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An escalation in the frequency and intensity of natural disasters is observed over the last decade, forcing 
the community to develop innovative technological solutions to reduce disaster impact. The multidisciplinary 
nature of disaster management suggests the collaboration between different disciplines for an efficient outcome; 
however, any such collaborative framework is found lacking in the literature. A common taxonomy and 
interpretation of disaster management related constraints are critical to develop efficient technological solutions. 
This article proposes a process-driven and need-oriented framework to facilitate the review of technology based 
contributions in disaster management. The proposed framework aims to bring technological contributions and 
disaster management activities in a single frame to better classify and analyse the literature. A systematic review 
of benchmark disruptive technology based contributions to disaster management has been performed using 
the proposed framework. Furthermore, a set of basic requirements and constraints at each phase of a disaster 
management process have been proposed and cited literature has been analysed to highlight corresponding 
trends. Finally, the scope of computer vision in disaster management is explored and potential activities where 
computer vision can be used in the future are highlighted.
1. Introduction

A disaster is defined as an event that occurs over a short or long 
period of time, affecting the entire community or society and wreak-
ing havoc on people, the environment, infrastructure, wildlife, and the 
economy [1, 2, 3]. Hazard, vulnerability, and society’s failure to deal 
with the disaster utilising the available resources are often the causes of 
disasters [4, 5, 6]. Disasters are broadly categorised as natural or man-
made based on their origins. Natural disasters (e.g., earthquakes, floods, 
wildfires, landslides, liquefications, volcanic eruptions, hurricanes, cy-
clones, tsunamis, tornadoes, pandemics, blizzards) are those caused by 
natural phenomena such as geophysical and hydrological processes [4, 
7, 8, 9]. On the other hand, technological or man-instigated disasters 
(e.g., industrial accidents, transportation accidents, terrorist attacks, 
war, nuclear radiation, stampedes, social unrest, conflicts, oil spills, and 
fires) are caused by the direct or indirect intervention of humans [8, 9]. 
Another type of induced disasters is referred to as a cosmic disaster, 
which encompasses nuclear war, bioterrorism, and climate change [9, 
10]. This article mainly focuses on natural disasters to restrict the scope 
and complexity of the performed review. A gradual increase in the oc-

* Corresponding author.
E-mail address: ui010@uowmail.edu.au (U. Iqbal).

currence and intensity of natural disasters is noted over the past few 
decades. According to Guha-Sapir [11], a fraction of the increase in 
occurrence is because of advances in reporting, communication and de-
tection technologies. However, the increase in hydro-metrological dis-
asters including floods and droughts is real, which is believed because 
of climate change and unplanned urbanization in disaster-prone regions 
[12, 13]. Increased intensity, urbanization, and population growth are 
the highlighted factors which increase the vulnerability and make nat-
ural disasters more damaging in terms of deaths and their effect on 
people [5, 6, 14]. From 2010 till 2021, a total of 4384 natural disasters 
occurred, which resulted in 0.5 million deaths, 1886 million affected 
and 1.89 billion US dollar damages [11]. The ratio of affected people is 
more in underdeveloped countries mainly because of lack of resources 
to deal with natural disasters [13]. These horrifying disaster statistics 
have raised concerns in the community forcing the development of 
innovative solutions and extension of existing methods to reduce the 
impact of disasters towards proactively protecting the community [15].

The occurrence of a natural disaster cannot be avoided; however, 
the response can be improved to reduce its impact on the commu-
nity. Because of the unpredictive nature, only limited resources can be 
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allocated in advance to deal with natural disasters. Disaster manage-
ment is the institution that involves the systematic strategic planning 
and deployment of procedures towards reducing the impact of disas-
ters by efficiently using the available limited resources [16]. It is a 
multidisciplinary field and involves the collaboration between people 
from a variety of domains such as environmental sciences, logistics, 
civil engineering and computer sciences. Therefore, it incorporates the 
contributions from multiple disciplines to improve the overall manage-
ment process. In the context of disaster management, interpretation of 
natural disasters has changed over the years towards the vulnerability of 
people to a certain hazard [5] and multiple models have been developed 
for disaster risk reduction. Some common models of vulnerability and 
disaster risk reduction include the Pressure and Release (PAR) model 
[17], Hazards-of-place (HOP) model [18], Regions of Risk model [19], 
Integrated Assessment of Multi-Hazards model [20] and the UNISDR 
framework for disaster risk reduction [21]. Given the involvement of 
actors from various domains as evident from above-mentioned models, 
it is significant to have collaboration and interaction between involved 
groups to better understand the needs of the community and efficient 
management. However, Seaberg et al. [22] highlighted the lack of any 
such comprehensive framework to connect the actors towards efficient 
disaster management. In this context, a common taxonomy and inter-
pretation of disaster management related requirements are essential to 
develop the understanding of the problem to be addressed by a contrib-
utor (an integrator or technology provider).

In an effort to cope with disasters, academics and practitioners 
are developing different technology-oriented solutions [23]. Emerging 
disruptive technologies including Artificial Intelligence (AI) /machine 
learning/deep learning [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46], social media/Big Data/crowd-
sourced data [45, 47, 48, 49, 50, 51, 52, 53], computer vision [36, 
43, 44, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 
67, 68, 69, 70, 71], Information Communication Technology (ICT)/ 
mobile phone/Geographical Information System (GIS) [46, 72, 73, 74, 
75, 76, 77, 78], virtual reality/augmented reality [79, 80, 81, 82] and 
robotics/Unmanned Aerial Vehicles (UAVs) [43, 57, 62, 71, 77, 83, 84, 
85, 86, 87] are highlighted as potential tools that may significantly help 
in improving the disaster management practices. Recent technological 
advancements in computing hardware, communication infrastructure 
and cloud computing have made it possible to practically implement 
the technological solutions to real disaster situations. Computer vision 
and Intelligent Video Analytics (IVA) have emerged as trending and eco-
nomical technologies to address complex real-world problems. There is 
the enormous potential of deploying state-of-the-art computer vision al-
gorithms to address disaster management problems. A section at the 
end of the article presents the scope of computer vision in disaster man-
agement and highlights potential challenges.

A number of reviews already published related to the role of specific 
technologies (e.g., AI [88], ICT [2], Big Data [15, 89]) in the disas-
ter management domain; however, no comprehensive literature entry 
was found where trending technologies are reviewed at the same time 
in the context of disaster management to demonstrate the patterns of 
technology shift over the years. Furthermore, the process-driven and 
need-oriented framework proposed in this article provides a unique per-
spective of literature where a common taxonomy is established between 
disaster management problems and technology providers.

This article proposes a framework for a process-driven and need-
oriented review of the literature to help the contributors in a systematic 
classification of technological contributions to disaster management. 
The aim of the proposed review framework is to categorize the literature 
in a two-dimensional structure: horizontal axis progressing from pre-
vention phase towards recovery phase of disaster management, while 
vertical axis detailing needs of each phase, corresponding assessments 
to address the needs and common technologies used in performed as-
sessments. The proposed framework will help researchers in identifying 
gaps and proposing novel solutions to unaddressed disaster manage-
2

ment problems. Furthermore, to facilitate the process of requirement 
formulation, this article proposes a list of common constraints to be 
properly defined and incorporated in the development process. As a 
summary, the followings are the main contributions of this article:

1. Presents a systematic review of benchmark technological contribu-
tions across different phases of the disaster management cycle to 
demonstrate the trends of technology used over the last decade.

2. Proposes a process-driven and need-oriented framework for the 
analysis of literature to help contributors in a systematic classifi-
cation of literature and identifying pinpoint gaps.

3. Proposes a list of disaster management related constraints and re-
quirements with the idea of facilitating contributors in better ad-
dressing the problems and positioning their solutions in line with 
these requirements.

4. Explores the scope of computer vision in addressing disaster man-
agement related assessments and highlights the potential chal-
lenges.

The rest of the article is organized as follows. Section 2 presents 
contextual information about the modern disaster management cycle. 
Section 3 presents the methodology and protocols adopted to perform 
the presented review. Section 4 presents the review of technological ad-
vancements across different phases of the disaster management cycle. 
Section 5 proposes the process-driven and need-oriented framework and 
analyses the cited literature using the proposed framework. Section 6
lists disaster management related constraints and analyses the cited lit-
erature against the defined requirements. Section 7 presents the scope 
of computer vision for disaster management and highlights the poten-
tial challenges in this context. Section 8 concludes the study and reports 
important insights from the presented review.

2. Disaster management cycle

There are a variety of disaster management frameworks and proce-
dures proposed in literature [90] to deal with disaster situations. The 
modern disaster management cycle is one of the most commonly and 
widely used frameworks, which consists of four phases; prevention and 
mitigation, preparedness, response and recovery [13, 16, 22, 90, 91, 
92, 93, 94]. Each phase of the disaster management cycle is briefly de-
scribed as follows:

• Prevention and Mitigation phase aims to minimize the impact 
of unavoidable future disasters in the long term. It involves the 
activities such as risk analysis, hazard zone mapping, resources al-
location, climate forecasting and building warning codes.

• Preparedness phase involves the planning of responding to a near-
future disaster. It involves the activities of disaster training, disaster 
exercises, and early warning systems.

• Response phase aims to reduce the impact and damages caused 
by the disaster after its immediate occurrence. It involves the ac-
tivities of disaster mapping, damage estimations, search and rescue 
missions, and humanitarian assistance.

• Recovery phase aims to bring the community back to normal after 
a disaster occurrence. It involves the activities of reconstruction 
monitoring, debris clearance, and financial assistance.

Fig. 1 shows the functional block diagram of the modern disaster 
management cycle.

3. Review methodology and protocols

The presented review is performed using standard Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
[95] guidelines with proposed process-driven and need-oriented anal-
ysis of literature. The protocol consisted of the following steps (a) 



U. Iqbal, P. Perez and J. Barthelemy Heliyon 7 (2021) e08405

Fig. 1. Functional block diagram of modern disaster management cycle (reconstructed from [89, 90, 94]).

Table 1. List of search keywords.

“Disaster Management” AND “Phases” “Disaster Management” AND “Cycle”

“Disaster Management” AND “Activities” “Disaster Management” AND “Assessments”

“Disaster Management” AND “Requirements” “Disaster Management” AND “Constraints”

“Disaster Management” AND “Technology” “Disaster Management” AND “Solutions”
research questions formulation, (b) keywords selection, (c) academic 
databases selection, (d) inclusion/exclusion criteria, (e) descriptive 
analysis of selected literature, (f) evaluation of selected literature. To 
restrict the scope of the presented review, technological contributions 
are referred to literature entries where disruptive technologies (i.e., 
robotics, computer vision, machine learning, AI, Big Data, virtual real-
ity, augmented reality, statistical/probabilistic modelling, remote sens-
ing, UAVs, crowdsourcing, social media, ICT, Structure from Motion 
(SfM), Internet of Things (IoT), GIS) are deployed to address the disas-
ter management related problems.

A number of research questions listed as follows were formulated 
to identify the needs involved, highlight a variety of assessments per-
formed and explore technological contributions made across phases of 
the disaster management cycle.

• What are the different phases and needs involved at each phase of 
the disaster management cycle?

• What are different assessments and activities performed at each 
phase of the disaster management cycle to address the correspond-
ing needs?

• What are different technological solutions proposed to facilitate 
disaster management related assessments?

• What are different disaster management related constraints and re-
quirements associated with each phase?

A list of corresponding keywords presented in Table 1 was pre-
pared to extract the relevant literature. Scopus, Web of Sciences (WoS) 
and IEEEXplore academic databases were searched against the defined 
keywords and literature was extracted. In total, 41946 records were 
extracted, 11769 from Scopus, 23905 from WoS and 6272 from IEE-
EXplore. Extracted literature was filtered using detailed and specific 
inclusion/exclusion criteria listed as follows to restrict the scope of per-
formed review to the only benchmark studies.

• Only peer-reviewed literature (i.e., articles published in impact fac-
tor journals) published between 2010 and 2021 is considered for 
this review.

• Literature published only in the English language is considered.
3

• Literature involving only selected natural disasters (i.e., earth-
quake, avalanche, wildfire, drought, flood, tsunami, landslide, hur-
ricane, heatwave, volcanic eruption, gully erosion) is included in 
the main review.

Duplicate entries were removed and the relevance of the article was 
assessed at stages, including title screening, abstract screening and full-
text evaluations. It is inevitable to avoid the biasness and subjectivity 
in the process of screening the literature for inclusion in the final re-
view despite having detailed inclusion/exclusion criteria as mentioned 
by Galindo and Batta [96]. A subjective test of “if the article proposes 
some technology-oriented solution to address one of disaster manage-
ment related assessments” was applied during the full article screening 
process to determine the relevance. As a result, 111 articles were se-
lected to be included in the presented review (i.e., 102 for the main 
review, 09 for framework support). The literature chosen for inclusion 
in this review is by no means near to the amount of research published 
in this domain; however, it can be considered as a representative sample 
of the most recent state-of-the-art literature. Fig. 2 presents the standard 
PRISMA flow diagram.

Exploratory analysis were performed on selected literature to high-
light the year-wise and phase-wise trends. Fig. 3(a) presents the year-
wise distribution of literature and indicates that the use of technology 
in disaster management has been increased significantly from 2017 on-
ward. Fig. 3(b) shows the distribution of literature across phases of the 
disaster management cycle. Prevention and response phases were tar-
geted the most from a technology perspective, while the recovery phase 
was least explored.

4. Review of technological contributions to disaster management

This section presents the review of technology-oriented solutions 
proposed to address assessments at different phases of disaster man-
agement cycle. The review is presented in the chronological order to 
highlight the shift of technology over the years.

4.1. Prevention and mitigation

In the year 2010, Bai et al. [24] proposed the use of GIS based logis-
tic regression for landslide susceptibility mapping. Four different data 
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Fig. 2. PRISMA flow diagram for presented systematic review.

Fig. 3. Exploratory analysis of selected literature.
types including remote sensing, thematic maps, topographical maps, 
and geological maps were used for the investigation. Performance of re-
gression model based mapping was measured using Root Mean Squared 
Error (RMSE) and classification accuracy. The proposed logistic regres-
sion model achieved an RMSE of 0.392 and an accuracy of 81.4%. 
Later in the same year, Martyr et al. [97] used high-resolution and 
unstructured mesh computational models (i.e., SWAN+ADCIRC SL16) 
of the Mississippi river to simulate the hurricane storm surge under 
varied flow conditions. To parameterize the effect of ripples from low 
to high flows, velocity variations were implemented. Model accuracy 
was assessed based on the quadratic fit estimates and 𝑅2 value of 0.93 
was reported. Furthermore, it was reported that the implementation of 
boundary conditions improved the overall model performance.

In 2012, Aronica et al. [98] proposed the use of Monte Carlo sim-
ulation to generate flood hazard maps. The hydrodynamic model was 
used to derive the flood event characteristics in the performed simu-
lation. In the same year, Sun et al. [72] discussed the non-structural 
measures for the mitigation of floods and landslide hazards. Eight non-
4

structural measures including safety zones, critical rainfalls, monitoring 
equipment, warning systems, GIS data, hierarchical responsibility sys-

tem, guide, and training were discussed in this context. Campos et al. 
[99] proposed the use of transportation network to determine the inde-

pendent paths from disaster struck area to safe locations by repeatedly 
applying an analytical heuristic function. Travelling time and capac-

ity of transportation networks were used as the main parameters in 
the defined heuristic function. In 2014, Caballero and Rahman [100] 
deployed Monte Carlo stochastic simulation approach for design flood 
estimation. Data from two catchments in Australia was used as a case 
study. The advantage of simulation in selecting the appropriate input 
value for flood modelling was reported. Later in the same year, Radi-

anti et al. [101] proposed a novel Spatio-temporal probabilistic model 
integrating crowd and hazard dynamics to simulate the crowd flow. Ef-

ficient crowd flow simulation can help in better evacuation planning 
during a disaster event. A Dynamic Bayesian Network (DBN) was used 
to simulate the flow.
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In 2015, Liu et al. [102] proposed the use of a 1D-2D hydrody-
namic model for flood simulation in detention basins. A novel approach 
was presented to link 1D and 2D models for flood simulation. Flood 
mapping was generation using GIS. Ramakrishnan et al. [103] in year 
2016 proposed the use of phase change materials in the building fabrics 
towards reducing the risk during heatwave disaster events. A numer-
ical simulation approach was adopted to investigate the potential of 
phase change material towards resisting heat stress risk. From the re-
sults, improved performance was reported when phase change material 
was used. In 2017, Zhu et al. [83] proposed the use of UAVs for effi-
cient floods related baseline data collection. It was reported that UAV’s 
captured images provided improved flooding related information when 
combined with geographic information. Chen et al. [25] in 2018 per-
formed a comparative study using multiple machine learning regression 
approaches (i.e., Bayes’ Net (BN), Radical Basis Function (RBF), Logis-
tic Model Tree (LMT), Random Forest (RF)) for landslide susceptibility 
mapping. A landslide spatial dataset for a custom site was used in a 
70:30 ratio for training and testing purposes. RF model was reported 
best with an accuracy of around 75%. In the same year, Tanaka et al. 
[104] proposed a requirement definition method to develop a global 
disaster database by incorporating data from multiple sources. Var-
ious critical issues and challenges were highlighted in developing a 
global database including data generality and validation. Zhang et al. 
[54] in the year 2018 proposed a novel Object-based Convolutional 
Neural Network (OCNN) for urban land use classification from Very 
Fine Spatial Resolution (VFSR) images. Instead of image pixels, seg-
mented objects were used as functional units for CNN. Improved land 
use classification accuracy was reported when compared with existing 
literature.

In 2019, Bera et al. [73] proposed the use of a multi-criteria anal-
ysis approach with GIS for landslide hazard zone mapping. Multiple 
landslide related factors were integrated into the platform and risk 
scores were determined. The effectiveness of the proposed approach 
was validated using a case study. In the same year, Komolafe et al. 
[105] developed a loss function for flood risk assessment by incorporat-
ing multiple flood damage related features. The proposed models were 
validated using a case study and the effectiveness of loss function in pre-
cisely predicting the loss was reported. Later in 2019, Zhang et al. [55] 
proposed a novel joint deep learning framework for land use and land 
cover classification by making use of CNN and Multilayer Perceptron 
(MLP) approaches. Improved classification accuracy were reported for 
the proposed joint deep learning approach when applied to VFSR im-
ages. Furthermore, the advantage of using the iterative update method 
was highlighted.

Recently in 2020, Abdi [26] performed a comparative study using 
multiple machine learning algorithms (i.e., Support Vector Machine 
(SVM), RF, xgboost, deep learning) for land use and land cover clas-
sification. The sentinel-2 dataset was used for training the machine 
learning models. From the results, SVM was reported best in the clas-
sification of data. In the same year, Band et al. [27] proposed the use 
of hybrid and ensemble machine learning models for the prediction of 
flash flood prone areas and generating flood susceptibility maps. Fifteen 
features related to climate and geo-environment were used as input 
to models for training. Topographical and hydrological features were 
reported as the most significant in the final prediction. Chowdhuri et 
al. [28] in 2020 implemented state-of-the-art Artificial Intelligence en-
semble models (i.e., Boosted Regression Tree (BRT), Bayesian Additive 
Regression Tree (BART), Support Vector Regression (SVR), Ensemble of 
SVR) for the gully erosion susceptibility mapping. From the results, the 
Ensemble approach was reported to achieve the highest accuracy.

In 2020, Harirchian and Lahmer [106] proposed a fuzzy logic model 
for seismic vulnerability assessment of buildings in the context of an 
earthquake disaster. A novel rapid visual screening framework was 
used for earthquake vulnerability assessment of buildings. The effec-
tiveness of the proposed framework was demonstrated using two case 
studies. Later in the same year, Lestari et al. [107] tested a contingency 
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plan for volcanic eruption by finding a communication model through 
performing in-field training exercise simulations. Data was collected us-
ing in-field interviews, questionnaires, and surveys. The collected data 
were qualitatively analysed and interpreted for an efficient contingency 
plan. Mboga et al. [56] in the year 2020 proposed a fully connected 
CNN for land cover classification from historical aerial photographs. 
Two CNN architectures (i.e., atrous layers without downsampling, up-
sampling layers with downsampling) were deployed and reported to 
achieve an accuracy of approximately 90% outperforming conventional 
machine learning approaches.

Mitsuhara and Shishibori [79] in the year 2020 developed a vir-
tual reality and augmented reality based Simulated Tornado Experience 
(STE) for better preparation for future tornado events. Series of com-
parative experiments were performed and virtual reality based STE was 
reported better for controlling learner fear and system operations. In the 
same year, Pal et al. [108] used a similar approach to Chowdhuri et al. 
[28] and implemented ensemble machine learning approaches for gully 
erosion susceptibility mapping. From the results, Bagging ensemble was 
recommended for efficient gully erosion mapping. Pour et al. [109] 
proposed the use of Low Impact Development (LID) approaches along 
with conventional flood stormwater management to better mitigate the 
impacts of floods because of climate change. Advantages, limitations, 
challenges and potential future aspects of LIDs in context to mitigate 
the urban floods were investigated in detail.

Sansare and Mhaske [74] in the year 2020 proposed the use of a GIS 
software tool for flood and landslide hazard mapping. QGIS software 
tool helped in the identification of important flood and landslide related 
insights for future hazard mitigation. Shahri and Moud [29] proposed a 
novel Hybrid Block Based Neural Network (HBNN) model for landslide 
susceptibility mapping. The proposed model was the combination of the 
divide-and-conquer approach and genetic algorithm. The performance 
of the model was assessed using the Region of Convergence (ROC) curve 
and the area under the curve was reported as approximately 89%. Later 
in the 2020, Ziarh et al. [110] proposed a novel Multi-Criteria Decision 
Analysis (MCDA) based on the entropy and catastrophe theory for flood 
risk mapping. The functionality of the proposed approach was demon-
strated using a case study. From the results, 93% accuracy in flood risk 
mapping was reported for the proposed approach.

Most recently in 2021, Arabameri et al. [30] proposed a novel en-
semble of machine learning algorithms for predicting maps of gully 
erosion susceptibility. The genetic algorithm was combined with the xg-
boost machine learning model and deployed on a GIS database for gully 
erosion prediction. From the results, an accuracy of around 90% was re-
ported for the proposed approach. In the same year, Ndehedehe et al. 
[31] assessed the variations in hydrological stores on drought inten-
sities within Australia using machine learning regression approaches. 
Gaussian kernel based SVM was deployed as a regressor and Quan-
tile Function Storage (QFS) for assessment. Very critical insights from 
analyses were reported to help drought resilience and efficient water 
resources management. Pal et al. [111] in 2021 proposed a spatial dis-
tribution based soil erosion map using empirical observations Revised 
Universal Soil Loss Equation (RUSLE) modelling. The importance of cli-
mate change and land cover variations was reported in controlling soil 
erosion. From the results, it was highlighted that if climate change and 
human activities are not controlled, by 2100, nearly 9.88% of land sur-
face top soil will erode.

In one of the most recent studies, Rahman et al. [112] developed 
a machine learning and hydrodynamic modelling based flood hazard 
zone mapping system. The accuracy of the model was assessed using 
the ground truth values and was reported high with an 𝑅2 score of 
0.83. Recently in 2021, Roy et al. [32] proposed the use of multiple 
machine learning algorithms (i.e., SVM, Biogeography Based Optimiza-
tion (BBO), Extremely Randomised Trees (ERT)) for the mapping of 
flood prone regions in the Ajoy River basin of India. Climate change 
and land-use planning related features were used as input to the ma-
chine learning models. From the results, BBO performed best among 
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the three for flood susceptibility mapping. In the same year, Saha et 
al. [33] investigated the soil erosion and land degradation phenomena 
by making use of machine learning and optimisation models. Specif-
ically, Gully Erosion Susceptibility (GES) mapping was investigated, 
and land use planning was optimized by deploying RF, BRT and EBO 
models. From the results, Ecogeography based Optimization (EBO) was 
reported as the best model for GES mapping. Saha et al. [34] in the year 
2021 proposed the use of ensemble machine learning models for flood 
susceptibility mapping. The ensemble of hyperpipes and SVM was im-
plemented on eight floods related variables to predict the susceptibility 
maps. From the experiments, the proposed ensemble approach was re-
ported to achieve an accuracy of 93%. Most recently, Shahri et al. [113] 
developed a 3D topographical model using a geospatial and data-driven 
algorithm for generating accurate subsurface topography spatial varia-
tions. Accuracy of 82% was reported from the results. Furthermore, it 
was demonstrated that the proposed model was helpful in determining 
the hydrological properties of the structure.

It has been observed that technology has facilitate variety of as-
sessments and activities at prevention and mitigation phase includ-
ing landslide susceptibility mapping, disaster simulations, flood hazard
mapping, evacuation planning, crowd flow simulation, structural design 
modifications, baseline data collection, flood risk assessment, land-use 
and land-cover classification, gully erosion susceptibility mapping, seis-
mic assessment of buildings, contingency planning, drought prediction 
and subsurface topography mapping. To assist above-mentioned assess-
ments, technology has evolved from the conventional approaches (i.e., 
Regression, Computational Modelling, Monte Carlo Simulation, Prob-
abilistic Modelling, Hydrodynamic Modelling, Conventional Machine 
Learning Models, Empirical Modelling, 3D Modelling, Fuzzy Logic, 
Mathematical Modelling) towards learning based and AI oriented ap-
proaches (i.e., GIS, UAVs, CNN, Deep Learning, Ensemble Machine 
Learning, Artificial Intelligence, Augmented Reality, Neural Networks, 
Remote Sensing). Furthermore, it has been observed that most of the 
studies are performed under a limited scope for a specific region.

4.2. Preparedness

In 2010, Chang et al. [35] proposed a clustering based hybrid in-
undation model using linear regression and Artificial Neural Networks 
(ANNs) for flood inundation forecasting. A simulated dataset using a 
two-dimensional non-inertial overland flow model was used for the 
training and testing of regression models. The proposed model was able 
to predict the flood inundation depths accurately 1 hour ahead. In the 
same year, Liao et al. [114] developed an early warning system for 
landslides by making use of geospatial and remote sensing data. The 
proposed system was capable of landslide susceptibility mapping, pre-
cipitation monitoring and landslide prediction. In 2011, Zhang et al. 
[115] developed a real-time landslide monitoring system using a wire-
pulling trigger displacement meter and grid pluviometer. Software and 
hardware combination was used to acquire data from sensors and fore-
casting of landslide on the highway.

Lin et al. [36] in 2013 proposed a flood forecasting model using a 
two-stage support vector machine. The idea of forecasting the rainfall 
from typhoon characteristics along with observed rainfall at the first 
stage and using forecasted rainfall along with observed runoff to fore-
cast the final runoff at the second stage was proposed. From the results, 
the proposed models were able to forecast accurately up to 6 hours 
ahead. In the same year, Devi et al. [116] developed a disaster predic-
tion system based on the statistical analysis. SPSS data mining tool was 
used to interpret the spatial data for disaster prediction. The proposed 
approach was reported effective in analysing the data and predicting 
the future disaster event. In the year 2014, Chang et al. [37] proposed 
the use of multiple ANN models (i.e., static ANN, Elman NN, Nonlin-
ear Autoregressive Network with Exogenous inputs (NARX)) towards 
forecasting the water levels from the rainfall data. From the results, the 
NARX model was reported to accurately forecast the water levels at the 
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selected station with 10-60 min ahead. Later in the same year, Dehghani 
et al. [38] deployed Neural Networks and Monte Carlo simulation ap-
proaches for drought forecasting. Streamflow discharge data was used 
and was indexed for being used in the simulations. From the analysis, 
forecasted results were reported within 95% of the confidence interval. 
Lucieer et al. [57] in the year 2014 proposed a cost-effective UAV based 
landslide monitoring system where structure from motion approach was 
used to map the landslide displacements using UAV captured imagery. 
The accuracy was validated using ground truth values and reported as 
7 cm and 6 cm horizontal and vertical accuracy, respectively.

In 2015, Asharose et al. [117] proposed an education tool to con-
duct disaster awareness workshops to better prepare against hazards. 
Awareness workshops were reported helpful in enhancing the knowl-
edge of people related to disasters and helped them in better dealing 
with disaster situations. Gong et al. [80] in year 2015 proposed the use 
of virtual reality technology for earthquake disaster awareness. A head 
mount hardware was used to simulate the disaster event in virtual to ed-
ucate the community. From the results, the proposed technology proved 
effective in simulating earthquake events and improving disaster drills. 
In the same year, Moghari and Araghinejad [39] used multiple vari-
ants of neural networks for the forecasting of the monthly and seasonal 
drought. From the results, it was reported that forecasting accuracy in-
creased with precipitation time-scale increase while decrease with an 
increase in lead time. In 2016, Hajian et al. [118] proposed a model to 
simulate wildfire propagation considering it a stochastic shortest path 
problem. Monte Carlo simulation approach was used to identify the 
distribution of fire travelling time. The proposed approach resulted in 
comparatively faster wildfire prediction with an acceptable effect on 
accuracy.

In 2017, Asim et al. [40] proposed the use of machine learning ap-
proaches (i.e., Recurrent Neural Network (RNN), NN, RF and Ensemble) 
to predict the magnitude of the earthquake in the Hindukush region. 
Models were trained using the mathematically calculated eight seismic 
indicators. From the analysis, encouraging results were reported. Later 
in the same year, Klise et al. [119] proposed Water Network Tool for 
Resilience (WNTR) software for water distribution resilience during an 
earthquake disaster event. Damage to the water distribution network 
was reported dependent on both the magnitude of the earthquake and 
the available resources to repair the network. In 2018, Hu et al. [81] 
proposed the use of virtual reality based simulations to help the com-
munity prepare for disasters. 3D reconstructed disaster situations were 
rendered using virtual reality in this context. From the analysis, it was 
reported that the proposed approach could help in better awareness 
of disaster situations. In year 2019, Seibert et al. [120] also proposed 
the use of citizen science for water level measurements by CrowdWa-
ter application. From the preliminary experiments, placement of virtual 
gauge size was found problematic.

In 2019, Berkhahn et al. [41] developed an ensemble of neural net-
works to predict the water levels in real-time during a flooding event. 
A new network growing algorithm was proposed to select the topol-
ogy of the ensemble network. The dataset used for training and testing 
of models was created using HE 2d hydrodynamic model. Acceptable 
forecasting accuracy with reduced computation time was reported for 
the proposed approach. In the same year, Wang et al. [58] proposed di-
lated casual CNN for the water level forecasting with a 1-hour to 6-hour 
lead time. The proposed approach was validated on a diversity of data 
collected from multiple typhoons and benchmarked against the conven-
tional machine learning models. In the year 2020, De Vitry and Leitao 
[59] investigated the proxy water level measurements’ impact on the 
pluvial flood forecasting models’ performance. Image-based proxy wa-
ter level measurements were used and multiple calibration tests were 
performed to study the impact. Pluvial flood forecasting model per-
formance was reported enhanced when calibrated using proxy water 
level measurements; however, the presence of complex correlated er-
rors was also reported, which may have a negative impact on model 
performance.
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Recently in 2020, Mishra et al. [75] proposed the use of GIS tech-
nology for monitoring water levels and forecasting floods. A satellite 
altimetry derived approach was deployed for water level monitoring of 
large water bodies. Furthermore, a web based front-end was developed 
to visualize the flood maps. In 2020, Strobl et al. [121] proposed the 
use of citizen science base mobile application CrowdWater for water 
level measurements. The virtual-gauge functionality of the CrowdWa-
ter application was validated against the in-field surveys and from 
the analysis, application recorded water levels were reported compara-
tively accurately to field values. In 2021, Pillai et al. [122] developed 
a service-oriented IoT architecture for disaster forecasting and early 
warning by using machine learning algorithms over the cloud server. 
Acceptable absolute errors were reported when machine learning mod-
els were applied on three different sensors data on the cloud. In one of 
the most recent studies, Tamakloe et al. [123] developed an algorithm 
based on the topological features and Spatio-temporal traffic concentra-
tion within the network for better evacuation during disaster situations. 
From the experimental results, the proposed approach performed better 
in comparison to the conventional shortest passage approach.

From the cited literature in this section, it is observed that tech-
nology has been used to facilitate variety of activities at preparedness 
phase including flood inundation forecasting, early warning systems, 
landslide monitoring system, flood forecasting, water level forecasting, 
drought forecasting, disaster awareness workshops, earthquake mag-
nitude prediction, water distribution network resilience and efficient 
evacuation planning. To assist above-mentioned activities, different so-
lutions were proposed using technologies including ANNs, remote sens-
ing, data acquisition, machine learning regression, Monte Carlo sim-
ulation, UAVs, ensemble of machine learning, virtual reality, citizen 
science, hydrodynamic modelling, and GIS.

4.3. Response

In 2010, Poser and Dransch [124] investigated the idea of using 
the Volunteered Geographic Information (VGI) as an efficient source to 
facilitate the activities within disaster response and recovery phases. 
A case study was presented where VGI was used for post flood rapid 
damage estimations and achieved comparable results to the conven-
tional hydraulic modelling based estimates. In 2011, Barrington et al. 
[125] evaluated the use of crowdsourced satellite images for provid-
ing post-disaster damage assessments. Authors investigated the existing 
initiatives in this regard and highlighted the future aspects of how 
crowdsourced remote sensing can be used as a tool for quick damage 
assessments. Later in the same year, Bengtsson et al. [76] made use of 
mobile phone network data to track the post-earthquake movement of 
people for efficient response related decisions. A case study was pre-
sented to demonstrate the proposed idea and reported that population 
movement patterns could significantly help disaster management agen-
cies in executing effective plans. Choi and Lee [84] in the year 2011 
proposed the use of UAVs for real-time and effective monitoring of dis-
asters. A system was developed using multiple sensors to acquire the 
disaster site data and transmit it to the ground station for analysis and 
effective decision making.

In 2013, Aghamohammadi et al. [42] proposed a neural network 
based approach for the estimation of human loss as a result of an 
earthquake event. The model was trained using the Bam 2003 earth-
quake data and reported the high estimation performance. In the same 
year Kao et al. [60] proposed a computer vision based monitoring and 
warning system for high risk flood debris flow. Optical flow and object 
based frame to frame comparison approaches were deployed for debris 
monitoring. Conventional image processing techniques including back-
ground subtraction, spatial filtering and entropy determination were 
also implemented. Lin et al. [36] in the year 2013 proposed a dual-
camera setup (i.e., wide-angle, speed dome) for the high-resolution vi-
sual monitoring of disaster. Feature matching and stitching approaches 
were used to render high-resolution visuals for efficient disaster anal-
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ysis. Houston et al. [47] in year 2014 proposed a framework to use 
social media in facilitating disaster management activities. The pro-
posed framework connected all the actors involved within the disaster 
management domain and highlighted social media means to connect for 
efficient disaster response. In 2015, Albuquerque et al. [48] proposed 
the use of VGI extracted from social media and authoritative informa-
tion from sensors to identify disaster related useful information. The 
effectiveness of the proposed approach was demonstrated for a flood 
case study and reported the usefulness of the proposed hybrid informa-
tion combination. In the same year, Boccardo et al. [85] investigated 
the use of UAVs for post-disaster information gathering and mapping. 
The advantages and limitations of the UAV platforms were highlighted 
in this context. Furthermore, a framework was proposed for the efficient 
deployment of UAVs.

In 2016, Jiang and Friedland [126] proposed a mono-temporal 
image processing approach to classify the post-hurricane debris and 
non-debris satellite images. Multivariate texture features were reported 
helpful in the efficient classification of debris from non-debris regions 
for post-disaster damage assessment. In the same year, Kim et al. [82] 
proposed the use of mobile augmented reality to facilitate the process 
of post-disaster structural damage assessments and safety analysis. A 
framework was introduced to support the adaptability of virtual real-
ity technology and a prototype system was developed to demonstrate 
its effectiveness. Later, Koyama et al. [61] proposed an advanced gra-
dient based optical flow estimation approach to estimate the Tsunami 
debris from Synthetic Aperture Radar (SAR) images. The improved per-
formance was reported for the image processing based approach with 
acceptable error. Kryvasheyeu et al. [49] in the year 2016 proposed the 
use of social media activity as a tool to assess the damage caused by a 
disaster. The proposed approach was validated using a Hurricane case 
study and reported the strong relationship between Twitter activity in 
assessing the damage.

In 2017, Bejiga et al. [43] proposed the use of a UAV equipped 
with a camera to facilitate post avalanche search and rescue operations. 
CNN and SVM were used for classifying the objects of interest from UAV 
captured images. Pre-processing and post-processing steps helped in im-
proving the detection rate and prediction performance, respectively. In 
the same year, Ghosh and Gosavi [127] proposed a semi-Markov model 
for post estimation of disaster restoration time and quantifying the 
disaster rate during the response phase. The use of dynamic program-
ming was proposed for the determination of the response centre. Later, 
Kakooei and Baleghi [62] in 2017 proposed the use of images from 
multiple sources (i.e., satellite, airborne, UAV) for post-disaster damage 
assessment. Facade images captured by UAVs when fused with roof im-
ages from satellite provided better damage assessments. Conventional 
image processing approaches were implemented to process the images. 
Arnold et al. [86] in year 2018 proposed the use of autonomous flying 
robots for facilitating search and rescue operations during initial hours 
of a disaster event. Swarm of autonomous flying robots was simulated in 
this context and was reported effective in locating 90% of the disaster 
victims. The swarm was controlled by cooperative behaviour intelli-
gence approach in the simulations. In the same year, Galbusera and 
Giannnopoulos [128] investigated the role of different disaster mod-
elling approaches in the context of input-output economic models for 
disaster impact assessments. Based on the equilibrium theory and eco-
nomic production theory, input-out economic model variants are most 
commonly used for post-disaster impact assessments. In the same year, 
Vetrivel et al. [63] investigated the structural damage assessment using 
computer vision and deep learning approaches. 3D point cloud features 
in combination with multiple kernel learning were used to improve the 
generalization problem and effective post-disaster damage assessment 
of structures.

In 2019, Ahmad et al. [44] proposed novel deep learning approaches 
for the identification and detection of passable roads in satellite and so-
cial media images after a flooding disaster. A comprehensive dataset 
provided by MediaEval 18 was used and fusion techniques were de-
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ployed to address the challenge. The improved performance was re-
ported over the existing state-of-the-art approaches by the authors. In 
the same year, Aljehani and Inoue [77] proposed the use of UAVs to 
generate post-disaster safe maps based on the scanning of area and 
movement of population. Mobile network information was used to track 
the movement of the population, while UAV captured visuals were used 
to scan the area. Later, Bhola et al. [64] in the year 2019 proposed the 
use of computer vision based validation data for urban flood inundation 
forecasting. Computer vision algorithms were deployed to find the wa-
ter depths mainly from the heights of reference objects in the images. 
From the results, it was reported that additional computer vision based 
validation data could help in significantly improving flood inundation 
forecasting. Bird et al. [50] discussed the potential of social media (i.e., 
Facebook) for flood related information sharing. The case of the 2011 
Queensland floods event was specifically discussed to demonstrate how 
Facebook groups helped in sharing the community related information 
during the disaster event.

Huang et al. [51] in 2019 proposed the fusion of visual and tex-
tual features for automatic labelling of social media posts related to 
disaster for efficient response. Deep learning models were implemented 
for training on the fused features for automatic labelling. The addi-
tion of visual features improved the accuracy in comparison to only 
textual features case. Later in the same year, Liang [65] proposed 
the use of deep learning models with the Bayesian optimization ap-
proach for post-disaster structural inspection of concrete bridges. Deep 
learning classification, detection and segmentation approaches were 
deployed to extract the structural failure related information for mak-
ing final “major failure” or “no failure” decision. An accuracy of over 
90% was reported for structural integrity classification using the pro-
posed approach. Madichetty and Sridevi [52] in the year 2019 proposed 
a Stacking-based Ensemble using Statistical features and Information 
Words (SESIW) for detection of social media tweets related the disas-
ter damage assessments. The main features used in the model included 
hashtags frequency, URLs, and user mentions. The proposed approach, 
when validated on baseline Twitter datasets, outperformed the con-
ventional machine learning models. Ogie et al. [53] in the year 2019 
proposed the use of crowdsourced social media data for flood mapping. 
Results and important insights from the PetaJakarta project were pre-
sented where social media was effectively implemented for flood maps 
generation and other disaster management related activities.

In 2020, Arif et al. [66] performed a comparative investigation using 
multiple deep learning models for disaster detection from social media 
images. A custom visual dataset was developed, and existing CNN mod-
els were implemented. From the results, it was reported that the VGG 
model was able to successfully detect the type of disaster from social 
media visual content. In the same year, Hao et al. [45] proposed the use 
of multimodal social media data (i.e., text, images) for the post-disaster 
damage assessments using machine learning algorithms. From the in-
vestigation, it was reported that by use of both image and text analysis, 
the proposed approach was able to achieve accurate damage assess-
ment and provided more useful information about the disaster. Later, 
Majumder et al. [129] proposed a post-earthquake debris management 
system by using a mathematical modelling approach. A mathematical 
model was proposed for the optimal cost of transportation of debris 
and the selection of suitable dumping locations. In a recent study, Zhai 
and Peng [67] proposed the use of Google Street View (GSV) for post-
hurricane damage assessment by applying deep learning approaches. 
From the results, it was reported that GSV proved helpful in damage 
assessments when damage level was low, while remote sensing images 
provided better damage assessment for high damage levels. In one of 
the most recent studies, Tay et al. [68] proposed the use of SSAR im-
ages from satellite to assess the damage caused by the floods. Change 
detection approach and GIS technology were implemented for damage 
mapping.

At response stage of disaster management cycle, technological so-
lutions were proposed in abundant involving both conventional and 
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state-of-the-art approaches to address the variety of assessments includ-
ing disaster response, damage assessments, victims tracking, disaster 
monitoring, disaster loss estimation, debris management, disaster in-
formation gathering, search and rescue operations, determining clear 
transport routes and flood inundation mapping. Some significant tech-
nologies used at this stage included VGI, crowdsourcing, remote sens-
ing, mobile phone, UAVs, NN, conventional computer vision, social 
media, SAR, CNN, conventional machine learning, semi-Markov mod-
elling, deep learning, ensemble of machine learning, and mathematical 
modelling.

4.4. Recovery

In 2014, Hoshi et al. [69] explored the use of satellite images for 
post-earthquake recovery monitoring. Satellite images were visually 
interpreted and validated against the results of field surveys to demon-
strate the effectiveness of satellite imagery in assessing the recovery. In 
2017, Baytiyeh [78] investigated the role of ICT in post-earthquake edu-
cation delivery. The effectiveness of online learning and the use of tech-
nology was highlighted in reinstating education after a disaster event. 
In 2017, Chowdhury et al. [87] proposed a Continuous Approximation 
(CA) model to explore the potential of drones in providing logistics to 
disaster-struck areas. The proposed model was able to identify optimal 
locations for distribution and estimate the overall operational costs.

In 2017, Hashemi-Parast et al. [130] used information from multi-
ple resources (i.e., statistics, images from field surveys, satellite images) 
for the assessment of post-earthquake urban reconstruction monitoring 
in Bam, Iran. From the results, it was reported that satellite images and 
photographs helped in better assessment of reconstruction monitoring. 
However, the interpretation of visuals was made manually. In the same 
year, Shiraki et al. [131] proposed a resilience engineering approach 
for road network recovery after an earthquake. Mathematical heuristics 
and analytical rule formation approaches were used in the proposed 
framework for effective reinstatement of the road network. Later, Yang 
and Qi [70] proposed a system for spatial-temporal dynamic vegeta-
tion monitoring after an earthquake event. Normalized vegetation index 
time series data was used for the analysis and cross-correlogram and 
spectral matching approaches were implemented. From the results, it 
was reported that the proposed approach was able to efficiently moni-
tor the vegetation growth in the region.

In 2018, Barabadi and Ayele [132] proposed the use of different sta-
tistical and machine learning models for the prediction of infrastructure 
recovery rates after disasters. Historical data was used for the analy-
sis. The proposed framework was divided into three scenarios based 
on the availability and type of data (i.e., missing data, heterogeneous 
data, homogeneous data). The proposed approach helped in selecting 
the correct model for recovery rate monitoring based on the scenario. 
In the same year, Contreras et al. [133] assessed the recovery process 
after the 2009 L’Aquila earthquake event by using a recovery index 
based on spatial indicators. From the results, it was reported that the 
recovery index was helpful in highlighting the spatial pattern in the 
recovery process and can be used to quantify the recovery progress. 
In a most recent study performed in 2020, Soulakellis et al. [71] used 
the Unmanned Aerial System (UAS) captured data for post-earthquake 
recovery monitoring. High-resolution images and geo-information ap-
proach were used for efficient structural recovery mapping. The SfM 
approach was used for creating 3D point clouds of structures. The pro-
posed approach proved 97% accurate in demolish detection. In 2021, 
Fan et al. [46] proposed the idea of Disaster City Digital Twin by 
incorporating ICT and AI into the process of facilitating disaster man-
agement activities. Data collection, data analysis, decision making and 
networking were reported as the four main components of the proposed 
paradiagram.

It has been observed from cited literature that recovery phase been 
least addressed from technology perspective. Assessments addressed at 
recovery phase included recovery monitoring, restoration of education, 
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logistics restoration, reconstruction monitoring, restoration of trans-
port routes and vegetation growth monitoring. Some highlighted tech-
nologies used in literature to address these activities included remote 
sensing, ICT, Continuous Approximation (CA) modelling, mathematical 
heuristics, machine learning, statistical modelling, UAS, AI, SFM and 
UAVs.

5. Process-driven and need-oriented framework based analysis

This section presents the proposed process-driven and need-oriented 
framework based analysis of cited technological contributions to disas-
ter management. The proposed process-driven and need-oriented frame-
work is designed to orient the literature in a two-dimensional structure 
to better align it against the respective phase of disaster management 
and corresponding assessment it aims to address. The horizontal axis 
of the framework represents different phases of disaster management 
progressing from prevention towards recovery. On the other hand, the 
vertical axis lists the needs/tasks involved at each phase, respective 
assessments/activities performed to address the needs and common 
technologies used to assist the assessments in addressing the disaster 
needs. Functional illustration of the proposed process-driven and need-
oriented framework deployed for the cited literature is given in Fig. 4. 
Some literature entries (i.e., [134, 135, 136, 137, 138, 139, 140, 141]) 
were included to support the framework and were not part of the main 
review as mentioned in Section 3.

From the framework, it can be interpreted that at the prevention 
phase, the most addressed need is “Disaster Risk Analysis and Man-
agement”, and the most addressed assessment is the “Disaster Hazard 
Zone and Susceptibility mapping”. Machine learning and deep learn-
ing were observed to be most deployed technologies at the prevention 
phase. At the preparedness phase, “Disaster Forecasting and Prediction” 
was the most addressed need in literature and corresponding “Disaster 
Pre-Warning Systems and Prediction Models” was the most explored 
assessment. Similar to the prevention phase, machine learning, deep 
learning and computer vision were the most used technologies. At the 
response phase, “Disaster Damage Analysis” was the most addressed 
need while “Structural Damage Assessment” was the most investigated 
assessment. Computer vision, social media and remote sensing were ob-
served as the leading technologies used at this phase. Finally, at the 
recovery phase, “Restoration to Normal” was the most addressed need 
while corresponding “Reconstruction Monitoring” assessment was most 
explored from a research perspective. Computer vision, remote sens-
ing, and UAVs were observed as the highlighted technologies used at 
this phase. Overall, it can be observed that the recovery phase has been 
least explored from a technological point of view and offers a huge po-
tential to technology providers for deploying technological solutions to 
assist the assessments.

Tables 2 to 5 present the detailed process-driven and need-oriented 
analysis of cited literature for prevention, preparedness, recovery and 
response phases, respectively. Each literature entry is investigated for 
addressed disaster need, addressed disaster assessment, disaster type 
and technology used to address the corresponding assessment.

6. Constraints and set of requirements

Each phase of disaster management involves a number of constraints 
and a set of basic requirements associated with specific needs and prob-
lems. For a proposed solution to be effective, it must minimally address 
these requirements; however, from cited literature, proper requirement 
formulation is found lacking. Carter [16] mentioned some basic require-
ments to be addressed for effective disaster management performance. 
Building on the idea of Carter [16] and bringing it together with the 
proposed need-oriented review; this article proposes a list of basic con-
straints and a set of requirements to help the contributors propose 
efficient solutions to disaster management related problems. Proposed 
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constraints are generalized and applicable in the scope of all com-
mon disasters; however, more comprehensive and assessment related 
constraints are recommended to be defined depending on the type of 
disaster and phase of the disaster management cycle. Listed are the pro-
posed constraints:

• Responsiveness is referred to the speed of the proposed solution 
and is often measured by analyzing the processing times in pro-
viding the desired output. This constraint is closely related to the 
real-time functionality of the proposed approach and varies across 
different phases. In general, any proposed solution should process 
information as quickly as possible; however, it is not always the 
priority. Other than the assessments which require real-time opera-
tional functionality (e.g., flood monitoring, early warning systems, 
rapid flood mapping, search and rescue), responsiveness is not 
the priority in disaster management. Having said that, a problem-
specific formulation of required response time is recommended.

• Accuracy is referred to the correctness of the proposed solution 
and is measured by validating against ground truth samples. In 
general, any proposed solution should be as accurate as possi-
ble; however, not always the priority. For the assessments where 
quick results are required (e.g., early disaster mapping, search and 
rescue, early visual inspections), accuracy is not as important as re-
sponsiveness. On the other hand, assessments where relaxed time 
constraints are involved (e.g., structural damage assessment, pre-
vention measures, risk assessment, hazard zone mapping) should 
be highly accurate. For the assessment like early disaster warning 
systems, both accuracy and responsiveness are equally important, 
which makes it a challenging task for contributors to achieve. 
A specific formulation of accuracy requirement for the addressed 
problem is recommended for efficient outcome.

• Generalization is referred to the implementation diversity of 
the proposed solution and is assessed by validating the proposed 
method for comprehensive data containing multiple scenarios. In 
general, any proposed solution should be capable of performing 
under variable disaster situations without major changes. Having 
said that, it is not practical for most disaster management related 
assessments to have a highly generalized single solution applicable 
to all disasters. Therefore, it is highly recommended to properly 
formulate the generalization requirement specific to disaster type 
and assessment for efficient results.

• Cost and Hardware Implementation is referred to the overall cost 
and hardware implementation related constraints for the proposed 
solution. A feasibility study of the required budget, availability 
of hardware components, availability of power on-site, and com-
munication network is highly recommended but often ignored by 
contributors. Logistic requirements vary significantly based on the 
type of disaster and assessment; therefore, an assessment-specific 
formulation of cost and implementation related requirements is 
recommended.

• User-Friendliness is referred to the ease by which a non-technical 
person can deploy, supervise and monitor a technological solution. 
It is highly desirable for a proposed system to be easy to operate 
by a non-technical individual with little knowledge. In practice, it 
is recommended to have a system that can be operated by anyone 
after a quick training session.

The cited literature has been evaluated against the proposed set of 
requirements to highlight the trends of addressed requirements. For this 
article, subjective evaluation criteria are defined and listed as follows:

• Responsiveness (✓): If processing times for the proposed techno-
logical solution are minimally discussed.

• Accuracy (✓): If the performance of the proposed model is quanti-
fied by at least one measure.
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Fig. 4. Functional illustration of the proposed process-driven and need-oriented review framework.
• Cost and Hardware Implementation (✓): If hardware requirements 
and/or cost of deploying the proposed solution in practice is mini-

mally addressed.

• Generalization (✓): If the proposed solution is validated against 
diversity of scenarios/data.
10
• User-Friendliness (✓): If operational information and user interface 
for the proposed solution are minimally addressed.

Tables 6 to 9 present the proposed constraint based analysis of the 
cited literature from the prevention, preparedness, recovery and re-
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Technology Used

Conventional Machine Learning

Computational Mathematical Models

Monte Carlo Simulation

lide GIS and Equipment

Analytical Heuristic

Monte Carlo Simulation

Spatio-Temporal Probabilistic Model

1D-2D Hydrodynamic Models

ave Phase Change Material, Simulations

Unmanned Aerial Vehicles (UAVs)

Conventional Machine Learning

Database Development

Object-Based CNN (OCNN)

GIS and Multi-Criteria Analysis

Mathematical Modelling

CNN and MLP

Conventional Machine Learning

Hybrid and Ensemble Machine Learning

Conventional Machine Learning

Fuzzy Logic Model

n Communication Model and Training

Fully Connected CNN

Virtual Reality and Augmented Reality

Ensemble of Machine Learning

Low Impact Development (LID) Approach

Geographic Information System (GIS)

Novel Hybrid Neural Networks

Multi-Criteria Decision Analysis

Ensemble of Machine Learning

Conventional Machine Learning

Empirical Modelling

Hydrodynamic Models and Machine Learning

Machine Learning Models

Machine Learning and Optimization Models

Ensemble of Machine Learning

3D Topographical Models
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Table 2. The proposed process-driven and need-oriented analysis of cited literature from prevention and mitigation phase.

Author/s Year Need and Tasks Assessments and Activities Disaster

Bai et al. [24] 2010 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Landslide

Martyr et al. [97] 2010 Disaster Risk Analysis and Management Disaster Simulation and Modelling Hurricane

Aronica et al. [98] 2012 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Flood

Sun et al. [72] 2012 Disaster Prevention Measures Structural and Non-Structural Measures Flood and Lands

Campos et al. [99] 2012 Disaster Risk Analysis and Management Effective Evacuation Plans All/Common

Caballero and Rahman [100] 2014 Disaster Risk Analysis and Management Disaster Simulation and Modelling Flood

Radianti et al. [101] 2014 Disaster Risk Analysis and Management Effective Evacuation Plans All/Common

Liu et al. [102] 2015 Disaster Risk Analysis and Management Disaster Simulation and Modelling Flood

Ramakrishnan et al. [103] 2016 Disaster Prevention Measures Structural and Non-Structural Measures Extreme Heat W
Zhu et al. [83] 2017 Disaster Risk Analysis and Management Baseline Data Collection Flood

Chen et al. [25] 2018 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Landslide

Tanaka et al. [104] 2018 Disaster Risk Analysis and Management Baseline Data Collection All/Common

Zhang et al. [54] 2018 Disaster Risk Analysis and Management Land-Use and Land-Cover Classification All/Common

Bera et al. [73] 2019 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Landslide

Komolafe et al. [105] 2019 Disaster Assessments Disaster Damage Estimation Flood

Zhang et al. [55] 2019 Disaster Risk Analysis and Management Land-Use and Land-Cover Classification All/Common

Abdi [26] 2020 Disaster Risk Analysis and Management Land-Use and Land-Cover Classification All/Common

Band et al. [27] 2020 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Flood

Chowdhuri et al. [28] 2020 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Gully Erosion

Harirchian and Lahmer [106] 2020 Disaster Assessments Vulnerability Assessment of Buildings Earthquake

Lestari et al. [107] 2020 Disaster Risk Analysis and Management Contingency Planing Volcanic Eruptio

Mboga et al. [56] 2020 Disaster Risk Analysis and Management Land-Use and Land-Cover Classification All/Common

Mitsuhara and Shishibori [79] 2020 Disaster Risk Analysis and Management Disaster Simulation and Modelling Tornado

Pal et al. [108] 2020 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Gully Erosion

Pour et al. [109] 2020 Disaster Risk Analysis and Management Disaster Mitigation Measures Flood

Sansare and Mhaske [74] 2020 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Flood

Shahri and Moud [29] 2020 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Landslid

Ziarh et al. [110] 2020 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Flood

Arabameri et al. [30] 2021 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Gully Erosion

Ndehedehe et al. [31] 2021 Disaster Risk Analysis and Management Disaster Simulations and Modelling Drought

Pal et al. [111] 2021 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Soil Erosion

Rahman et al. [112] 2021 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Flood

Roy et al. [32] 2021 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Flood

Saha et al. [33] 2021 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Soil Erosion

Saha et al. [34] 2021 Disaster Vulnerability Mapping Disaster Hazard Zone and Susceptibility Mapping Flood

Shahri et al. [113] 2021 Disaster Risk Analysis and Management Disaster Simulations and Modelling Flood
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Technology Used

Conventional Machine Learning

Geospatial and Satellite Data Modelling

Conventional Sensory Equipment

Machine Learning SVM

n Statistical Analysis and Data Mining

Artificial Neural Networks

NN and Monte Carlo

SfM and UAVs

n Workshops and Educational Tools

Virtual Reality and Simulations

Neural Networks

Monte Carlo Simulation

Conventional Machine Learning

Modelling and Software Package

Virtual Reality

Citizen Science

Ensemble Neural Networks

Dilated Casual CNN

Image Processing and Sensors for Calibration

Geographic Information System (GIS)

Citizen Science

n IoT and Machine Learning

n Traffic Network Features based Algorithm

Technology Used

Satellite Image Processing and Field Surveys

ICT and Online Learning

Drones

Statistics and Images

Resilience Engineering, Heuristic Functions

Spectral Matching and Cross-Correlogram

Statistical Models and Machine Learning

Recovery Index based on Spatial Features.

SfM and UAS

Artificial Intelligence and ICT
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Table 3. The proposed process-driven and need-oriented analysis of cited literature from preparedness phase.

Author/s Year Need and Tasks Assessments and Activities Disaster

Chang et al. [35] 2010 Disaster Forecasting Disaster Pre-Warning System and Prediction Flood

Liao et al. [114] 2010 Disaster Forecasting Disaster Pre-Warning System and Prediction Landslide

Zhang et al. [115] 2011 Disaster Forecasting Disaster Pre-Warning System and Prediction Landslide

Lin et al. [36] 2013 Disaster Forecasting Disaster Pre-Warning System and Prediction Flood

Devi et al. [116] 2013 Disaster Forecasting Disaster Pre-Warning System and Prediction All/Commo

Chang et al. [37] 2014 Disaster Forecasting Disaster Pre-Warning System and Prediction Flood

Dehghani et al. [38] 2014 Disaster Forecasting Disaster Pre-Warning System and Prediction Drought

Lucieer et al. [57] 2014 Disaster Monitoring Disaster Resilience Monitoring Landslide

Asharose et al. [117] 2015 Disaster Awareness Disaster Workshops and Training All/Commo

Gong et al. [80] 2015 Disaster Awareness Disaster Workshops and Training Earthquake

Moghari and Araghinejad [39] 2015 Disaster Forecasting Disaster Pre-Warning System and Prediction Drought

Hajian et al. [118] 2016 Disaster Forecasting Disaster Pre-Warning System and Prediction Wildfire

Asim et al. [40] 2017 Disaster Forecasting Disaster Pre-Warning System and Prediction Earthquake

Klise et al. [119] 2017 Disaster Monitoring Disaster Resilience Monitoring Earthquake

Hu et al. [81] 2018 Disaster Awareness Disaster Workshops and Trainings Flood

Seibert et al. [120] 2019 Disaster Monitoring Water Level Measurements Flood

Berkhahn et al. [41] 2019 Disaster Forecasting Water Level Measurements Flood

Wang et al. [58] 2019 Disaster Forecasting Water Level Measurements Flood

De Vitry and Leitao [59] 2020 Disaster Forecasting Disaster Pre-Warning System and Prediction Flood

Mishra et al. [75] 2020 Disaster Forecasting Disaster Pre-Warning System and Prediction Flood

Strobl et al. [121] 2020 Disaster Monitoring Water Level Measurements Flood

Pillai et al. [122] 2021 Disaster Forecasting Disaster Pre-Warning System and Prediction All/Commo

Tamakloe et al. [123] 2021 Disaster Evacuation Traffic and Routes Management for Effective Evacuation All/Commo

Table 4. The proposed process-driven and need-oriented analysis of cited literature from recovery phase.

Author/s Year Need and Tasks Assessments and Activities Disaster

Hoshi et al. [69] 2014 Restoration to Normal Reconstruction Monitoring Earthquake

Baytiyeh [78] 2017 Restoration of Essential Services Restoring Education and Learning Earthquake

Chowdhury et al. [87] 2017 Restoration of Goods Flow Restoring Logistic Transport Network All/Common

Hashemi-Parast et al. [130] 2017 Restoration to Normal Reconstruction Monitoring Earthquake

Shiraki et al. [131] 2017 Restoration of Transport Restoring Logistic Transport Network Earthquake

Yang and Qi [70] 2017 Restoration to Normal Vegetation Growth Monitoring Earthquake

Barabadi and Ayele [132] 2018 Recovery Planning Reconstruction Monitoring All/Common

Contreras et al. [133] 2018 Recovery Planning Reconstruction Monitoring Earthquake

Soulakellis et al. [71] 2020 Recovery Planning Reconstruction Monitoring Earthquake

Fan et al. [46] 2021 Restoration to Normal Disaster Recovery Framework All/Common
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Technology Used

VGI

Crowdsourced Remote Sensing

Mobile Phone

UAVs and Sensors

Neural Networks

Conventional Image Processing

Dual-Camera Setup

Social Media based Framework

Social Media and VGI

Unmanned Aerial Vehicles (UAVs)

Mono-Temporal Image Processing

Mobile Virtual Reality

Gradient-Based Optical Flow

Social Media Activity

CNN, SVM, UAV

Semi-Markov Model

Conventional Image Processing and UAVs

Autonomous Aerial Robots and SWARM Intelligence

Input-output Economic models

3D Point Cloud with Deep Learning

Deep Learning Models

UAVs, and Mobile Phone

Computer Vision Approaches

Social Media

Social Media and Deep Learning

Deep Learning and Bayesian Optimization

Social Media Data Mining

Crowdsourced Social Media

Deep Learning Models

Social Media and Machine Learning

Mathematical Model

Google Street View and Deep Learning

SAR Images and GIS
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Table 5. The proposed process-driven and need-oriented analysis of cited literature from response phase.

Author/s Year Need and Tasks Assessments and Activities Disaster

Poser and Dransch [124] 2010 Disaster Damage Analysis Rapid Damage Mapping Flood

Barrington et al. [125] 2011 Disaster Damage Analysis Rapid Damage Mapping Earthquake

Bengtsson et al. [76] 2011 Disaster Information Gathering Disaster Surveillance and Mapping Earthquake

Choi and Lee [84] 2011 Disaster Monitoring Disaster Surveillance and Mapping All/Common

Aghamohammadi et al. [42] 2013 Disaster Damage Analysis Disaster Impact and Economic Assessment Earthquake

Kao et al. [60] 2013 Disaster Debris Management Debris Detection and Estimation Flood

Lin et al. [36] 2013 Disaster Monitoring Disaster Surveillance and Mapping All/Common

Houston et al. [47] 2014 Disaster Response Multiple Assessments All/Common

Albuquerque et al. [48] 2015 Disaster Information Gathering Disaster Surveillance and Mapping Flood

Boccardo et al. [85] 2015 Disaster Information Gathering Disaster Surveillance and Mapping All/Common

Jiang and Friedland [126] 2016 Disaster Damage Analysis Debris Detection and Estimation Hurricane

Kim et al. [82] 2016 Disaster Damage Analysis Structural Damage Assessment All/Common

Koyama et al. [61] 2016 Disaster Debris Management Debris Detection and Estimation Tsunami

Krycasheyeu et al. [49] 2016 Disaster Damage Analysis Rapid Damage Mapping Hurricane

Bejiga et al. [43] 2017 Disaster Victims Identification Search and Rescue Operations Avalanche

Ghosh and Gosavi [127] 2017 Disaster Monitoring Disaster Impact and Economic Assessment Earthquake

Kakooei and Baleghi [62] 2017 Disaster Damage Analysis Structural Damage Assessment All/Common

Arnold et al. [86] 2018 Disaster Victims Identification Search and Rescue Operations All/Common

Galbusera and Giannnopoulos [128] 2018 Disaster Economic Analysis Disaster Impact and Economic Assessment All/Common

Vetrivel et al. [63] 2018 Disaster Damage Analysis Structural Damage Assessment Earthquake

Ahmad et al. [44] 2019 Disaster Response Effective Evacuation Planning Flood

Aljehani and Inoue [77] 2019 Disaster Scope and Mapping Disaster Safe Zone and Area Mapping All/Common

Bhola et al. [64] 2019 Disaster Information Gathering Disaster Safe Zone and Area Mapping Flood

Bird et al. [50] 2019 Disaster Information Gathering Disaster Communication and Information Sharing Flood

Huang et al. [51] 2019 Disaster Information Gathering Disaster Communication and Information Sharing All/Common

Liang [65] 2019 Disaster Damage Analysis Structural Damage Assessments All/Common

Madichetty and Sridevi [52] 2019 Disaster Damage Analysis Structural Damage Assessments All/Common

Ogie et al. [53] 2019 Disaster Scope and Mapping Disaster Safe Zone and Area Mapping Flood

Arif et al. [66] 2020 Disaster Scope and Mapping Disaster Identification All/Common

Hao et al. [45] 2020 Disaster Damage Analysis Structural Damage Assessments Hurricane

Majumder et al. [129] 2020 Disaster Debris Management Debris Detection and Estimation Earthquake

Zhai and Peng [67] 2020 Disaster Damage Analysis Structural Damage Assessments Hurricane

Tay et al. [68] 2021 Disaster Damage Analysis Rapid Damage Mapping Flood
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Table 6. The proposed disaster constraints based analysis of cited literature from prevention and mitigation phase.

Case Responsiveness Accuracy Cost and Hardware 
Implementation

Generalization User Friendliness

Bai et al. [24] × ✓ × × ×
Martyr et al. [97] × ✓ × × ×
Aronica et al. [98] × ✓ × × ×
Campos et al. [99] × × × × ×
Sun et al. [72] × × × × ✓
Cballero and Rahman [100] × ✓ × × ×
Radianti et al. [101] × ✓ × ✓ ×
Liu et al. [102] × ✓ × × ×
Ramakrishnan et al. [103] × ✓ × ✓ ×
Zhu et al. [83] × ✓ × × ×
Chen et al. [25] × ✓ × ✓ ×
Tanaka et al. [104] NA NA × × ×
Zhang et al. [54] × ✓ × ✓ ×
Bera et al. [73] × ✓ × × ×
Komolafe et al. [105] × ✓ × × ×
Zhang et al. [55] ✓ ✓ × ✓ ×
Abdi [26] × ✓ × ✓ ×
Band et al. [27] × ✓ × ✓ ×
Chowdhuri et al. [28] × ✓ × ✓ ×
Harirchian and Lahmer [106] × ✓ × × ×
Lestari et al. [107] NA NA NA NA ×
Mboga et al. [56] × ✓ × × ×
Mitsuhara and Shishibori [79] × ✓ × × ×
Pal et al. [108] × ✓ × × ×
Pour et al. [109] NA NA × NA ×
Sansare and Mhaske [74] × × × × ✓
Shahri and Moud [29] × ✓ × × ×
Ziarh et al. [110] × ✓ × × ×
Arabameri et al. [30] × ✓ × ✓ ×
Ndehedehe et al. [31] × ✓ × × ×
Pal et al. [111] × ✓ × ✓ ×
Rahman et al. [112] × ✓ × × ×
Roy et al. [32] × ✓ × × ×
Saha et al. [33] × ✓ × ✓ ×
Saha et al. [34] × ✓ × ✓ ×
Shahri et al. [113] × ✓ × ✓ ×
sponse phase. From the analysis, it can be observed that “Accuracy” is 
the most addressed need for the proposed technological solutions; how-
ever, all other constraints are least addressed by a significant margin 
in comparison to “Accuracy”. This suggested the lack of collaboration 
between technology providers and disaster management officials and 
the lack of proper requirement formulation for the problem to be ad-
dressed from a disaster management perspective. A qualitative case 
study to bring the opinion of disaster management officials into the 
development process is a potential activity that can be performed in the 
future.

7. Scope of computer vision in disaster management

A review of technological advancements in disaster management 
presented in Section 4 has highlighted computer vision as an emerging 
technology used to facilitate a variety of assessments. From the cited lit-
erature, computer vision technology has been used mainly for land-use 
and land-cover classification [26, 54, 55, 56], water level measurements 
[58], disaster mapping [64], disaster damage assessments [45, 49, 52, 
62, 63, 65, 68, 124, 125], disaster debris management [60] and dis-
aster reconstruction monitoring [69, 71, 130, 132, 133]. However, the 
technological advancements in edge computing hardware have opened 
new horizons for computer vision and deep learning technologies to-
wards addressing complex disaster management related problems. The 
application of computer vision technologies to disaster management re-
lated assessments and corresponding potential challenges are discussed 
under this section.

State-of-the-art CNN models have already proven their utility for 
land-use and land-cover classification on satellite images with high ac-
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curacy; however, on-demand and real-time local mapping is still an 
unexplored area where UAVs equipped with computer vision algorithms 
can play their part. From the analysis of literature, machine learning 
approaches have been abundantly used for disaster hazard zone map-
ping; however, the scope of computer vision technologies on satellite 
and airborne images has not been explored to its potential. Monitoring 
disaster prevention structures such as Dams is another domain where 
computer vision can be deployed for real-time damage detection and 
water-level measurements. At the preparedness phase, disaster monitor-
ing and early warning systems can make use of computer vision based 
approaches for disaster detection. Real-time water level measurement at 
disaster vulnerable points using computer vision is one typical example 
where computer vision has already been used to issue early warnings 
for flood disasters. However, most of the studies were performed on a 
local scale and using conventional image processing techniques. For dis-
aster forecasting, incorporation of visual data and respective computer 
vision analysis into existing time-series numerical data based models is 
one potential domain that can be explored.

At the response phase, on-demand quick mapping of disaster to 
identify the scope and extent of disaster using a UAV equipped with 
computer vision algorithms is a potential domain to explore. As of now, 
disaster mapping is done either by manned helicopters, ground commu-
nications, or satellite images. However, UAVs and computer vision have 
the potential to make this process cost economical, quick and more ac-
curate to facilitate post-disaster response activities. In a similar scope, 
disaster victims identification is another assessment that can be facili-
tated by UAVs and computer vision algorithms (i.e., object detection, 
object segmentation). Post-disaster structural damage estimation is the 
assessment where computer vision has been deployed the most using 
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Table 7. The proposed disaster constraints based analysis of cited literature from preparedness phase.

Case Responsiveness Accuracy Cost and Hardware 
Implementation

Generalization User Friendliness

Chang et al. [35] × ✓ × ✓ ×
Liao et al. [114] × ✓ × × ×
Zhang et al. [115] × ✓ ✓ × ×
Lin et al. [36] × ✓ × ✓ ×
Devi et al. [116] × × × ✓ ✓
Chang et al. [37] × ✓ × × ×
Dehghani et al. [38] × ✓ × ✓ ×
Lucieer et al. [57] × ✓ × × ×
Asharose et al. [117] NA NA NA NA ✓
Gong et al. [80] × × × ✓ ✓
Moghari and Araghinejad [39] × ✓ × ✓ ×
Hajian et al. [118] × ✓ × × ×
Asim et al. [40] × ✓ × × ×
Klise et al. [119] × ✓ × ✓ ✓
Hu et al. [81] × ✓ × × ✓
Seibert et al. [120] × ✓ × × ✓
Berkhahn et al. [41] ✓ ✓ × × ×
Wang et al. [58] × ✓ × ✓ ×
De Vitry and Leitao [59] × ✓ × × ×
Mishra et al. [75] × × × × ✓
Strobl et al. [121] × ✓ × × ✓
Pillai et al. [122] × ✓ ✓ × ✓
Tamakloe et al. [123] ✓ ✓ × × ×

Table 8. The proposed disaster constraints based analysis of cited literature from recovery phase.

Case Responsiveness Accuracy Cost and Hardware 
Implementation

Generalization User Friendliness

Hoshi et al. [69] × ✓ × × ×
Baytiyeh [78] NA NA NA NA NA

Chowdhury et al. [87] × ✓ ✓ × ×
Hashemi-Parast et al. [130] × ✓ × × ×
Shiraki et al. [131] × × × × ×
Yang and Qi [70] × ✓ × ✓ ×
Barabadi and Ayele [132] × ✓ × × ×
Contreras et al. [133] × ✓ × × ×
Soulakellis et al. [71] × ✓ × × ×
Fan et al. [46] NA NA × NA ×
satellite images and UAV captured images. State-of-the-art technolo-
gies such as SfM and 3D reconstruction based on point clouds have 
already been efficiently used. However, detailed structural damage as-
sessments and building re-usability assessments at a local scale are least 
explored from a computer vision perspective and can be benefited. Dis-
aster debris detection and estimation is an important assessment where 
computer vision technologies are least applied. For example, assess-
ment of blockage at culverts using computer vision algorithms to avoid 
floods is one potential domain [142]. At the recovery phase, reconstruc-
tion monitoring from satellite images is the most explored assessment 
where computer vision is deployed. However, on-demand reconstruc-
tion monitoring at the local scale is still unexplored. Vegetation growth 
monitoring is another assessment where computer vision can be used in 
the same scope as reconstruction monitoring.

One of the highlighted challenges observed from cited literature is 
the availability of comprehensive benchmark visual datasets to address 
the disaster management related assessments from a computer vision 
perspective. It was observed that for the assessments where benchmark 
datasets were available, state-of-the-art computer vision algorithms are 
already deployed (e.g., land-use classification, structural damage map-
ping). Otherwise, most of the studies were performed using custom 
datasets with limited scope. In addition, dealing with diverse weather 
conditions, variable lighting conditions, and camera viewpoint prob-
lems are some highlighted challenges in deploying computer vision 
based solutions for addressing disaster management assessments.
15
8. Conclusion

A review of benchmark studies was presented using a proposed 
process-driven and need-oriented framework to highlight the techno-
logical trends in disaster management. The proposed framework helped 
in better classification of literature and finding potential research gaps. 
Machine learning, UAVs, AI, ICT, robotics, Big Data, virtual reality, aug-
mented reality, social media and computer vision were reported as the 
highlighted technologies deployed to address disaster management as-
sessments. Disaster hazard zone mapping, land-use classification, disas-
ter forecasting, water level measurement, disaster damage assessments, 
and reconstruction monitoring were the reported assessments where 
most technological solutions were proposed. A list of disaster related 
constraints was formulated to align the solutions against the disaster 
management requirements. Accuracy was reported as the most fulfilled 
disaster requirement in literature, while responsiveness, generalization, 
cost and hardware implementation, and user-friendliness were rarely 
discussed. Proper requirement formulation related to addressed disaster 
management assessment for effective outcome was found consistently 
lacking. Overall, the availability of comprehensive benchmark datasets 
was found missing and most of the studies were performed for a lo-
cal utility. Finally, the scope of computer vision in facilitating different 
disaster management related assessments was explored and potential 
challenges were highlighted as future research directions. Land-use and 
land-cover classification, water level measurements, disaster mapping, 
disaster damage assessments, disaster debris management and disas-
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Table 9. The proposed disaster constraints based analysis of cited literature from response phase.

Case Responsiveness Accuracy Cost and Hardware 
Implementation

Generalization User Friendliness

Poser and Dransch [124] × ✓ × × ×
Barrington et al. [125] NA NA NA NA ✓
Bengtsson et al. [76] × ✓ × ✓ ×
Choi and Lee [84] × × ✓ × ✓
Aghamohammadi et al. [42] × ✓ × × ×
Kao et al. [60] ✓ ✓ × × ×
Lin et al. [36] × × × × ×
Houston et al. [47] NA NA NA NA ✓
Albuquerque et al. [48] × ✓ × × ×
Boccardo et al. [85] × ✓ ✓ × ✓
Jiang and Friedland [126] ✓ ✓ × × ×
Kim et al. [82] × ✓ × ✓ ✓
Koyama et al. [61] × ✓ × × ×
Krycasheyeu et al. [49] × ✓ × × ×
Bejiga et al. [43] ✓ ✓ × ✓ ×
Ghosh and Gosavi [127] × ✓ × × ×
Kakooei and Baleghi [62] × ✓ × × ×
Arnold et al. [86] × ✓ × ✓ ×
Galbusera and Giannnopoulos [128] NA NA NA NA ×
Vetrivel et al. [63] ✓ ✓ × ✓ ×
Ahmad et al. [44] × ✓ × ✓ ×
Aljehani and Inoue [77] × ✓ ✓ ✓ ✓
Bhola et al. [64] × ✓ × ✓ ×
Bird et al. [50] NA NA NA NA ✓
Huang et al. [51] × ✓ × ✓ ×
Liang [65] × ✓ × × ×
Madichetty and Sridevi [52] × ✓ × ✓ ×
Ogie et al. [53] × ✓ × ✓ ×
Arif et al. [66] × ✓ × ✓ ×
Hao et al. [45] × ✓ × × ×
Majumder et al. [129] × × × × ✓
Zhai and Peng [67] × ✓ × × ×
Tay et al. [68] × × × × ×
ter reconstruction monitoring were reported as highlighted assessments 
where computer vision can potentially be used in the future.
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