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Abstract

The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the
capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied
independently. Here, we asked whether the Akt pathway regulates the UPR. To this end, we used a series of chemical
compounds that modulate PI3K/Akt pathway and monitored the activity of the three UPR branches: PERK, IRE1 and ATF6.
The antiproliferative and antiviral drug Akt-IV strongly and persistently activated all three branches of the UPR. We present
evidence that activation of PERK/eIF2a requires Akt and that PERK is a direct Akt target. Chemical activation of this novel
Akt/PERK pathway by Akt-IV leads to cell death, which was largely dependent on the presence of PERK and IRE1. Finally, we
show that hypoxia-induced activation of eIF2a requires Akt, providing a physiologically relevant condition for the
interaction between Akt and the PERK branch of the UPR. These data suggest the UPR and the Akt pathway signal to one
another as a means of controlling cell fate.
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Introduction

Akt (also known as protein kinase B or PKB) is a serine/

threonine kinase member of the AGC family of protein kinases,

which plays a central role in growth, proliferation, protein

translation and cell survival [1–3]. Akt is recruited to the plasma

membrane by phosphatidylinositol (3,4,5)-triphosphate (PIP3)

generated by activated PI3K. Once at the membrane, Akt is

phosphorylated on Thr308 [4] by PDK1 and on Ser473 by

mTORC2 [5]. Akt can also be phosphorylated at other sites,

which are important for its kinase activity [6,7]. Activated Akt

phosphorylates multiple targets in the cytoplasm, nucleus,

mitochondria and at the surface of the endoplasmic reticulum

membrane (ER) [8,9]. Deregulation of the Akt pathway is

associated with a variety of human cancers, and mouse models

with activated Akt support its role in cancer development [10–12].

Several inhibitors of the Akt pathway have been developed as

therapeutic treatments, some of which are currently being tested in

clinical trials [13–16]. One of these inhibitors is the benzimidazole

derivative Akt-IV (also known as ChemBridge 5233705 or Akt

inhibitor IV) [17], which has potent anticancer and antiviral

activity [18–20]. Although the direct target of Akt-IV is not

known, it has been proposed to bind the ATP pocket of a kinase

upstream of Akt but downstream of PI3K, possibly that of PDK1

[17]. Akt-IV has been shown to inhibit the phosphorylation and

activity of Akt. However, at low concentrations, Akt-IV promotes

the hyperphosphorylation of Akt [20]. The mechanisms behind

these seemingly contradictory effects of Akt-IV on the Akt protein

and its antiviral and antiproliferative activities are poorly

understood.

Like the Akt pathway, the unfolded protein response (UPR) is

involved in the regulation of metabolism, protein translation, cell

death and survival [21,22], and it is thought to be important in the

development of different malignant neoplasms such as multiple

myeloma, prostate and breast cancer [23,24]. The accumulation

of unfolded proteins in the lumen of the ER triggers a

multipronged signal transduction response aimed at reestablishing

cellular homeostasis. This includes a rapid reduction in the protein

load in the ER, which is accomplished by lowering protein

synthesis and translocation into the ER, and an increase in the

capacity of the ER to fold proteins by upregulating the expression

of foldases and chaperones. If homeostasis cannot be reestablished,

the UPR can induce cell death, probably to protect the organism

from rogue cells that express misfolded proteins. Three ER stress

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e69668

"



transducers have been identified: inositol-requiring protein-1

(IRE1), activating transcription factor-6 (ATF6) and protein kinase

RNA (PKR)-like ER kinase (PERK). These integral membrane

proteins sense the protein folding status in the ER lumen and

communicate this information to cytosolic target proteins that

translocate to the nucleus to modulate gene expression [22,25,26].

The UPR was historically viewed as a stress response system but a

growing body of work suggests that it also functions in the

maintenance of basal cellular homeostasis [21]. In this view, the

UPR could be activated and its output modulated by signals other

than misfolded proteins. In accordance with this notion, P58-IPK

and a novel cytosolic isoform of BIP have been described to

interact and regulate PERK from the cytosolic side [27–29].

Both the UPR and the Akt signaling pathways regulate protein

translation, albeit in opposing ways. Akt promotes translation by

two paths. First, it phosphorylates and activates mTORC1, which

in turn inactivates 4EBP by phosphorylating it in at least four sites

[2]. Unphosphorylated 4EBP blocks translation by binding to the

cap binding protein eIF4E, the rate limiting step in cap-dependent

translation. Second, Akt inactivates the glycogen synthetase kinase

3b (GSK3b), the major kinase that phosphorylates and inactivates

the eukaryotic initiation factor 2 (eIF2) and its activator, the

guanine exchange factor eIF2B [3]. In contrast, the UPR, via

PERK, blocks translation initiation by directly phosphorylating

one of the subunits of eIF2 trimer, eIF2a. eIF2 containing

phosphorylated eIF2a inhibits eIF2B, preventing further activa-

tion of eIF2 [26]. Although the UPR and the Akt pathway have

long been known to regulate similar cellular systems and influence

cell fate, a functional link between the two pathways has only

recently emerged. The UPR has been reported to activate [30–35]

or inhibit [36–38] the Akt pathway depending on the nature and

severity of the ER insult. It was recently proposed that Akt

phosphorylates and inhibits PERK [39], although the role of the

Akt pathway in regulating the UPR remains poorly understood.

In this work we used a series of chemical modifiers of the Akt

pathway and tested whether Akt signaling can regulate the UPR.

We found that Akt-IV strongly activates all the three branches of

the UPR, with the PERK branch showing a dependence on the

presence and activity of Akt. Our results suggest that Akt is a

cytosolic regulator of the UPR and that the signaling between

these two pathways may control the balance of pro-survival and

pro-apoptotic signals thereby regulating cell fate decisions.

Results

Pharmacological modulation of Akt with Akt-IV activates
the UPR

To test the hypothesis that the Akt pathway regulates the UPR,

we used a series of small molecules that differentially target the

PI3K/Akt pathway (Fig. 1A, B). We used the classic PI3K

inhibitor LY294002 [40], Akt-VIII, a direct and selective inhibitor

of Akt [41], and Akt-IV. We evaluated the effects of these drugs on

the activation of the three branches of the UPR in HEK293T cells

in culture.

Akt-IV triggered a strong and sustained (2 to 24 h) activation of

the IRE1 branch, as detected by monitoring the splicing of Xbp-1

mRNA by RT-PCR (Fig. 2A). Neither LY294002 nor Akt-VIII

showed any effects on Xbp-1 mRNA splicing. We evaluated the

activation of the ATF6 branch by measuring the cleavage of a

FLAG-tagged ATF6 by western blot (WB) (Fig. 2B) and the re-

localization from the ER to the nucleus of a YFP-ATF6 reporter

(Fig. S1A). Akt-IV induced both the cleavage of ATF6-FLAG

(Fig. 2B) and the re-localization of the fluorescent reporter (Fig. 2C

and Fig. S1B). In contrast, neither LY294002 nor Akt-VIII

induced the cleavage of ATF6-FLAG (Fig. 2B). Finally, we found

that Akt-IV rapidly activated PERK, as assessed by a mobility shift

in an SDS-PAGE gel, and the phosphorylation of the PERK

target eIF2a (Fig. 2D and 2E). As with the IRE1 and ATF6

branches, LY294002 and Akt-VIII had little or no effect on the

PERK branch (Fig. 2D). Even at longer incubation times these

compounds failed to activate the PERK branch at levels

comparable to those of Akt-IV (Fig. S2). As expected, all three

compounds inhibited the phosphorylation of Akt at Ser473 and of

its downstream target GSK3b at Ser9 (Fig. 2D), making the effects

of Akt-IV on the UPR all the more striking.

We noted that just before PERK branch activation, Akt-IV

caused an early transient activation of Akt, as assessed by the

increase in phosphorylation of Ser473 of Akt and on Ser9 of

GSK3b (Fig. 2D). This activation peaked between 1 and

5 minutes post stimulation with Akt-IV and was specific to this

compound since neither LY294002 nor Akt-VIII provoked such

behavior (Fig. 2D). If this transient activation of Akt is important

for the induction of eIF2a phosphorylation needs further

confirmation.

eIF2a phosphorylation induced in response to Akt-IV
depends on PERK and Akt but not on PI3K

Since all three compounds work as Akt inhibitors (Fig. 2D), but

only Akt-IV activates the UPR, we tested the possibility that Akt-

IV regulates the UPR in an Akt-independent manner. To do that,

we evaluated the effects of Akt-IV on mouse embryonic fibroblasts

(MEFs) lacking Akt1 and Akt2, two of the three isoforms of Akt

(Akt DKO, Fig. S3). These cells have no basal activation of Xbp-1

mRNA splicing nor have they increased basal PERK activity as

judged by eIF2a phosphorylation. Treatment of Akt DKO cells

with Akt-IV induced the splicing of Xbp-1 as well as the mobility

shift of PERK to a similar extent as in wild type MEFs (Fig. 3A

and 3B) indicating that these effects are independent of Akt1 and

Akt2. However, the absence of these two isoforms impaired the

capacity of Akt-IV to induce the phosphorylation of eIF2a (Fig. 3B)

showing that in the case of the effect on eIF2a, Akt1 or Akt2

kinases were required. The remaining Akt and pAkt signal

observed by western blot and immunofluorescence in these cells

(Fig. 3B and Fig. S3) is likely due to the fact that Akt DKO cells

still express Akt3. To test whether the kinase activity of Akt is

required as well, we transfected wild type MEFs with a vector

containing a dominant negative kinase dead allele of Akt (HA-Akt-

KM) [42] and determined the effect of Akt-IV on eIF2a
phosphorylation. As in Akt DKO cells, the phosphorylation of

eIF2a induced by Akt-IV was greatly reduced in cells overex-

pressing HA-Akt-KM compared to wild type cells (3 fold decrease

in peIF2a/eIF2a levels compared to control, Fig. 3C) whereas the

mobility shift of PERK was unaffected. Moreover, over-expression

of wild type HA-Akt potentiated the effect of Akt-IV on eIF2a
phosphorylation (3 fold increase in peIF2a/eIF2a levels compared

to control, Fig. 3C), without affecting phosphorylation of eIF2a in

untreated cells.

Thus far, we have shown that Akt is necessary for eIF2a
phosphorylation, but not for the mobility shift of PERK. This

raises the possibility that Akt might cause this effect in a PERK

independent manner. In fact, eIF2a is known to be phosphory-

lated independently of the UPR by GCN2, HRI and PKR [43].

To test whether PERK was the kinase responsible for phosphor-

ylating eIF2a in the presence of Akt-IV, we treated PERK knock

out MEFs (PERK2/2) with Akt-IV (Fig. 3D). We found that the

ability of Akt-IV to induce eIF2a phosphorylation was greatly

impaired in PERK2/2 MEFs as compared to wild type cells.

AKT Stimulates PERK/eIF2alpha
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The residual phosphorylation of eIF2a visible at later time points

(1 h) is likely due to one or more of the other eIF2a kinases [44].

Our data are consistent with a model in which Akt-IV promotes

activation of the PERK/eIF2a branch by triggering Akt kinase

activity. To test whether the effects of Akt-IV on PERK and eIF2a
require the canonical activation of Akt by PI3K, we pre-treated

wild type MEFs with the PI3K inhibitor LY294002 before

stimulating with Akt-IV. As expected, this pre-treatment inhibited

the phosphorylation of Akt on Ser473 (Fig. 3E). However, it did

not affect the ability of Akt-IV to induce the phosphorylation of

eIF2a (Fig. 3E).

Taken together, these results demonstrate that the effect of Akt-

IV on eIF2a phosphorylation is PI3K-independent but Akt- and

PERK-dependent.

PERK is an Akt substrate
One possibility is that the eIF2a phosphorylation elicited by

Akt-IV is due to the activation and phosphorylation of PERK by

Akt or one of its substrates. Alternatively, Akt and PERK could act

in parallel, such that the phosphorylation of eIF2a in the presence

of Akt-IV requires both. If the former model were true, PERK

might be a direct target of Akt, what could be detected in an in vitro

kinase assay. In support of this notion, sequence analysis revealed

that while neither IRE1 nor ATF6 contain putative cytosolic Akt

phosphorylation sites, human PERK contains eight sequences that

match the Akt consensus sequence (RxRxxS/T) [45]. Seven of

these sequences, conserved in rats and mice, are located in its

cytosolic domain (Fig. 4A) and thus are accessible to Akt.

Interestingly, three of these sites (human S554, S1093 and

S1095) have been found to be phosphorylated in vivo according

to PhosphoSitePlusH [45,46]. An in vitro kinase assay with the wild

type HA tagged Akt1 kinase domain immunoprecipitated from

transfected HEK293T cells and a recombinant catalytically

inactive fragment of PERK (aa 537 to 1114) revealed that,

indeed, Akt can phosphorylate PERK (Fig. 4B). Immunoprecip-

itated kinase dead HA-tagged Akt1 kinase domain failed to

phosphorylate PERK, confirming the dependence on Akt activity

(Fig. 4B).

Supporting an in vivo role of Akt in phosphorylating PERK,

fluorescence microscopy experiments with Akt1-CFP and the ER

membrane marker ATF6-YFP confirmed previous reports that, in

addition to localizing to the cytosol, nucleus and plasma

membrane, Akt localizes to the ER membrane (Fig. S4).

Furthermore, we detected co-localization of PERK and phos-

phorylated Akt substrates in cells transfected with myc-PERK and

immunostained with an anti-myc antibody and an antibody that

Figure 1. Strategy. (A) Chemical structure of the compounds targeting the PI3K/Akt pathway used in this study. (B) Scheme of Akt signaling
pathway, which regulates cell survival, showing the point of action of the drugs shown in A. Akt phosphorylation and activation result from its
recruitment to PIP3 at plasma membrane, after which it exerts cytoplasmic and nuclear functions. Accumulation of PIP3 classically follows ligand (L)
binding to tyrosin kinase cell-surface receptors (RTK), adapter proteins (AP) recruitment to RTK and finally, PI3K activation to phosphorylate PIP2 to
PIP3. While Akt can be activated by the UPR it is not known if Akt can also regulate the UPR.
doi:10.1371/journal.pone.0069668.g001
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Figure 2. Pharmacological modulation of Akt with Akt-IV activates all three UPR branches: PERK responds first. (A) When activated,
IRE1 processes Xbp1 mRNA by a non-conventional cytoplasmic splicing reaction, changing Xbp1 open reading frame. HEK293T cells were treated with
Akt-IV (10 mM), Akt-VIII (5 mM) or LY294002 (20 mM) for the indicated times. Xbp1 mRNA splicing was detected by RT-PCR. Xbp1s: spliced form
(activated IRE1); Xbp1u: unspliced form (inactive IRE1). (B) When activated, ATF6 translocates to the Golgi apparatus where it is cleaved to release a
fragment that enters the nucleus where it functions as a transcription factor. HEK293 cells were transfected with ATF6-Flag plasmid and 24 h later
they were treated with Akt-IV (10 mM), Akt-VIII (5 mM), LY294002 (20 mM), or thapsigargin (Tg; 100 nM) for the indicated times. Western blots (WB)
using antibodies against FLAG and actin are shown for every case (B, upper panel). ATF6: uncleaved protein; ATF6f: cleaved form. (C) HEK293T cells
were transfected with a plasmid that expresses the YFP-NLS-mATF6short reporter (top, see Fig. S1A for details). Forty-eight hours post-transfection
cells were treated for the indicated times with Akt-IV and then fixed, DNA was stained with DAPI and cells were imaged (lower panel); Yellow, YFP-
ATF6; Blue, DNA; scale bar, 5 mm. For all cases cells treated with DMSO were used as a control (Control). (D) When activated, PERK is
autophosphorylated at multiple residues and activated to phosphorylate eIF2a. HEK293T cells were treated with Akt-IV (10 mM), Akt-VIII (5 mM) or
LY294002 (20 mM) for the indicated times. Protein extracts were analyzed by WB using the indicated antibodies. Data in the plot corresponds to ratio
of phosphorylated total abundance of each of the indicated proteins (normalized to the initial value) in cells treated with the indicated drugs for
different times. Error bars correspond to the standard error of three independent experiments. (E) HEK293T cells were treated for 5 h with Akt-IV.
peIF2a abundance was detected by immunofluorescence. Green, peIF2a; Blue, DNA; scale bar, 5 mm. Data are representative of at least three
independent experiments.
doi:10.1371/journal.pone.0069668.g002

Figure 3. Akt-IV stimulation of eIF2a phosphorylation is Akt- and PERK- dependent but PI3K-independent. (A) MEF WT or Akt DKO
cells were treated with Akt-IV (IV; 10 mM) for the indicated times. Xbp1 mRNA splicing was detected by RT-PCR. Xbp1s: spliced form (activated IRE1);
Xbp1u: unspliced form (inactive IRE1). (B) MEF WT or Akt DKO cells were treated with Akt-IV (IV; 10 mM) for 1 h. Protein extracts were analyzed by WB
using the indicated antibodies. The fold change in peIF2a/eIF2a ratio induced by Akt-IV was quantified for three independent experiments. On
average, this fold change was reduced to 15% of the original effect in MEF Akt DKO cells compared to WT cells (11.0 vs 2.6). (C) MEF WT cells were
transfected with HA-Akt or HA-Akt KM plasmids. Forty-eight hours post-transfection cells were treated with DMSO (C) or with Akt-IV (IV; 10 mM) for
1 h. A GFP expressing plasmid was used as a transfection control. Protein extracts were analyzed by WB using the indicated antibodies. (D) MEFs WT
or PERK2/2 were treated with Akt-IV (IV; 10 mM) for the indicated times. Protein extracts were analyzed by WB using the indicated antibodies. (E)
HEK293T cells were pretreated with DMSO (C) or LY294002 (LY; 20 mM) for 30 min and then treated for 1 h with DMSO, or Akt-IV (without removing
the corresponding pre-treatment). Protein extracts were analyzed by WB using the indicated antibodies. Data are representative of at least three
independent experiments.
doi:10.1371/journal.pone.0069668.g003
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Figure 4. Akt is a PERK kinase. (A) Human PERK gene containing eight sequences that match the Akt consensus (RxRxxS/T) seven of which are
located in its cytosolic domain (black bar). Green: Akt consensus sequence. Red/Yellow: Akt phosphorylation site. (B) WT and KM HA-Akt mutant
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recognizes proteins containing a phosphorylated Akt target motif

(RxRxxS*/T*) [47] (Fig. 4C). In untreated cells, we detected a

structured reticulated cytoplasmic staining with the phospho-Akt

substrate antibody. The rather strong signal is likely due to high

Akt activity normally present in HEK293T cells [48]. At the same

time, the PERK-myc signal was detected in only a few cells due to

the low transfection efficiency of this construct. The time-course of

the signal revealed by the phospho-Akt substrate antibody showed

a peak and decline behavior: after an initial increase seen

15 minutes post treatment, the signal diminished to levels below

those seen in untreated cells. This behavior is similar to what we

observed by western blot using anti phospho-Ser473-Akt (Fig. 2D),

supporting the idea that this antibody was a good reagent to follow

in vivo Akt activity. In contrast to the majority of cells, those cells

that overexpressed PERK-myc did not exhibit this peak and

decline behavior. In these cells, the phospho-Akt substrate signal

concentrated in the same spots where the myc-signal was detected.

These results indicate that PERK might be a direct target of Akt in

vivo.

Akt-IV induces apoptosis in a UPR-dependent manner
Both the Akt pathway and the UPR control cell fate by inducing

pro-survival and/or pro-apoptotic signals. Akt-IV has also been

described to induce cell death in different cell types [49–52]. To

determine the effects of Akt-IV on apoptotic cell death in our

system, we treated HEK293T cells for 7 hours with Akt-IV and

determined by WB the extent of caspase 3 and PARP cleavage.

Akt-IV caused strong activation (cleavage) of caspase 3 and PARP,

which were blocked by the caspase inhibitor ZVAD (Fig. 5A).

Consistent with these results, we found that Akt-IV treatment

induces the formation of cell blebs (Fig. 5B). These transient

globular protrusions of the plasma membrane are seen at the onset

of the certain stress-associated processes, such as cell injury, cell

invasion, hypoxia, high concentrations of free radicals and

apoptosis in some cell lines [53]. Interestingly, Akt-YFP transiently

localizes to these blebs in HeLa cells within 15 minutes of

treatment with Akt-IV (Fig. 5C). Consistently, phosphorylated Akt

substrates and eIF2a also exhibit a transient enrichment in cell

blebs after treatment with Akt-IV treatment (Fig. 5D and 5E), but

not with other inhibitors such as Akt-VIII (Fig. S5).

To determine the role of the UPR in the cell death induced by

Akt-IV, we evaluated the viability of wild type, IRE1 (IRE12/2)

and PERK (PERK2/2) knock out MEFs using a propidium

iodide incorporation assay measured by flow cytometry. Cell death

induced by a 12 h treatment with Akt-IV was greatly reduced in

the absence of IRE1 or PERK (Fig. 5F), indicating that one of the

mechanisms by which Akt-IV induces cell death is UPR

dependent.

Akt mediates PERK/eIF2a activation induced by hypoxia
The internal environment of solid tumors can be hypoxic and

can lead to the activation of mechanisms within the tumor to cope

with this stress. In general, adaptation to hypoxia is associated to

poor response to therapy [54]. During hypoxia, Akt is activated by

phosphorylation of Akt in the non-canonical Thr450 by JNK

kinase [55,56]. In the same conditions, eIF2a is phosphorylated in

a PERK-dependent manner [57]. Furthermore, hypoxia is

associated with cell blebbing and cell death [58]. Thus, given

our results, we hypothesized that Akt might be required for eIF2a
phosphorylation during hypoxia.

To test this hypothesis, we incubated wild type and Akt DKO

MEF cells in low oxygen conditions (0.1% O2) for 1, 2 or 4 hours

and evaluated the levels of eIF2a phosphorylation. In wild type

MEFs, hypoxia induced an increase in phosphorylated eIF2a, but

not a PERK mobility shift. It is possible that PERK autophos-

phorylation under these conditions is either transient or low.

However, in Akt DKO MEFs, hypoxic conditions did not affect

neither PERK nor eIF2a phosphorylation (Fig. 6A). This result

supports our idea that Akt mediates PERK/eIF2a activation

during hypoxia.

Discussion

Here we report the finding of a link that connects Akt with the

PERK branch of the UPR. Our results also shed light into the

molecular mechanism of action of Akt-IV, a drug with anticancer

and antiviral properties with therapeutic potential. We provide

evidence supporting the idea that a non-traditional activation of

Akt leads to PERK-dependent phosphorylation of eIF2. And more

important, we also show that this connection is relevant during a

physiological condition such as hypoxia.

Recently, Mounir et al. provided initial evidence that Akt

regulates PERK signaling [39]. Contrary to our results, the

authors reported that Akt phosphorylates and inhibits PERK

function. They observed higher levels of eIF2a phosphorylation in

Akt DKO MEF cells compared to wild type cells, consistent with

Akt being a PERK inhibitor. We have not observed these

differences (Fig. 3B), although our source of knock out cells was

different [59,60]. In contrast, we found that the overexpression of

a dominant negative form of Akt in wild type MEFs largely

blocked eIF2a phosphorylation in response to Akt-IV, consistent

with a stimulatory, rather than an inhibitory, action of Akt kinase

over PERK (Fig. 3C). Additionally, the authors described that

treatment with other Akt inhibitors like Akt-VIII and LY294002

also induced phosphorylation of eIF2a after several hours of

treatment. We only detected an effect using the Akt-IV compound

(occurring in minutes), with marginal effects using the other Akt

inhibitors. It is worth mentioning that they used a very high

concentration of Akt-VIII (ten times higher than us and more than

twenty times higher than in the paper that originally described

Akt-VIII [41]). One potential explanation for our discrepancies is

that Akt might phosphorylate different residues of PERK

depending on the cell context; some of these could be stimulatory

while others inhibitory. This idea would be consistent with the

presence of several consensus sites for Akt phosphorylation in the

cytosolic domain of PERK (Fig. 4A), and some of which have been

shown to be phosphorylated in vivo [46,61]. It has been shown that

in some cell contexts a prolonged treatment with PI3K inhibitors

reactivates Akt to some extent [62]. Thus, the delayed effect of

Akt-VIII and LY294002 on eIF2a reported by Mounir et al. may

be due to a nontraditional reactivation of Akt instead of inhibition.

Further work will be needed in order to address this issue.

Nonetheless, it seems now confirmed that Akt targets and

phosphorylates PERK modulating its activity and establishing a

connection between these two pathways.

protein was incubated with 10 mCi of [c-32P] ATP for 30 min and with 1 mg of GST or PERK GST protein as substrate. Phosphate incorporation was
analyzed by SDS-PAGE and autoradiography. Akt levels were determined by WB while GST-PERK levels were revealed by Coommassie blue staining.
(C) HEK293T cells were transfected with pCDNA-Myc-PERK and treated for 15 min with Akt-IV (10 mM). Cells were fixed and immunostained for pAkt
substrate and Myc tag. Green, pAkt substrate; Red, Myc-PERK; scale bar, 5 mm. Data are representative of at least three independent experiments.
doi:10.1371/journal.pone.0069668.g004
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Figure 5. Akt-IV induces cell blebbing and a UPR dependent cell death. (A) HEK293T cells were treated with DMSO (C), 100 mM of the
caspase inhibitor ZVAD, 10 mM Akt-IV (IV) or both. PERK mobility, eIF2a phosphorylation, Akt phosphorylation on Ser473, caspase 3 cleavage and
PARP cleavage were detected by WB. (B) Transmission images of HeLa cells treated for 15 min with DMSO (15 min) or with Akt-IV (10 mM), with blebs
indicated. Bleb formation was clearly observed in HeLa and MEF cells but could not be detected in HEK293T cells. (C) YFP channel images of HeLa
cells transfected with pAkt1-YFP plasmid and then treated for the indicated times with Akt-IV (10 mM). Akt1-YFP can be detected in blebs after 15 min
of treatment. (D) HeLa cells were treated for 15 min with Akt-IV. Cells were fixed and immunostained against pAkt substrate/Alexa FluorH 488 and
total eIF2a/Alexa FluorH 594. Green, pAkt substrate; Red, eIF2a; Blue, DNA. scale bar, 5 mm. (E) HeLa cells were treated for different times with Akt-IV
(10 mM) and then cells were fixed and immunostained for pAkt substrate/Alexa FluorH 488; scale bar, 5 mm. (F) MEF WT, IRE12/2 or PERK2/2 were
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treated with Akt-IV (10 mM) for 12 h. Cell viability was measured by flow cytometry using propidium iodide. Data are representative of at least three
independent experiments.
doi:10.1371/journal.pone.0069668.g005

Figure 6. A physiological link between Akt and PERK/eIF2a. (A) WT or Akt DKO MEF cells were subjected to normoxia (C) or hypoxia
(0.1%60.1 O2) (H) for the indicated times. Protein extracts were analyzed by WB using the indicated antibodies. The fold change in peIF2a/eIF2a ratio
induced by hypoxia was quantified for two independent experiments. On average, this fold change was reduced to 0, 40 or 60% of the original effect
in MEF Akt DKO cells compared to WT cells (1 h, 2 h and 4 h, respectively). (B) A model summarizing our results. Akt-IV (or other stimuli, such as
hypoxia) targets an unknown kinase, possibly PDK1, triggering apoptotic cell blebbing and activating Akt in a PI3K-independent manner (1).
Subsequently, UPR is activated (2). Akt presence and activity are necessary for eIF2a phosphorylation due to the existence of a connection between
Akt and PERK/eIF2a signaling pathways. IRE1 (4) and ATF6 (5) are activated are later times. At the end, activation of IRE1 and PERK and
dephosphorylation of Akt and GSK3b are associated with cell death (6).
doi:10.1371/journal.pone.0069668.g006
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We found that in response to Akt-IV, cells develop cell blebs, to

which Akt relocalizes in a transient manner, at a time coincident

with the onset of eIF2a phosphorylation (Fig. 2C and 5B–C).

Determining if the formation of these blebs is important for this

action of Akt will require future work. Nevertheless, this finding

supports the current view that Akt-IV probably targets PDK1

[17], since it has been shown that PDK1 is involved in cell

blebbing [63]. In the same line, though it needs further

confirmation, it seems possible that the activation of the UPR by

Akt-IV is via PDK1. In support of this hypothesis, other

pharmacological modulators of PDK1 also activate the UPR

pathway [64–66]. Since these compounds, like Akt-IV, activate

Akt1 independent branches (such as IRE1), it seems likely that

PDK1 targets the UPR via Akt dependent and independent

pathways.

Several non-canonical mechanisms of Akt activation have been

recently reported, such as Akt ubiquitination and Akt phosphor-

ylation in residues different from Thr308 and Ser473. In fact,

many kinases, including JNK, Ack1, ERK, CaM kinase and PKA

are able to phosphorylate Akt, and some of them do so

independently from PI3K activity [7,52,67–71]. Remarkably, in

the case of non-traditional activation of Akt induced by Akt-IV,

because of the induced eIF2a phosphorylation, it would promote

translation inhibition, contrary to the classic function of Akt in

stimulating protein synthesis. Rapid and transient activation of the

classic Akt pathway (phosphorylation in S473 and of Akt major

target GSK3b) precedes persistent activation of PERK/eIF2a
pathway, which lasts even after inhibition of Akt (Fig. 2D). This

can be explained both by a persistent non-canonical activation of

Akt (independent of S473 phosphorylation) and/or by a transient

non-canonical activation of Akt, which phosphorylates alternative

targets like PERK, which in turn displays a low dephosphorylation

rate.

We speculate that both cell death and translation inhibition

induced by Akt-IV could be associated with either the late Akt

dephosphorylation at S473, as has been described by the group of

Luo et al [72] or with a non-canonical activation Akt, directing its

kinase activity to alternative targets, such as PERK. We show that

the absence of PERK greatly reduces cell death induced by Akt-

IV, further supporting this alternative (Fig. 5F). Independently of

whether IRE12/2 and PERK2/2 cells have a reduced

apoptosis potential or not, what it is clear is that Akt-IV needs

the presence of these proteins to induce cell death. Here, we also

show that Akt-IV displays effects that are independent of Akt, such

as IRE1 dependent Xbp1 mRNA splicing and PERK electropho-

retic mobility shift. We speculate that Akt-IV –perhaps mediated

by PDK1 as suggested above- might in fact cause protein

unfolding at the ER lumen in an Akt independent manner,

affecting all the branches in different manners. In this regard, the

shift induced by Akt-IV on PERK mobility in an SDS-PAGE

persisted on Akt DK0 cells as well as in cells transfected with HA-

Akt-KM (Fig. 3B and 3C), indicating that the phosphorylation of

PERK induced by Akt-IV responsible for the shift is independent

of the presence of Akt1/2. In addition, this result also showed that

the classic mobility shift might not always indicate full PERK

activation, since in this case, even though the PERK band shifted,

phosphorylation of eIF2a was greatly reduced. Thus, we speculate

that Akt signaling activates PERK in a manner that might

complement the activation associated with the classical mobility

shift.

The design of drugs that target different components of the Akt

signaling pathway is of great value for the therapeutic treatment of

cancer [13–17,50,73,74], and Akt-IV has been shown to exhibit

potent anticancer and antiviral activity [13–17,50,73,74]. For this

reason, new analogues of Akt-IV have been designed with

enhanced antiviral/antiproliferative activity and low cytotoxicity

in normal cells [50]. Dunn et al. found that Akt-IV elicited Akt

phosphorylation and blocked viral replication. They proposed that

Akt-IV antiviral activity was unrelated to its action on Akt [17,20].

They based this conclusion solely in their observation that other

drugs, like LY294002, neither have this antiviral action nor

prevented it, despite blocking Akt phosphorylation, similar to what

we observed for Akt-IV and the UPR activation (Fig. 2A–D).

However, using MEF Akt DKO cells and a dominant negative

form of Akt (Fig. 3A and B), we found that activation of the PERK

branch actually required Akt kinase activity. In this regard, it is

worth mentioning that the UPR and PERK in particular, play an

important role in the expression of viral proteins [75–77]. Thus, in

the light of our results it would be interesting to test if the antiviral

activity of Akt-IV does indeed depend on Akt especially on this

newly discovered Akt/PERK pathway.

In summary, our data suggests that Akt-IV triggers cell blebbing

and a rapid and non-traditional activation of Akt, which stimulates

the PERK branch of the UPR. Akt-IV also activates the IRE1 and

ATF6 branches, maybe through the promotion of unfolded

proteins at the ER. Akt-IV also promotes a late inhibition of Akt

traditional activity (evaluated by loss of pAkt S473 and pGSK3b
S9 phosphorylation) which in combination with the UPR

eventually result in cell death via apoptosis (Fig. 6B). It has been

previously shown that PERK-mediated phosphorylation of eIF2a
during hypoxia is important for long-term survival [57]. Here we

found that Akt is necessary for eIF2a phosphorylation in these

conditions (Fig. 6A), providing an important physiological context

for the Akt-PERK interaction. The link between Akt and UPR

pathways suggests a constant feedback between them, since ER

stress and UPR have already been shown to alter Akt activity

[24,35,78,79]. This feedback provides a mechanistic basis for

previous suggestions that UPR plays a key role in the maintenance

of basal cellular homeostasis to a level far beyond to its role in ER

protein folding [21,24]. Cross-talk between these key signaling

cascades is not surprising since both pathways play crucial

functions in apoptosis, cell survival, protein translation and tumor

growth [10–12,23,24]. Consistently, the connection between ER

stress and the Akt downstream target mTOR was recently

highlighted [80]. We suggest that the Akt/UPR connection

functions as a master control mechanism of cell decision-making,

illustrating the remarkable flexibility of signaling pathways.

Materials and Methods

Cell Culture
HEK293T, HEK293, MEF, HeLa, MCF7 and COS7 cells

were grown in high glucose (4.5 g/L glucose) Dulbecco’s modified

Eagle’s medium (DMEM, Invitrogen) supplemented with 10%

fetal bovine serum (FBS) and penicillin/streptomycin (100 units/

ml and 100 mg/ml respectively, Invitrogen) in all cases. HEK293T

and MEF cells also have 110 mg/L of sodium pyruvate. MEF WT

and Akt DKO were obtained from Yang Luo, et al [59]. MEF WT,

IRE12/2 and PERK2/2 [81] were provided by Walter, P.

(UCSF, USA). MEF GCN22/2 [82] were provided by Koromilas,

A (Mc Hill University, Canada).

Chemicals, reagents and treatments
Akt-IV (10 mM), Akt-VIII (5 mM) and LY294002 (20 mM) were

obtained from Calbiochem. Thapsigargin (Tg) was obtained from

Sigma. Caspase Inhibitor Z-VAD-FMK (ZVAD) (100 mM) is from

Promega. The cells were plated (26105 cells per well for 6 well

plates, 46104 cells per well for 24 well plates and 16104 cells per
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well for 96 well glass-bottom imaging plates) and grown for 24 h

before transfection and/or treatment for the specified times.

Plasmids and Transfections
ATF6-FLAG reporter [83], pCMV6-HA-Akt and pCMV6-

HA-Akt KM [84] has been previously described. pGEX4T-1-

PERK K618R, used for bacterial expression, pCDNA-Myc-

PERK and pBABE-Myc-PERK used for eukaryotic cell expres-

sion were obtained from Addgene. All cell lines were transfected

with Effectene (Qiagen) or Lipofectamine (Invitrogen) according

the manufacture instructions.

Construction of fluorescent reporters
YFP-NLS-mATF6short reporter was constructed by PCR

amplification of mouse ATF6 transmembrane and ER luminal

domains (short ATF6). Forward primer contained an SV40 NLS

sequence upstream of ATF6 specific sequence. This PCR product

was digested with HindIII and cloned into pEYFP-C1 (Clontech).

The primers used were as follows:

mATF6 For:

59 AATAAAAGCTT TCGCCACC ATGCCAAAAAA-

GAAGCGTAAGGTCGACGAGGTGGTGTCAGAG 39

mATF6 Rev:

59 AATAAAAGCTTCTGCAACGACTCAGGGAT 39

Akt1-CFP fusion proteins were constructed by PCR amplifica-

tion of mouse Akt1 followed by digestion with HindIII and cloning

into pECFP-N1 (Clontech). The primers used were as follows:

mAkt1-FP For:

59 AATAAAAGCTT TCGCCACCATGAACGACGTAGC-

CATT G 39

mAkt1-FP Rev:

59 AATAAAAGCTTGGCTGTGCCACTGGCTGAG 39

RNA Isolation and RT-PCR Amplifications
RNA purification from cultured cells was carried using the

RNAeasy kit, (Qiagen, Germany). PolyA mRNA was reverse-

transcribed using M-MLV reverse transcriptase (Invitrogen,

Carlsbad, CA). cDNA was used as template for PCR amplification

across the fragment of the Xbp-1 cDNA bearing the intron target

of IRE1a ribonuclease activity. Primers used included: murine

Xbp-1 sense 59-GAACCAGGAGTTAAGAACACG-39 and anti-

sense 59-AGGCAACAGTGTCAGAGTCC-39; human Xbp-1,

sense 59-TTACGAGAGAAAACTCATGGC-39 and antisense 59-

TCCAAGTTGTCCAGAATGC-39. PCR conditions were: 95uC
for 5 min; 95uC for 30 sec; 56uC for 30 sec; 72uC for 30 sec; 72uC
for 5 min with 30 cycles of amplification. PCR products were

resolved on a 3% agarose/16TAE gel.

Western Blot Analysis
Protein extract preparation and western blot analysis were

performed as previously described [85]. Primary antibodies used

against PERK, peIF2a S51, eIF2a, pAkt S473, Akt, pGSK3b S9,

HA, pAkt substrate, PARP and caspase 3 (all from Cell Signaling

Technology), GSK3b (clone H76, Santa Cruz), FLAG and actin

(1/10000) (Sigma), all were used at 1/1000 at least that something

else were indicated. To quantify the bands obtained via Western

blot analysis, we applied ImageJ software based analysis (http://

imagej.nih.gov/ij/).

Cell Imaging and Immunofluorescence
For fluorescent reporter assays and immunofluorescence, cells

were plated into 96 well glass-bottom imaging plates and

transfected -when indicated- 24 h later with lipofectamine

according the manufacter instructions. After treatment, cells were

fixed as described [86] with 4% paraformaldehyde in PBS for

5 min at room temperature, washed twice with PBS, permeabi-

lized for 5 min with 0.2% Triton X-100 in PBS and blocked for

30 min with 3% BSA in PBS. After incubation for 1 h with

primary and secondary antibodies (Alexa 594 or Alexa 488 labeled

anti-mouse antibodies) in blocking solution for 1 h each, cells were

extensively washed with PBS and nuclei were stained with DAPI.

Images were captured on an Olympus IX-81 fluorescence

microscope equipped with a 606 oil immersion objective and a

Coolsnap HQ2 CCD camera (Photometrics). Acquisition was

carried out with MetaMorphH Microscopy Automation & Image

Analysis Software.

Expression of recombinant proteins,
immunoprecipitation and PERK in vitro Phosphorylation
Assays

Expression and purification of GST and GST fusion proteins as

well as Akt in vitro kinase assays were performed as described [86].

Briefly, GST and GST-PERK (K618R) were over-expressed in

the E. coli Rosetta pLysS BL21 strain (Novagen) by incubation at

37uC until the optical density was 0.5 and induction with

isopropyl-b-thiogalactopyranoside during 3 h. Following bacterial

lysis, soluble proteins were affinity purified under nondenaturing

conditions, on a glutathione-sepharose 4B-CL resin (Amersham-

Pharmacia) according to the manufacturer instructions. For Akt

kinase assays, HEK293T in 100-mm plates were transfected with

pCMV6-HA-Akt, pCMV6-HA-Akt KM or were mock transfect-

ed. After 48 h cells were washed with cold PBS and lysed at 4uC in

Akt lysis buffer (20 mM Tris-HCl pH 7.5, 137 mM NaCl, 1%

Triton X100, 10% glycerol, 20 mM NaF, 2 mM sodium

vanadate, 1 mM DTT and 25 mM b-glycerophosphate plus a

protease inhibitor cocktail (Roche)). WT and KM mutant HA-Akt

were immunopurified from cleared lysates with an anti-HA

antibody (MMS-101R, Covance) and Gamma-Bind Sepharose

beads (Santa Cruz Biotechnology). Lysates from mock transfected

cells were subject to the same procedure and used as a negative

control. After extensive wash, the immunoprecipitate was incu-

bated with 10 mCi of [c-32P] ATP for 30 minutes in 30 ml kinase

buffer (20 mM HEPES pH 7.4, 10 mM MgCl2, 10 mM MnCl2,

1 mM DTT, 20 mM ATP) at 25uC using 1 mg of GST or GST

fusion protein as substrate. The reactions were terminated by

addition of 56sample buffer and boiling. Phosphate incorporation

was analyzed by sample electrophoresis on a 12% SDS-PAGE and

autoradiography.

Cell viability assay
After the corresponding treatment the cells were incubated with

1 mg/ml of propidium iodide (PI). PI incorporation was measured

after 15 min by flow citometry using FACScanto II cytometer and

FACS DIVA program.

Hypoxia induction
MEF WT and Akt DKO cells were plated in p6 culture dishes

at a density of 16105 cells/ml. After approximately 18 h the

culture dishes were placed in the hypoxic culture chamber

(BioSpherix). The oxygen concentration in the chamber was

maintained with an oxygen sensor (Proox Model 110) and a

carbon dioxide sensor (ProCO2 model 120).

Supporting Information

Figure S1 Akt-IV induces the translocation of the ATF6
reporter in different cell lines. (A) Diagram of pEYFP vector
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used for pYFP-NLS-mATF6short construction. ATF6 transmem-

brane (TmD) and luminal domains (LD) downstream of YFP were

linked to the SV40 nuclear localization signal (NLS). The sites for

ATF6 protease cleavage (S1P and S2P) are depicted. HeLa cells

were transfected with YFP-NLS-mATF6short and GalT1-CFP

plasmids, to label the Golgi apparatus. After 48 h, cells were

treated with the ER stressor Tg for 4 h and then fixed and

immunostained with antibodies against calnexin/Alexa FluorH
594, to label ER. Yellow, YFP-NLS-mATF6short; Red, Calnexin

(ER); Cyan, GalT1-CFP (Trans-Golgi); Blue, DNA; scale bar,

5 mm. The images showing ATF6 reporter in the nucleus (middle

panel) or in the Golgi (bottom panel) are representative of the

population response. (B) MCF7 (upper panel) and COS7 (lower

panel) cells were transfected with the YFP-NLS-mATF6short

plasmid. After 48 h, cells were treated with Akt-IV for 5 h and

then fixed and imaged; scale bar, 5 mm. Data are representative of

at least three independent experiments.

(TIF)

Figure S2 Traditional inhibitors of the Akt pathway
have marginal or no effect on PERK/eIF2a activation
even at long times. HEK293T cells were treated with DMSO

(control), LY294002 (20 mM), Akt-VIII (5 mM) or Akt-IV (10 mM),

for the indicated times. Protein extracts were analyzed by WB

using the indicated antibodies. Data are representative of at least

three independent experiments.

(TIF)

Figure S3 Distribution of Akt isoform 3 in Akt DKO
MEFs. WT and Akt DKO MEF cells were fixed and

immunostained with antibodies against (A) Akt/Alexa FluorH
488 or (B) pAkt S473/Alexa FluorH 488. Scale bar, 5 mm. Data

are representative of at least three independent experiments.

(TIF)

Figure S4 YFP-ATF6 and Akt-CFP colocalize in the ER.
(A) Diagram of pECFP-N1 vector used for pAkt1-CFP construc-

tion. (B) HeLa cells were transfected with YFP-NLS-mATF6short

and Akt1-CFP plasmids. After 48 h, cells were fixed and imaged;

scale bar, 5 mm. N: Nucleus; C: Cytosol; ER: Endoplasmic

Reticulum; PM: Plasma Membrane. Data are representative of at

least three independent experiments.

(TIF)

Figure S5 pAkt substrate containing blebs induced by
ATK-IV and Akt-VIII. HeLa cells were treated for 5 min with

Akt-IV (10 mM), Akt-VIII (5 mM) or were mock treated (C). Cells

were fixed and immunostained for pAkt substrate/Alexa FluorH
594; scale bar, 5 mm. The numbers show the percentage of cells

displaying blebs in each condition. Data are representative of at

least three independent experiments.

(TIF)
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