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Abstract

Emotional intelligence (EI) is defined as an individual’s capacity to accurately perceive, understand, reason about, and
regulate emotions, and to apply that information to facilitate thought and achieve goals. Although EI plays an important
role in mental health and success in academic, professional and social realms, the neurocircuitry underlying this capacity
remains poorly characterized, and no study to date has yet examined the relationship between EI and intrinsic neural
network function. Here, in a sample of 54 healthy individuals (28 women, 26 men), we apply independent components
analysis (ICA) with dual regression to functional magnetic resonance imaging (fMRI) data acquired while subjects were
resting in the scanner to investigate brain circuits (intrinsic resting state networks) whose activity is associated with greater
self-reported (i.e. Trait) and objectively measured (i.e. Ability) EI. We show that higher Ability EI, but not Trait EI, is associ-
ated with stronger negatively correlated spontaneous fMRI signals between the basal ganglia/limbic network (BGN) and pos-
terior default mode network (DMN), and regions involved in emotional processing and regulation. Importantly, these
findings suggest that the functional connectivity within and between intrinsic networks associated with mentation, affect-
ive regulation, emotion processing, and reward are strongly related to ability EI.
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Introduction

Individuals differ widely in their ability to accurately perceive,
understand, and reason about emotional information, and to ef-
fectively apply that knowledge to enhance cognitive and behav-
ioral performance—a capacity known as emotional intelligence
(EI) (Salovey and Mayer, 1990). People who possess high EI are
skilled at reasoning about emotional issues and are effective at
using emotional information to solve problems and achieve goals
(Mayer et al., 2008a). Because EI capacities are often highly predict-
ive of important aspects of social/interpersonal functioning and
professional success (Brackett and Mayer, 2003; Brackett et al.,
2006; Cherniss et al., 2006; Talarico et al., 2013; Libbrecht et al., 2014;

Moslehi et al., 2015), it is of critical importance to understand the
neurobiological underpinnings of these capacities and the extent
to which they can be improved through training. The goal of the
present study is to address the existing knowledge gap regarding
the neurocircuitry that underlies EI.

Since EI was first proposed in the early 1990s (Mayer et al.,
1990; Salovey and Mayer, 1990), two different approaches to
conceptualizing and assessing this construct have emerged—
the “trait” and the “ability” models (Webb et al., 2013). The Trait
model considers EI as a set of emotional self-perceptions and
dispositions that are best assessed via introspection and self-
report, similar to personality traits (Petrides et al., 2007; Siegling
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et al., 2015), while the Ability model considers EI as a set of cogni-
tive capacities that permit an individual to accurately perceive,
reason about, and use emotional information in adaptive ways,
akin to other models of intelligence that focus on demonstrated
knowledge and performance ability (Mayer et al., 2001; Mayer
et al., 2008a). Although both conceptual models lay claim to the
term “emotional intelligence” and often appear to be addressing
similar theoretical domains (Petrides and Furnham, 2003), these
two approaches are often only modestly correlated, if at all
(Brannick et al., 2009; Webb et al., 2013). The lack of statistical as-
sociation between these two approaches has led to some confu-
sion in the field and may be due to differences in measurement
approaches or to core differences in the processes being meas-
ured (Petrides and Furnham, 2003). Each approach accounts for
unique aspects of emotional, personality and intellectual func-
tioning (Mayer et al., 2008b), with Trait indices accounting for
relatively stable self-perceived competencies in handling emo-
tional and social situations, similar to stable self-rated person-
ality traits (Bar-On, 2006; Mikolajczak et al., 2007; Nozaki and
Koyasu, 2013), while the Ability approach emphasizes objective
scoring and measured performance capacities with meaningful
benchmarks or comparison metrics, and shares considerable
variance with other indices of cognitive intelligence (Webb et al.,
2013). Interestingly, a recent meta-analysis showed that Ability
EI was significantly associated with better performance on a
variety of emotional (i.e. “hot” cognition) tasks whereas Trait EI
measures were not associated with such outcomes (Gutierrez-
Cobo et al., 2016). On the other hand, Trait EI has been shown to
predict career success and satisfaction over many years (Amdurer
et al., 2014). Because emotional processes are multifaceted and
complex, and their adaptive use to achieve goals requires the in-
tegration of many capacities, including self-awareness, subjective
perceptions, reasoning, and skilled behavioral responses, it is
likely that any comprehensive approach to EI will require an
understanding of both Trait and Ability aspects of EI. Therefore, in
the present study, we include well-validated metrics of both the
Trait and Ability models and assess their association with the
functional connectivity of large-scale brain networks.

An influential neurocircuitry model of EI posited that these
capacities emerge from the interaction of several key brain re-
gions involved in emotional perception, experience, and
decision-making (Bar-On et al., 2003), including (but not limited
to) the amygdala, insular cortex, ventromedial prefrontal cortex
(vmPFC), and anterior cingulate cortex (ACC), which are key
nodes of functional brain networks that are consistently linked
with emotional experience, perception (Kober et al., 2008;
Lindquist et al., 2012; Guillory and Bujarski, 2014), and affectively
guided decision making (Bartra et al., 2013; Clithero and Rangel,
2014). The first task-based neuroimaging study of EI found that
higher scores on a standard measure of Ability EI were nega-
tively associated with activation of nodes of this neurocircuitry,
particularly the anterior medial prefrontal cortex (PFC), during a
social reasoning task (Reis et al., 2007), suggesting that EI may be
directly related to measureable brain activation patterns. Our
group reported similar findings for a measure of Trait EI in ado-
lescents during a simple emotional face perception task
(Killgore and Yurgelun-Todd, 2007), suggesting a common neu-
rocircuitry might be involved in both models of EI. On the other
hand, subsequent task-based functional magnetic resonance
imaging (fMRI) work from our lab found that only higher Ability
(but not Trait) EI was associated with greater activation of the
vmPFC, amygdala, and insula in response to facial cues reflect-
ing changing levels of trustworthiness (Killgore et al., 2013), find-
ings that were essentially supported in other recent work

(Quarto et al., 2016). The role of these same brain regions in EI
has also been supported by volumetric studies of brain struc-
ture, with Ability EI showing positive correlations with the vol-
ume of the insula and vmPFC (Killgore et al., 2012), while various
components of Trait EI showed positive correlations with re-
gions of the medial frontal cortex and anterior cingulate cortex
(Koven et al., 2011; Takeuchi et al., 2011; Killgore et al., 2012).
Thus, task-related and structural volumetric studies have begun
to map out a consistent set of brain regions that appear to be im-
portant for EI, though the specific regions appear to differ slightly
depending on whether the Trait or Ability model is the focus.

As evident in the foregoing paragraphs, the Trait and Ability
models both emphasize complex and highly inter-related capaci-
ties for emotion perception, comprehension and regulation, but
each show different associations with behavior and brain func-
tion, suggesting that it is critical to study the neurocircuitry
underlying both models. Because of the multifaceted nature of EI,
it is unlikely to be easily reducible to simple patterns of activation
in specific brain regions or discrete organization of brain volume
and neurocircuitry. Rather, sophisticated capacities such as EI are
more likely to be reflected in the way that emotion-related per-
ceptual, interoceptive and experiential systems interact with
higher-order integrative and problem solving systems of the
brain. A first step in characterizing this complexity is to map the
patterns of intrinsic connectivity within and among these sys-
tems. Even during spontaneous resting cognition, these brain re-
gions are self-organized into intrinsic networks that interact with
one another in meaningful ways that clarify the circuitry that
underlies task-based functioning (Smith et al., 2009).

Takeuchi et al. (2013) recently conducted the first investiga-
tion of the association between Trait EI and resting state func-
tional connectivity and found that higher EI scores were
associated with greater connectivity within the medial regions
of the default mode network (DMN). Moreover, they showed
that higher Trait EI was also associated with greater anti-
correlation between certain regions of the DMN and a task posi-
tive network, or TPN (i.e. dorsolateral PFC). This is critical, as
recent evidence suggests that normal brain development and
the acquisition of superior cognitive performance is related to
the magnitude of negatively correlated or “push–pull”, activity
among major cerebral networks. Notably, superior cognitive
performance is associated with greater negative correlation (i.e.
anti-correlation) between cortical TPNs that are typically
involved in attention demanding cognition and the “task-nega-
tive” or DMN, which is typically suppressed during attentionally
demanding or externally focused cognition (Kelly et al., 2008;
Hampson et al., 2010; Barber et al., 2013). Individuals with greater
cognitive abilities tend to show stronger anti-correlations be-
tween these networks. In a parallel fashion, it has recently been
shown that the strength of anti-correlation between TPNs and
DMN increases over the developmental span from childhood
into early adulthood (Chai et al., 2014). On the other hand, lack
of anti-correlation or even positive correlation between these
normally anti-correlated networks has been associated with de-
velopmental immaturity (Chai et al., 2014), affective disorders
(Marchetti et al., 2012), schizophrenia (Whitfield-Gabrieli et al.,
2009), and risk for psychosis (Wotruba et al., 2013). Thus, greater
ability to suppress the DMN during important task-relevant cog-
nitive processing while increasing activity in relevant TPNs ap-
pears to be related to better performance in several domains.

While the study of Trait EI by Takeuchi et al. (2013) discussed
above represents an important first step in addressing the role
of these large-scale networks in EI, it did not examine Ability EI.
That study also only examined functional connectivity between
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specific network regions of the DMN and TPN; it did not exam-
ine interactions within and between intrinsic networks them-
selves. Further, as it used a Japanese self-report instrument in a
college student cohort, it remains unclear whether such anti-
correlated networks would extend to the capacities measured
by Ability EI assessments, and whether their findings would rep-
licate for Trait EI among English speaking populations with a
broader age range. To address these issues, we chose to exam-
ine intrinsic networks in relation to both Trait and Ability EI. We
tested the hypothesis that a “push–pull” relationship between
relevant resting state networks (RSNs) may also exist with re-
gard to the networks involved in Ability EI. We further hypothe-
sized that both higher Trait and Ability EI capacities would be
directly related to the strength of the anti-correlation between
the DMN and the primary networks involved in emotional pro-
cessing (rather than traditional cognitive TPNs involved in at-
tention and working memory), but that this pattern would be
most strongly observed for the Ability model, given that it in-
volves actual performance and is, therefore, most analogous to
other cognitive ability studies. To provide an additional within-
network test of this “push–pull” hypothesis, we also tested the
prediction that, with higher Trait and Ability EI, these networks
would also individually show stronger negative connectivity with
a range of emotion-related brain regions—as might be expected
in association with greater cognitive control of emotion. Based on
prior findings from our structural and task-based functional stud-
ies of EI from this same sample (Killgore et al., 2012; Killgore et al.,
2013; Weber et al., 2013; Alkozei and Killgore, 2015; Smith et al.,
2016), we focused on networks comprised of emotion processing
regions that are typically activated in response to emotional
stimuli and which we have previously shown to be involved in EI
(e.g. insular and orbitofrontal cortex, ventral striatum, amygdala);
we also focused on the DMN, which is engaged during self-
introspection and Theory of Mind (Abu-Akel and Shamay-Tsoory,
2011) processes that are critical to EI. To test these associations,
we applied independent components analysis (ICA) with dual re-
gression to functional magnetic resonance imaging (fMRI) data
acquired while subjects were resting in the scanner. We then
tested the relationships between network connectivity and total
scores on well-established metrics of Trait and Ability EI.

Materials and methods
Participants

Seventy right-handed adults (32 women, 38 men), ranging in
age from 18–45 years (mean age¼ 30.9 years; SD¼ 8.4 years)
from the Boston metropolitan area provided written informed
consent to participate in a neuroimaging study. Participants
underwent initial telephone screening to rule out any signifi-
cant history of medical, neurological, psychiatric, or substance
use disorders. Following consent, eight participants withdrew
voluntarily or were dropped from the study due to failure to
comply with study requirements. Data from an additional eight
participants were excluded due to excess motion or other scan-
related artifacts. The final sample consisted of 54 healthy right-
handed adults (28 women, 26 men), with an average age of 30.1
(SD¼ 7.5) years. Participants were well educated, with an aver-
age of 15.2 years of formal education (SD¼ 2.2 years), and all
were native English speakers. Some prior task-based fMRI and
behavioral data from subsets of these same participants have
been published elsewhere (Killgore et al., 2012; Killgore et al.,
2013; Weber et al., 2013; Alkozei and Killgore, 2015; Smith et al.,
2016), but the current EI-resting-state network correlational

findings are novel and have not been presented previously.
Participants were provided nominal financial compensation for
their time. This research protocol was reviewed and approved
by the McLean Hospital Institutional Review Board and the U.S.
Army Human Research Protection Office.

EI instruments. Prior to scanning, participants completed two
computer-administered measures of EI. As a measure of Trait EI,
participants completed the Bar-On Emotional Quotient
Inventory (EQ-i) (Bar-On, 2002), a 125-item self-report measure
that provides a global measure of EI (Total EQ). Total EQ was the
primary variable of interest from this scale, but five composite
subscales were also available, measuring the ability to under-
stand emotions in others (Interpersonal), emotional self-
awareness and self-confidence (Intrapersonal), problem solving
and emotional flexibility (Adaptability), coping capacity under
stress (Stress Management), and general optimism and positive
outlook (General Mood). Raw scores were transformed into stand-
ard scaled scores based on the general population norms avail-
able in the computerized scoring program (Bar-On, 2002).
Subscale scores were only included in ancillary analyses if the
Total EQ was found to be significantly related to brain function
(which it was not in this study). While other measures of Trait EI
were available, we selected the EQ-i given that it is one of the
most commonly used self-report measures of EI, it is commer-
cially available, and its model has generated considerable re-
search interest (Daus, 2006). In addition, Ability EI was assessed
with the Mayer–Salovey–Caruso Emotional Intelligence Test
(MSCEIT) (Mayer et al., 2002), which measures emotional reason-
ing and problem solving. The primary outcome variable was the
MSCEIT Total score. Additionally, four branch scores known as
Perceiving Emotions, Facilitating Emotions, Understanding Emotions,
and Managing Emotions were also calculated, but only included
in ancillary analyses if the MSCEIT Total was found to be signifi-
cantly related to brain function. Scaled scores were calculated
and normalized based on the general consensus scoring
method described in the test manual (Mayer et al., 2002). The
MSCEIT was selected for this study, as it is the preeminent and
most widely used Ability measure of EI (Daus, 2006).

Functional neuroimaging

All MRI data were acquired on a Siemens Tim Trio 3 Tesla scanner
(Erlangen, Germany) with a 12-channel head coil. High-resolution
structural images were acquired using a magnetization-prepared
rapid acquisition with gradient echo (MPRAGE) pulse sequence
with the following parameters: TR/TE¼ 2.1 s/2.25 ms, slices¼ 128,
matrix¼ 256 � 256, flip angle¼ 12�, resolution¼ 1.0 � 1.0 �
1.33 mm. Gradient echo echo-planar images sensitive to BOLD
contrast were acquired using the following parameters: TR/
TE¼ 2.0 s/30 ms, flip angle¼ 90�, slices¼ 34, voxel size¼ 3.5mm
isotropic. During the 6:04 minute resting state fMRI scan partici-
pants were asked to remain awake with their eyes open.

Data pre-processing

Most data processing was done using the FMRIB Software
Library (Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al.,
2012), FSL release 4.1 (FMRIB Analysis Group; Oxford University,
UK; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and MATLAB R2012a
(The Mathworks, Inc, Natick, MA).

First, the raw data underwent quality assurance (QA) to as-
sess for scanner artifacts and subject motion. A de-spiking algo-
rithm (using an in-house program) was used to correct any
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datasets that had spikes (e.g. slice dropouts or slices/volumes
with spikes in intensity). Motion correction was accomplished
with MCFLIRT (Jenkinson et al., 2002) to do the initial QA. Data
were excluded from further analysis if there was greater than
one voxel motion in any direction or if the raw FMRI data
showed variations in image intensity across the axial planes
(e.g. intensity rolling due to interactions of motion with RF
pulses), no matter how small the movement as these effects are
not correctable with any widely available motion correction
scheme. Based on the QA, data from eight participants were
removed from further analysis, with one dataset showing ex-
cessive non-stationary ghosting, one large male subject with ex-
cess pulsations (e.g. physiological noise due to respiration), two
with excessive scanner electronic noise and four with excessive
motion. Pre-processing included: motion correction, slice timing
correction, brain extraction using BET (Smith, 2002), spatial
smoothing with a Gaussian kernel of full-width half-maximum
7 mm and high-pass temporal filtering with Gaussian-weighted
least-squares straight-line fitting with r ¼ 150 s. Functional MRI
data were aligned to the high-resolution MPRAGE scan with 12 de-
grees of freedom. The MPRAGE scan was aligned with the MNI152
standard brain using non-linear registration. Transformation of
the functional results into MNI space was done following concat-
enation of the two alignments into a single matrix. All spatially
normalized fMRI data were re-sampled to 2 mm3 resolution.

Statistical modeling
Independent component analysis (ICA)

FSL MELODIC [Multivariate Exploratory Linear Decomposition
into Independent Components (Beckmann and Smith, 2004)]
was used to perform an independent component analysis of the
fMRI data from the sample of subjects. This method decom-
poses the spatially normalized fMRI data from all subjects (e.g.
concatenated into a single data matrix) into a set of “independ-
ent components” (ICs), with each IC being a distributed set of
brain regions with a temporal trace that describes the evolution
of that particular spatial pattern over time. The number of
spatio-temporal patterns estimated by the group ICA was set to
30, run eight times, followed by a meta-level ICA fed by all of
the spatial maps from the eight decompositions following the
procedures used in Smith et al. (2009), which identified 26 stable
independent components. In this case, each independent com-
ponent is comprised of a spatial map and a corresponding time-
course and represents a spatio-temporal pattern of activity that
is common to the entire set of participants.

Dual regression

To assess inter-subject variability in the independent compo-
nents, the group ICA maps are “back-projected” into each sub-
ject’s fMRI data to identify their unique spatial and temporal
pattern for each ICA map. These “subject-specific spatial maps”
(SSSMs) and “subject-specific time courses” (SSTCs) correspond-
ing to each IC from the group ICA were estimated using the dual
regression procedure with timecourse normalization
(Beckmann et al., 2009; Filippini et al., 2009). The SSSMs were
used to conduct a “within-network” functional connectivity
analysis to identify how the shape (e.g. spatial pattern) of a net-
work might relate to EI covariates of interest. This analysis pro-
ceeded similarly to higher level group analyses of task-based
fMRI, only instead of activation contrast maps for the subjects
being passed to the group level analysis that would be done in a

task fMRI study, in our resting state study, the SSSMs for the
subjects were collected together (into a 4D data file, with subject
being the fourth dimension) and submitted to a higher level
general linear model of the group effects.

Additionally, the SSTCs were used to conduct a “between-
network” functional connectivity analysis. In this case, for the
RSN pairs of interest, the timecourses of the networks in each
subject were used to calculate the within-subject partial correl-
ation between the networks (e.g. taking all other components
into account) to give one correlation value between each net-
work pair in each individual. These between-network correl-
ation values were collected together across all the subjects and
tested to see if the strength of the correlation between a pair of
networks was related to Trait and Ability EI (i.e. EQ-i and MSCEIT
scores, respectively).

Estimation and inference

To test for statistically significant linear relationships between
within-network functional connectivity and EI, the 4D collection
of SSSMs for each RSN of interest was submitted to a group gen-
eral linear model (GLM) with the design matrix setup recom-
mended on the FSL website (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
GLM#Single-Group_Average_with_Additional_Covariate), using
two-sided tests. The model included the two covariates as
measures of EI: EQ-i Total score and MSCEIT Total score (which
were not correlated in this sample, r¼ 0.05, P¼ 0.71). As the
between-subjects effects may be non-Gaussian and/or non-
stationary, which can greatly decrease the performance of
standard parametric inference methods (Hayasaka and Nichols,
2003; Hayasaka et al., 2004), we employed non-parametric per-
mutation testing for estimation and inference (Filippini et al.,
2012) using FSL Randomise. A novel permutation-based method
to correct for the number of tests across both number of voxels
and number of components was implemented (Licata et al.,
2013) to control the FWE across voxels and components at
P< 0.05 for the within-network functional connectivity analysis
(which was assessed for four different networks). The procedure
was implemented as follows: (i) for each component, the same
seed was set in the call to Randomise to ensure that the permu-
tations would be identical for all 5000 permutations for every
component, with cluster-mass based thresholding (with
cluster-forming threshold of 2.3, e.g. -C 2.3 options), and –N and
�P options set to output the null distribution text file for each
component (ii) the output null distribution text files for all of
the components that were tested (e.g. a subset of the full set of
independent components) were loaded into Matlab (The
Mathworks, Natick, MA). Each text file contained a 5000-elem-
ent long vector of the maximum cluster-mass statistic over all
voxels obtained for each permutation (which are the values to
construct the null distribution that is used to control the family-
wise error over all voxels), (iii) a maximum of the maximums
data matrix (a vector containing 5000 values) was created by re-
cording for each permutation, the max (cluster-mass) value ob-
tained across components, with (iv) the resulting max of the
max values were used to construct the null distribution for the
maximum cluster-mass statistic across voxels and components.
This information then was used to control the FWE across vox-
els and components at P< 0.05 by identifying the threshold cor-
responding to the 95th percentile.

The primary hypotheses were restricted to Total EI scores for
the MSCEIT and EQ-i, not the individual sub-scales of each
measure. However, following a hierarchical analysis strategy,
only RSNs that showed significant relationships between
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within-network functional connectivity and Total EI scores were
further probed to identify which subscales of each test (e.g. four
MSCEIT branch subscales; five EQ-i facet subscales) were driving
the results. These ancillary analyses were included only if the
parent scale was significant and are provided merely for pur-
poses of clarification, but no a priori hypotheses were posed for
the subscales. As described below, since only the MSCEIT Total
score was significant, only the four branch sub-scales of that test
were subsequently analyzed. For each of these sub-scales, we
show plots of the regression weights averaged over the regions
showing a statistically significant linear relationship with Total EI
(e.g. “Functional Connectivity”) versus the sub-scale value.

Relationships between covariates of interest and between-
network functional connectivity were assessed using the
FSLNets toolbox (Smith et al., 2011) (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FSLNets). Briefly, for each subject, the partial correlation
coefficient (controlling for the contributions of other effects rep-
resented in other SSTCs) between the SSTCs for each pair of
RSNs of interest was calculated. For each pair of networks, the
relationship between covariates of interest (EQ-i and MSCEIT
Total scores) and the between-network partial correlation coeffi-
cients was assessed using FSL Randomise (with a design matrix
setup the same as for the spatial map group GLM), accounting
for FWE by correcting for multiple tests (e.g. network pairs and
contrasts using a Bonferroni correction) with the significance
set at P< 0.05.

Results
Association between trait and ability measures

The EQ-i (Trait EI) and MSCEIT (Ability EI) were first examined
with a zero-order correlation to determine their association in
this sample. As expected from prior work (Brannick et al., 2009;
Webb et al., 2013), the correlation between EI measures was
non-significant (r¼ 0.052, P¼ 0.71).

ICA

RSNs of interest in the current study were those that contained
ventral PFC and limbic/paralimbic regions, including basal

ganglia, amygdala, anterior cingulate, hippocampus, anterior
thalamus, orbitofrontal cortex (OFC) and nucleus accumbens
(NAcc), which are involved in emotion processing (Meeks and
Jeste, 2009; Killgore et al., 2012; Catani et al., 2013; Killgore et al.,
2013; Takeuchi et al., 2013; Weber et al., 2013; Alkozei and
Killgore, 2015; Smith et al., 2016), as well as two sub-networks of
the DMN that have been reported to be involved with episodic
memory retrieval, mentalizing, Theory of Mind, and autobio-
graphical thought (Andrews-Hanna et al., 2014). Prior to assess-
ing for statistically significant relationships between network
connectivity and EI, four networks, shown in Figure 1, were se-
lected that contained these sub-regions:

1. Anterior default mode network (Damoiseaux et al., 2006; Uddin
et al., 2009): recent findings show the existence of several
“default mode” sub-networks that can be parcellated from
resting state data (Buckner et al., 2008; Andrews-Hanna et al.,
2010; Smith et al., 2012). Consistent with prior observations
(Andrews-Hanna et al., 2010), here we find a sub-network
comprising ventral and dorsal medial PFC, anterior and pos-
terior cingulate (A/PCC), precuneus, caudate, and posterior
parietal regions that is engaged during autobiographical
thought (Andrews-Hanna et al., 2010).

2. Basal ganglia/limbic network (Marchand, 2010; Laird et al.,
2011; Janes et al., 2012; Licata et al., 2013; Beliveau et al., 2015):
a limbic-paralimbic-striatal network comprising basal gan-
glia (striatum, pallidum, NAcc, subthalamic nucleus and
substantia nigra), inferior insula, amygdala, and thalamus
(Seeley et al., 2007; Touroutoglou et al., 2012) that has been
associated with activation during reward and emotional
tasks (Laird et al., 2011).

3. Posterior default mode network: We identified another subnet-
work of the default mode comprising precuneus, PCC, pos-
terior parietal, medial frontal cortex (including Brodmann
area 8), retrosplenial cortex, and mesial temporal lobe,
including amygdala. This network is a memory-related net-
work associated with self-relevant recall (Shirer et al., 2012;
Andrews-Hanna et al., 2014) and evaluation of emotional va-
lence and arousal (Torta and Cauda, 2011)

4. Reward Learning (Laird et al., 2011): A network comprising
ventromedial and orbitofrontal cortex, caudate, and nucleus

Fig. 1. 3D views and several axial slices are shown for the: (A) Anterior default mode network (A-DMN): ventral and dorsal medial prefrontal cortex (PFC), anterior and pos-

terior cingulate (A/PCC), precuneus, caudate and posterior parietal regions, (B) Basal ganglia/limbic network: limbic-paralimbic-striatal regions including inferior insula,

basal ganglia (striatum, pallidum, NAcc, subthalamic nucleus, and substantia nigra), amygdala, and thalamus, (C) Posterior default mode network (P-DMN): precuneus/

PCC, posterior parietal, and frontal cortex (including Brodmann area 8), (D) Reward learning network: ventromedial and orbital PFC, caudate, and nucleus accumbens.

RSNs shown in red-yellow and overlaid onto the MNI 152 2 mm standard brain (Z>2.6).
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accumbens that is also activated during reward and emo-
tional tasks (Laird et al., 2011; Janes et al., 2014).

Relationships between functional connectivity,
EQ-I, and MSCEIT

Within-network functional connectivity. There were no significant
effects associated with EQ-i (reflecting Trait EI) for any of the pri-
mary networks of interest. On the other hand, the functional
connectivity of each network was related to MSCEIT Total (re-
flecting Ability EI) and its branch sub-scales as follows:

1. Anterior default mode network (A-DMN). Total scores on the
MSCEIT were unrelated to functional connectivity of the A-
DMN.

2. Basal ganglia/limbic network (BGN). A negative linear relationship
between within-network functional connectivity and MSCEIT
Total was found for the BGN. Figure 2A and B shows brain re-
gions in which lower MSCEIT Total scores were related to the
strength of functional connectivity with the BGN, including
hypothesized emotion processing regions in vmPFC, AI, amyg-
dala, lateral OFC and other widespread regions including pal-
lidum, thalamus, midbrain, subcallosal cortex, paracingulate,
ventral ACC, and white matter. Table 1 shows information re-
garding the clusters showing a statistically significant negative
linear relationship with MSCEIT Total in Figure 2A and B. The
plots in Figure 2C show the average of the parameter estimate
values from the dual regression for each subject versus
MSCEIT Total scores. From the plots, it is evident that increased
connectivity of the BGN with these brain regions in individuals
with lower Ability EI was driven primarily by scores on the
MSCEIT Managing Emotions and Facilitating Thought branches.
These analyses were repeated with the two data points
removed that appear to be outliers in the plots. The results
held without these two subjects.

3. Posterior default mode network (P-DMN). Within-network con-
nectivity of the P-DMN was also related to MSCEIT Total scores
in that the functional connectivity between P-DMN and a spa-
tially distributed pattern of regions, including hypothesized
emotion processing structures such as the amygdala, vmPFC,
AI, PI, OFC, and other non-hypothesized regions such as the
temporal pole, middle temporal gyrus, hippocampus, nucleus
accumbens, and the ACC, precuneus/posterior cingulate cor-
tex, and superior parietal regions, was negatively linearly
related to MSCEIT Total. Interestingly, higher MSCEIT Total
scores were associated with stronger anti-correlations between
the P-DMN and these regions (e.g. with negative average re-
gression weights), while lower MSCEIT Total was associated
with positive correlations between the P-DMN and these various
regions (see Figure 3). The correlations with MSCEIT Total were
primarily driven by the Managing Emotions branch. All analyses
were repeated with removal of the single data point that ap-
pears to be an outlier in the plots; all results held without this
subject. Table 2 shows information regarding the clusters
showing a statistically significant negative linear relationship
with MSCEIT Total in Figure 3A and B.

4. Reward Learning (RL). Total scores on the MSCEIT were unre-
lated to functional connectivity with this network.

Between-network functional connectivity. For this sample of healthy
adults, the A-DMN was strongly significantly correlated (P< 0.05
corrected) with both the BGN (partial correlation coefficient or
PCC¼ 0.93) and the Reward Learning network (PCC¼ 0.95). In
addition, the P-DMN was significantly anti-correlated with the
BGN network (PCC¼�0.75). These between network relation-
ships are illustrated in Figure 4. Furthermore, the correlations
among these networks showed statistically significant relation-
ships with MSCEIT subscales as follows:

1. A-DMN with BGN: partial correlations between these two
networks were negatively linearly related to MSCEIT Total

A

C

B

Fig. 2. Basal ganglia/limbic network. (A) Three orthogonal slices showing regions whose functional connectivity with the basal ganglia network (green) is negatively lin-

early associated with MSCEIT scores (i.e. reflecting Ability EI; red–yellow, P<0.05 corrected). The crosshairs show one region in the medial PFC. (B) 3D view to better il-

lustrate the spatial extent/pattern. (C) Functional connectivity values (regression coefficients averaged over voxels in red–yellow) plotted against MSCEIT: Total and

MSCEIT subscales for Facilitating, Managing, Perceiving, and Understanding. Partial correlation coefficients (PCC) between functional connectivity values and MSCEIT

scores are shown for each subscale.

W. D. S. Killgore et al. | 1629

Deleted Text: Janes <italic>et<?A3B2 show $146#?>al.</italic>, 2014)(
Deleted Text: F
Deleted Text: C
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: -


(P ¼ 0.05, corrected) and MSCEIT Perceiving (P ¼ 0.004, cor-
rected), such that the greater the positive correlation
strength between the two networks, the lower the MSCEIT
Perceiving Emotions score, whereas near-zero correlations be-
tween the two networks were associated with the highest
MSCEIT scores.

2. BGN and P-DMN: negative partial correlation (e.g. anti-
correlation) between these two networks was linearly
related to MSCEIT Total (P ¼ 0.03, corrected) and MSCEIT
Managing Emotions, (P ¼ 0.03, corrected), such that the greater

the strength of the anti-correlation, the higher the MSCEIT
score. The lowest MSCEIT scores were associated with par-
tial correlations near zero.

Discussion

Consistent with our “push–pull” hypothesis with respect to
Ability EI, we found that higher MSCEIT Total scores were associ-
ated with more negative intrinsic connectivity values between
specific “task negative” and “task positive” networks, and

Table 1. Clusters with cluster size 10 or larger found in regions whose functional connectivity with the basal ganglia network (BGN) were nega-
tively correlated with MSCEIT total scores

Cluster name Voxels MAX MAX X (mm) MAX Y (mm) MAX Z (mm)

R. Brainstem/hippocampus 2727 5.13 12 �10 �12
R. Inferior orbitofrontal gyrus 955 4.93 38 28 �16
L. Precentral gyrus 311 4.09 �40 8 34
R. Caudate 162 3.94 22 28 14
L. Hippocampus 137 3.97 �40 �34 �8
R. Hippocampus 65 3.22 40 �28 �10
L. Pallidum 43 2.94 �16 0 2
R. Heschl’s gyrus 40 3.32 38 �24 18
L. Postcentral gyrus 37 3.26 �46 �8 34
L. Medial orbiofrontal gyrus 30 2.98 �4 56 �8
L. Amygdala 30 3.08 �16 0 �12
L. Superior temporal gyrus 30 3.32 �52 �2 �12
R. Inferior temporal gyrus/hippocampus 22 3.47 48 �14 �20
L. Middle temporal gyrus 16 3.4 �52 �16 �2
R. Middle temporal gyrus 11 3.67 48 �20 �10

Cluster labeling was based on the nearest gray matter label to the cluster maximum according to the Automated Anatomical Labeling Atlas. R¼ right; L¼ left.

A

B C

D

Fig. 3. Posterior DMN network. Two orthogonal slices for two different x locations showing regions whose functional connectivity with the DMN is negatively linearly

related to MSCEIT scores (i.e. reflecting Ability EI; red–yellow, P< 0.05, corrected). Crosshairs in (A) bisect the amygdala and crosshairs in (B), the nucleus accumbens.

(C) 3D view to better illustrate the spatial extent/pattern. (D) Functional connectivity values plotted against MSCEIT scores (PCCs are shown for each subscale).
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between those networks and many brain regions implicated in
emotion processing. However, contrary to our expectations, the
Bar-On Total EQ-i (Trait EI) was unrelated to resting state con-
nectivity within or between the networks we investigated.
Specifically, based on findings from our prior functional and
structural studies in EI (Killgore et al., 2012; Killgore et al., 2013;
Weber et al., 2013; Alkozei and Killgore, 2015; Smith et al., 2016),
we selected four brain networks associated with key emotional
and integrative processes from the results of a group ICA of

resting state fMRI data that included: an (i) Anterior Default Mode
network, (ii) Basal Ganglia/Limbic network, (iii) Posterior Default
Mode network, and (iv) a Reward Learning network. The strength
of resting state functional connectivity within each of these
four networks (within-network connectivity) and with each
other (between-network connectivity) was then statistically
evaluated against Trait and Ability measures of EI using a dual
regression procedure. Whereas Trait EI (EQ-i) was unrelated to
brain connectivity in these four networks, Ability EI (MSCEIT)

Table 2. Clusters with cluster size 10 or larger found in regions whose functional connectivity with the posterior default mode network (P-
DMN) were negatively correlated with MSCEIT Total scores

Cluster name Voxels MAX MAX X (mm) MAX Y (mm) MAX Z (mm)

R. Hippocampus 5871 6.16 26 �18 �8
L. Middle temporal gyrus 1390 5.16 �38 �50 2
L. Insula 1033 4.84 �34 2 16
R. Middle occipital gyrus 814 4.85 30 �66 36
L. Cuneus 543 3.99 �20 �54 28
L. Precentral gyrus 422 4.61 �36 10 42
L. Middle cingulate gyrus 256 4.24 �8 �18 42
L. Inferior occipital gyrus 256 4.53 �22 �104 �6
L. Cerebellum crus 1 203 3.76 �36 �84 �18
L. Supramarginal gyrus 187 4.75 �44 �34 30
R. Paracentral lobule 182 4.3 4 �42 72
R. Parahippocampal gyrus 163 3.73 24 �40 �4
L. Middle occipital gyrus 160 4.01 �38 �76 18
L. Hemisphere white matter 143 3.96 �24 �2 32
R. Cerebellum area 6 121 4.69 36 �58 �20
L. Cerebellum area 6 117 4.14 �34 �62 �22
R. Middle cingulate gyrus 115 4.23 12 �28 40
L. Middle occipital gyrus 114 3.55 �30 �70 30
L. Hemisphere white matter 87 3.48 �22 �40 42
L. Superior occipital gyrus 78 3.44 �18 �98 20
R. Gyrus rectus 76 3.44 10 20 �12
L. Hippocampus 72 4.73 �36 �8 �14
R. Postcentral gyrus 71 4.03 28 �36 68
R. Middle frontal gyrus 64 3.91 34 44 12
L. Cerebellum Area 10 62 3.52 �22 �32 �42
R. Middle frontal gyrus 58 4.26 24 46 2
R. Posterior cingulate gyrus 53 3.61 8 �40 14
L. Thalamus 52 4.39 �16 �6 4
R. Superior frontal gyrus 50 3.49 18 50 18
L. Brainstem 43 3.36 �16 �12 �8
R. Middle temporal gyrus 27 3.19 52 �24 �4
L. Middle frontal gyrus 25 3.12 �24 40 32
R. Caudate 25 3.3 12 24 2
R. Superior temporal gyrus 24 3.64 50 �4 �2
L. Hemisphere white matter 22 2.96 �18 �16 34
L. Rolandic operculum 20 3.19 �62 6 6
R. Precuneus 17 3.45 6 �50 14
L. Cerebellum area 6 16 3.19 �26 �52 �20
L. Middle occipital gyrus 15 3.74 �28 �78 42
L. Precentral gyrus 15 3.2 �56 4 38
R. Caudate 15 3.18 6 16 0
L. Superior temporal gyrus 14 3.26 �54 �6 6
L. Middle frontal gyrus 13 3.31 �34 20 58
R. Precuneus 12 3.11 10 �56 70
R. Calcarine cortex 12 2.89 30 �60 12
R. Superior parietal cortex 11 3.1 20 �64 70
L. Calcarine cortex 11 3.05 �14 �50 12
L. Precuneus 11 3.07 �4 �44 10
L. Pallidum 11 3.36 �26 �6 �4
R. Insula 11 3.33 38 14 �16

Cluster labeling was based on the nearest gray matter label to the cluster maximum according to the Automated Anatomical Labeling Atlas. L, left; R, right.
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was significantly negatively associated with the functional con-
nectivity of the Basal Ganglia/Limbic network and the Posterior
DMN network with other brain regions involved in a wide range
of emotion-related processes, including primary threat/salience
assessment (e.g. amygdala), visceral sensations (e.g. insula),
autobiographical memory retrieval (e.g. posterior cingulate), be-
havioral control (e.g. lateral orbitofrontal cortex), conflict moni-
toring (e.g. anterior cingulate cortex), reward processing (e.g.
ventral striatum), and many others. In contrast, neither the
Anterior DMN nor Reward Learning network connectivity patterns
were associated with Ability EI. Given that the Trait and Ability
models of EI were uncorrelated here, these findings suggest that
the ability to reason about emotional information (Ability EI),
but not necessarily perceived self-efficacy with regard to emo-
tional competencies (Trait EI), is associated with greater nega-
tive functional connectivity between diverse brain regions and
networks involved in the rapid assessment and interoceptive
aspects of emotional experience, autobiographical memory,
and regulatory control, but not significantly with intrinsic con-
nectivity of areas involved in reward learning or self-referential
processing.

Interestingly, in the P-DMN, a network often associated with
autobiographical memory retrieval (Whitfield-Gabrieli et al.,
2011; Qin et al., 2012), we found that higher Ability EI (MSCEIT)
was associated with synchronous, but negative, correlations be-
tween the DMN, and other key affective brain regions, while
lower Ability EI appeared to involve positively correlated signals

between this network and the same brain regions. In other
words, individuals with high MSCEIT Total scores showed anti-
correlations between the P-DMN and distributed brain regions
involved in the perception, experience and regulation of emo-
tion, while individuals with low MSCEIT Total scores showed
positive correlations between the P-DMN and these regions, a
finding generally consistent with another recent brain imaging
study of Trait EI (Takeuchi et al., 2013). Although the interpret-
ation of negative correlations in resting state data continues to
be a subject of debate, when data are processed with the group
ICA with dual regression, negative correlations in spontaneous
fluctuations across spatially distributed regions may indeed re-
flect valid neurobiological phenomena (Fox et al., 2009; Chai
et al., 2012) owing to the fact that this approach does not bring
to bear the issue of global signal regression. As such, our find-
ings suggest that, similar to observations of superior task per-
formance in individuals with strongest anti-correlations
between the P-DMN and Task Positive networks (Chai et al.,
2014), superior Ability EI is associated with strong anti-
correlations between the P-DMN and key affective brain regions,
while conversely, individuals with poor Ability EI show positive
correlations between P-DMN and widespread cortico-limbic and
striatal regions involved in emotional processing.

The present findings are consistent with numerous other
studies that show that superior cognitive performance is often
associated with greater suppression of the DMN, or a kind of
“push–pull” association between DMN and TPN regions, while

Fig. 4. (Left) Hierarchical clustering shows between-network correlations. The dendrogram is shown in the top of the figure, the RSNs in the middle, and the correlation

matrix at the bottom (correlation coefficients shown in the bottom triangular portion and partial correlations shown in the top triangular portion). (Right) Scatterplots

showing the significant association between Ability EI (MSCEIT) scales and the major network connectivity (represented as z-transformed partial correlation coeffi-

cients in the y-axis). A-DMN, anterior default mode network; BGN, basal ganglia/limbic network; P-DMN, posterior default mode network; PCC, partial correlation coeffi-

cient; RLN, reward learning network.
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sub-optimal, developmentally immature, or clinically aberrant
patterns of performance tend to be associated with reduced
anti-correlation or even positive correlations between these
networks (Barber et al., 2013; Chai et al., 2014). For example,
among healthy adults, greater anti-correlation between DMN
and TPN is associated with better attentional performance
(Kelly et al., 2008). Similarly, healthy adults show greater anti-
correlation between DMN and TPN than children or adolescents,
a pattern that correlates with greater inhibitory control, but the
strength of these anti-correlations declines again in older age
(Spreng et al., 2016). By extension, even more severe versions of
this pattern may be seen among individuals with various forms
of psychopathology, including affective disorders (Marchetti
et al., 2012; McEvoy et al., 2013; Wilkinson et al., 2013) or schizo-
phrenia (Whitfield-Gabrieli et al., 2009). This is not to say that
decreased anti-correlations are necessarily directly associated
with psychopathology, but they tend to be associated with
lower EI capacities, which in itself may serve as a potential risk
factor (Paradiso et al., 2016). This possibility remains an open
question for further research.

Consistent with these prior studies, we propose that Ability EI
may also involve a similar relationship to the patterns of con-
nectivity between the P-DMN and the emotion-related systems
described above. Specifically, our data suggest that a person with
high Ability EI would be expected to show largely anticorrelated
activation between the emotion-related and self-referential P-
DMN regions. Such suppression of self-reflective systems when
emotion-processing systems are active may facilitate clear boun-
daries between emotional responses and self-relevant cognitions.
On the other hand, our data suggest that a person with low
Ability EI would be expected to show positive coupling between
these systems, perhaps contributing to difficulties separating
emotional responses from self-reflective processing. We posit
that this neurobiological obscuring of the boundaries between in-
ternal self-referential cognitions and emotional responses may
be associated ultimately with a difficulty reasoning objectively
about emotions and managing them in accord with external con-
straints (i.e. difficulty maintaining “emotional perspective”). Our
findings are consistent with such a conceptualization, but repli-
cation in other domains of emotional behavior will be necessary
to determine the extent to which these patterns of connectivity
contribute to the ability to deal effectively with real-world social
and emotional phenomena.

For the BGN, individuals with the lowest Ability EI (MSCEIT)
had the strongest positive connectivity within the network itself
and between the network and regions in vmPFC, anterior insula
(AI), amygdala and lateral OFC. Prior research suggests that
these regions are important in the regulation of emotion.
Specifically, the vmPFC and contiguous regions of the rACC/
sgACC have been proposed to modulate activation within key
affective regions such as the amygdala (Kim et al., 2004; Urry
et al., 2006; Diekhof et al., 2011; Etkin et al., 2011; Seo et al., 2013;
Wagner and Heatherton, 2013; Zotev et al., 2013), whereas the
lateral OFC appears to be involved in regulating emotion
through reappraisal processes (Golkar et al., 2012; Buhle et al.,
2013; Vijayakumar et al., 2014). The less functionally connected
these regions were with the BGN, the higher an individual’s
Ability EI. Furthermore, the BGN was more strongly functionally
connected to the A-DMN in individuals with the lowest Ability
EI. Thus, similar to the P-DMN findings above, strong positive
coupling between the BGN and affective regions was associated
with lower Ability EI.

The positive connectivity between emotional regulation re-
gions and the BGN may suggest that low EI individuals may

have difficulty regulating their emotional experiences and in-
teroceptive sensations via prefrontal control systems. This is
consistent with research showing that activation of the vmPFC
is negatively related to activation in the amygdala in healthy in-
dividuals but is positively coupled in depressed patients
(Johnstone et al., 2007) as well as among individuals who have
not obtained adequate sleep (Killgore, 2013). Notably, the associ-
ation between Total EI and the connectivity among these regions
was driven most strongly by the Managing Emotions branch of
the MSCEIT, consistent with the hypothesis that poorer emotion
regulation is associated with greater in-phase correlation be-
tween the aforementioned regulatory regions and the BGN (i.e.
when prefrontal activity is high, activity within emotional and
interoceptive regions also remains high, rather than being sup-
pressed or effectively modulated). While causal direction can-
not be inferred because these data are strictly correlational,
they are nevertheless in accord with the growing consensus
that the vmPFC plays a modulatory role over primary emotion-
ally responsive regions within the limbic system (e.g. amygdala)
(Kim et al., 2004; Urry et al., 2006; Johnstone et al., 2007). Thus, we
speculate that one of the neurobiological mechanisms underly-
ing lower EI capacities may involve ineffective modulation of
the BGN by prefrontal control regions.

It is also worthwhile to note that while we found significant
associations between Ability EI (MSCEIT) and functional con-
nectivity of the BGN and P-DMN, Trait EI (EQ-i) was not signifi-
cantly related to connectivity patterns among the four the
networks we studied. This stands in contrast to a recently pub-
lished seed-based functional connectivity study that found sig-
nificant correlations between a Japanese measure of Trait EI [i.e.
Emotional Intelligence Scale (Fukunishi et al., 2001)] and func-
tional connectivity between several regions involved in social
and emotional processing (Takeuchi et al., 2013). However, that
study differed significantly from the present investigation in
several important respects, including their use of a seed-based
analysis to investigate the specific connectivity of the medial
PFC and the left anterior insula as opposed to our use of ICA
with dual regression to investigate the connectivity of the net-
works that contain these regions. In addition, they used a differ-
ent Trait EI measure with a different factor structure, presented
in a different language to a more homogeneous group of
younger and more highly educated university students. Further
research will be necessary to determine the role of these factors
in the observed differences between studies. Nonetheless, the
present results strongly suggest that higher Ability EI capacities
appear to be associated with stronger anti-correlations between
key networks involved in affective control versus emotional re-
sponses, and between emotionally responsive networks and
those involved in self-reflective cognition.
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