
increases the levels of antioxidants. Thus, although there are no antioxidant-based drugs
to date, stroke improvement by increased antioxidant enzymes provides clues to a new
concept in stroke treatment.
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